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ON UNIT BALLS AND ISOPERIMETRICES IN NORMED SPACES

BY

HORST MARTINI (Chemnitz) and ZOKHRAB MUSTAFAEV (Houston, TX)

Abstract. The purpose of this paper is to continue the investigations on the homo-
thety of unit balls and isoperimetrices in higher-dimensional Minkowski spaces for the
Holmes–Thompson measure and the Busemann measure. Moreover, we show a strong re-
lation between affine isoperimetric inequalities and Minkowski geometry by proving some
new related inequalities.

0. Introduction. One of the most challenging open questions in Min-
kowski geometry (i.e., the geometry of finite-dimensional real Banach spaces)
is whether the unit ball must be an ellipsoid if it is the solution of the isoperi-
metric problem in a higher-dimensional (Minkowski or) normed space; see
[2], [3], and [18]. Before answering this question, one has to define the no-
tion of measure in the given normed space. Among others, there are two
well-known definitions of measure: one due to Holmes–Thompson and an-
other one due to Busemann. For the Holmes–Thompson measure, the above
question can also be formulated as follows: if a centered convex body B
in Rd, d ≥ 3, and the projection body of its polar are homothetic, must
B then be an ellipsoid? The analogous question for the Busemann mea-
sure is: if B and the polar of its intersection body are homothetic, must
B then be an ellipsoid? In R2, apart from ellipses, Radon curves (see [12])
have these properties as well. For higher-dimensional normed spaces it is
only known that if B is a centered polytope, then the unit ball B and the
corresponding isoperimetrix are not homothetic for the Holmes–Thompson
measure (see [18]). We prove some results on the homothety of unit balls and
isoperimetrices in d-dimensional normed spaces, and derive various related
inequalities.

In [2], Busemann and Petty posed ten challenging questions formulated
in terms of convex geometry, but important in Minkowski geometry. So far,
only one of the questions has been completely answered (see, e.g., [5]). One
of the above questions is also among those ten problems raised by Busemann
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and Petty. On the other hand, our investigations relate to affine isoperimetric
inequalities (cf. [7]). For example, we prove an estimate related to Petty’s
conjectured projection inequality; see also [10].

1. Definitions and preliminaries. Recall that a convex body K ⊂ Rd,
d ≥ 2, is a compact, convex set with nonempty interior, and K is said to
be centered if it is symmetric with respect to the origin o of Rd. As usual,
Sd−1 denotes the standard Euclidean unit sphere in Rd. We write λi for
the i-dimensional Lebesgue measure in Rd, 1 ≤ i ≤ d; for λd we simply
write λ. We denote by u⊥ the (d − 1)-dimensional subspace orthogonal to
u ∈ Sd−1, and lu is the 1-subspace parallel to u. For a convex body K
in Rd, K◦ = {y ∈ Rd : 〈x, y〉 ≤ 1, x ∈ K} denotes its polar body. We
identify Rd and its dual space (Rd)∗ by using the standard basis. In that
case, λi and its dual measure λ∗i coincide in Rd. We denote by εd the volume
of the standard Euclidean unit ball in Rd. For K a convex body in Rd and
u ∈ Sd−1, the support function hK(u) = sup{〈u, y〉 : y ∈ K} and, for o ∈ K,
the radial function ρK(u) = max{α ≥ 0 : αu ∈ K} satisfy hαK = αhK and
ραK = αρK , and for all u ∈ Sd−1 we have

(1) ρK◦(u) =
1

hK(u)
.

The projection body ΠK of a convex body K in Rd is defined by hΠK(u) =
λd−1(K|u⊥) for each u ∈ Sd−1, where K|u⊥ is the orthogonal projection
of K onto u⊥ and λd−1(K|u⊥) is called the (d−1)-dimensional outer cross-
section measure of K at u. The intersection body IK of a convex body
K ⊂ Rd is defined by ρIK(u) = λd−1(K ∩ u⊥) for each u ∈ Sd−1. Further,
λd−1(K,u

⊥) and λ1(K,u) denote the inner cross-section measures of K,
i.e., the maximal measure of a hyperplane section of K normal to u and the
maximal chord length of K at u, respectively. Note that for any direction
a chord of maximal length of a centered convex body passes through the
origin. Clearly λ1(K|lu) denotes the width of K at u. All the notions given
above can be found in the monographs [3], [16], and [18]; see also [8]. And
we refer to [5] for a Fourier-analytic characterization of intersection bodies.

In [9] the following inequalities for cross-section measures were derived
(see also [14], [15], and [17] for generalizations).

For a convex body K in Rd, d ≥ 2, and every direction u ∈ Sd−1,
(2) λ(K) ≤ λd−1(K|u⊥)λ1(K,u) ≤ dλ(K),

with equality on the left if and only if K is a compact cylinder (i.e., the
sum of (d − 1)-dimensional convex body and a line segment) with u as
generator direction, and on the right precisely for K an oblique double cone
with respect to p− q = u; this means that each boundary point of K can be
connected to the boundary points p or q of K by a boundary segment of K.
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Further, for each u ∈ Sd−1 a convex body K in Rd, d ≥ 2, satisfies

(3) λ(K) ≤ λd−1(K,u⊥)λ1(K|lu) ≤ dλ(K),

with equality on the left if and only if K is a compact cylinder whose gen-
erators are parallel to u and whose basis is normal to u, and on the right
exactly for K a double cone (possibly cone) whose basis is normal to u; see
again [9].

We write (Rd, ‖ · ‖) = Md for a d-dimensional real Banach space, i.e., a
normed (or Minkowski) space with unit ball B which is a centered convex
body. The unit sphere of Md is the boundary ∂B of the unit ball.

2. Surface areas, volumes, and isoperimetrices in normed spaces.
A normed space Md possesses a Haar measure µ, and this measure is unique
up to multiplying the Lebesgue measure by a constant, i.e., µ = σBλ.

The following notions are well known; see Chapter 5 of [18]. The d-
dimensional Holmes–Thompson volume of a convex body K in Md is defined
by

µHT
B (K) =

λ(K)λ(B◦)

εd
, i.e., σB =

λ(B◦)

εd
,

and the d-dimensional Busemann volume of K is defined by

µBus
B (K) =

εd
λ(B)

λ(K), i.e., σB =
εd

λ(B)
(and µBus

B (B) = εd).

To define the Minkowskian surface area of a convex body, one similarly has
to define σB in Md−1. That is, for the Holmes–Thompson measure we have
σB(u) = λd−1((B ∩ u⊥)◦)/εd−1, and for the Busemann measure σB(u) =
εd−1/λ(B ∩ u⊥) (see [18, pp. 150–151]). The Minkowskian surface area of
K can also be defined in terms of mixed volumes (see [16] for notation and
more about mixed volumes) by

(4) µB(∂K) = dV (K[d− 1], IB),

where IB is the convex body whose support function is σB(u). For the
Holmes–Thompson measure, IB is defined by IHT

B = Π(B◦)/εd−1, and there-
fore it is a centered zonoid (for zonoids see Proposition 6 below). For the
Busemann measure we have IBus

B = εd−1(IB)◦. Among the homothetic im-

ages of IB, one is specified, called the isoperimetrix ÎB and determined by
µB(∂ÎB) = dµB(ÎB). Thus, the isoperimetrix for the Holmes–Thompson
measure is defined by

(5) ÎHT
B =

εd
λ(B◦)

IHT
B ,

and the isoperimetrix for the Busemann measure by

(6) ÎBus
B =

λ(B)

εd
IBus
B ;

see again Chapter 5 of [18].
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3. The unit ball and the isoperimetrix. We start by introduc-
ing two notions that we need as a useful tool in this paper; for results
on these notions we refer to [11]. Namely, if K and L are convex bodies
in Md, the inner radius of K with respect to L is defined by r(K,L) :=
max{α : ∃x ∈ Md with αL ⊆ K + x}, and the outer radius of K with
respect to L is defined by R(K,L) := min{α : ∃x ∈Md with αL ⊇ K + x}.

Notice that when K is a centered convex body, r(K, ÎB) and R(K, ÎB)
can also be defined in terms of the support functions of K and ÎB. Namely,
r(K, ÎB) is the maximum α such that α ≤ hK(u)/hÎB (u) for all u ∈ Sd−1.
Similarly, R(K, ÎB) is the minimum α such that α ≥ hK(u)/hÎB (u) for all

u ∈ Sd−1.
The following exact bounds have been established for the inner and outer

radii of the unit ball for the Holmes–Thompson measure in Md (see [10], [11],
and [18]):

2εd−1
dεd

≤ r(B, ÎHT
B ) ≤ 1, R(B, ÎHT

B ) ≤ 2εd−1
εd

.

We have r(B, ÎHT
B ) = 1 if and only if B is an ellipsoid. The lower bound for

R(B, ÎHT
B ) is still unknown. One can also see that R(B, ÎHT

B )/r(B, ÎHT
B ) ≤ d,

since the Banach-Mazur distance between two centered convex bodies is at
most d, and this bound cannot be reduced; see [6].

For a convex body K, we denote by wB(K) and DB(K) the Minkowskian
thickness (i.e., wB(K) = minu∈Sd−1 2w(K,u)/w(B, u), where w(K,u) is the
Euclidean width of K in the direction u) and the Minkowskian diameter
(i.e., the maximum of this Minkowskian width function of K), respectively.

Proposition 1. If B is the unit ball of Md, then the Minkowskian thick-
ness and diameter of ÎHT

B have the exact bounds

εd
εd−1

≤ wB(ÎHT
B ) and 2 ≤ DB(ÎHT

B ) ≤ dεd
εd−1

.

Proof. One can easily see that

r(ÎHT
B , B) =

1

R(B, ÎHT
B )

and R(ÎHT
B , B) =

1

r(B, ÎHT
B )

.

Hence we have the exact estimates
εd

2εd−1
≤ r(ÎHT

B , B), 1 ≤ R(ÎHT
B , B) ≤ dεd

2εd−1
.

It is easy to establish that if K is a centered convex body in Md, then
r(K,B) = wB(K)/2 and R(K,B) = DB(K)/2. From this we get the exact
estimates

εd
εd−1

≤ wB(ÎHT
B ), 2 ≤ DB(ÎHT

B ) ≤ dεd
εd−1

.

Also, DB(ÎHT
B ) = 2 if and only if B is an ellipsoid.
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If B and ÎHT
B are homothetic, then wB(ÎHT

B ) = DB(ÎHT
B ). Also, if one

considers the class of centered convex bodies B in Md, d ≥ 3, for which
wB(ÎHT

B ) ≤ 2, then such bodies B and ÎHT
B would be homothetic if and only

if B is an ellipsoid. The inequality wB(ÎHT
B ) ≤ 2 also yields R(B, ÎHT

B ) ≥ 1.

We can expand wB(ÎHT
B ) as follows:

wB(ÎHT
B ) = min

u∈Sd−1

2w(ÎHT
B , u)

w(B, u)
= min

u∈Sd−1

2hÎHT
B

(u)

hB(u)

= min
u∈Sd−1

2εd
λ(B◦)

hIHT
B

(u)ρB◦(u) = min
u∈Sd−1

2εd
εd−1

hΠB◦(u)ρB◦(u)

λ(B◦)

= min
u∈Sd−1

εd
εd−1

λd−1(B
◦|u⊥)λ1(B

◦ ∩ lu)

λ(B◦)
,

where w denotes the usual width function. Thus, one can raise the following

Problem 2. If B is a centered convex body in Rd with d ≥ 3, does there
exist a direction u ∈ Sd−1 such that

λd−1(B|u⊥)λ1(B ∩ lu)

λ(B)
<

2εd−1
εd

?

In [10] it was proved that there is a direction u ∈ Sd−1 such that

λd−1(B|u⊥)λ1(B ∩ lu)

λ(B)
≥ 2εd−1

εd
,

where equality holds for all u ∈ Sd−1 if and only if B is an ellipsoid.
From (2) and the considerations above we obtain the following

Theorem 3. If B is a centered convex body of cylindrical type (i.e., a

compact cylinder) in Rd with d ≥ 3, then B and ÎHT
B of the respective normed

space cannot be homothetic.

If there is a Minkowski space with wB(ÎHT
B ) > 2, then the assumption

that B and ÎHT
B are homothetic would be equivalent to the existence of a

constant c > 2εd−1/εd such that

λd−1(B|u⊥)λ1(B ∩ lu)

λ(B)
= c

for all u ∈ Sd−1.
The inner and outer radii also play important roles for the ratio be-

tween the Minkowskian surface area of the unit ball and its Minkowskian
volume. Namely, combining them with properties of mixed volumes (such as
V (K[d−1],K1) ≤ V (K[d−1],K2) if K1 ⊆ K2, and V (K[d−1],K) = λ(K))
we get

r(B, ÎHT
B )V (B[d− 1], ÎHT

B ) ≤ λ(B) ≤ R(B, ÎHT
B )V (B[d− 1], ÎHT

B ).
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Hence we have

d

R(B, ÎHT
B )

≤
µHT
B (∂B)

µHT
B (B)

≤ d

r(B, ÎHT
B )

,

yielding new approaches to reestablish the bounds

dεd
2εd−1

≤
µHT
B (∂B)

µHT
B (B)

≤ d2εd
2εd−1

obtained in [4]. It is known that the right side of this ratio is exact (see [10]),
but we cannot claim this for the left side (see [13] for d = 2). However, we
pose the following

Conjecture 4. When d ≥ 3, we have µHT
B (∂B)/µHT

B (B) ≥ d with
equality if and only if B is an ellipsoid.

It is also known that the unit balls not satisfying this conjecture will
contradict Petty’s conjectured projection inequality (see [7] and [10]). The
following statement gives an estimate related to this conjectured inequality.

Proposition 5. If B a centered convex body in Rd, then

λ(ΠB)λ1−d(B) ≤
(
d

2

)d
ε2d.

Proof. From the isodiametric inequality (see [18]) we get

2dλ(ÎHT
B ) ≤ Dd

B(ÎHT
B )λ(B).

Using the above estimate on DB(ÎHT
B ), we obtain

λ(ΠB◦) ≤ d

2
λd(B◦)λ(B).

With the Blaschke–Santaló inequality (cf. [7]) we obtain

λ(ΠB◦)λ1−d(B◦) ≤
(
d

2

)d
ε2d.

Our next proposition refers to unit balls which are zonoids, i.e., limits of
finite sums of line segments (see [3] and [16]).

Proposition 6. If B is a centered zonoid in Rd, then

λ(ΠB)λ1−d(B) ≥
(

2d

d

)−1 4d

d!
.

Proof. The relationship between the volume of a convex body and its
minimal width can be given by the sharp inequality λ(·) ≥ α(B)wdB(·),
where α(B) is a positive constant satisfying the sharp inequality

(
2d
d

)−1 ≤
α(B)/λ(B) ≤ 2−d. Here equality holds on the left if and only if B is the dif-
ference body of a simplex, and on the right if B is a cross-polytope (see [1]).
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Using the estimate on wB(ÎHT
B ), we obtain(

2d

d

)
λ(ΠB◦) ≥ λd(B◦)λ(B).

If B is a zonoid, then from the Mahler–Reisner inequality (see [7]) we get

λ(ΠB◦)λ1−d(B◦) ≥
(

2d

d

)−1 4d

d!
.

Remark. Proposition 6 holds not only for zonoids, but for general (cen-
tered) convex bodies K. This follows from the following inequality (see [16,
Section 7.4]):

λ(Π(ΠK))

λd−1(ΠK)
≤ λ(ΠK)

λd−1(K)
.

Recall that finding the exact bounds on λ(ΠB)λ1−d(B) is also one of the
most challenging problems in the area of affine isoperimetric inequalities; cf.
again [7].

Proposition 7. If B is the unit ball of Md, d ≥ 3, then the Minkowskian
thickness and diameter of ÎBus

B have the exact bounds

4εd−1
dεd

≤ wB(ÎBus
B ) and 2 ≤ DB(ÎBus

B ) ≤ 4εd−1
εd

.

Proof. For the Busemann measure we have the following exact estimates
(see [10] and [11]):

εd
2εd−1

≤ r(B, ÎBus
B ) ≤ 1, R(B, ÎBus

B ) ≤ dεd
2εd−1

.

The sharp lower bound on the outer radius is still an open question. Again,
we have r(ÎBus

B , B) = 1/R(B, ÎBus
B ) and R(ÎBus

B , B) = 1/r(B, ÎBus
B ). There-

fore
2εd−1
dεd

≤ r(ÎBus
B , B), 1 ≤ R(ÎBus

B , B) ≤ 2εd−1
εd

.

From these inequalities we clearly obtain

4εd−1
dεd

≤ wB(ÎBus
B ), 2 ≤ DB(ÎBus

B ) ≤ 4εd−1
εd

.

We can also expand wB(ÎBus
B ) as

wB(ÎBus
B ) = min

u∈Sd−1

2hÎBus
B

(u)

hB(u)
= min

u∈Sd−1

2λ(B)εd−1h(IB)◦(u)

εdhB(u)

=
2εd−1
εd

min
u∈Sd−1

λ(B)

ρIB(u)hB(u)
=

2εd−1
εd

min
u∈Sd−1

2λ(B)

λd−1(B∩u⊥)λ1(B|lu)
.
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Then wB(ÎBus
B ) ≤ 2 is equivalent to asking whether

max
u∈Sd−1

λd−1(B ∩ u⊥)λ1(B|lu)

λ(B)
≥ 2εd−1

εd
.

In [11] it was proved that, when d ≥ 3, there is a direction u ∈ Sd−1

such that
λd−1(B ∩ u⊥)λ1(B|lu)

λ(B)
≤ 2εd−1

εd
,

with equality for all u ∈ Sd−1 if and only if B is an ellipsoid.
From (3), we obtain the following

Theorem 8. If B is a centered convex body of the type of a double cone
in Rd with d ≥ 3, then B and ÎBus

B of the corresponding normed space cannot
be homothetic.

If there is a normed space with wB(ÎBus
B ) > 2, then the assumption that

B and ÎBus
B are homothetic is equivalent to asking wether there is a constant

c < 2εd−1/εd such that

λd−1(B ∩ u⊥)λ1(B|lu)

λ(B)
= c

for all u ∈ Sd−1.
Similar to the Holmes–Thompson measure, for the ratio of the Busemann

surface area of the unit ball to its volume (which is εd) we have

r(B, ÎBus
B )V (B[d− 1], ÎBus

B ) ≤ λ(B) ≤ R(B, ÎBus
B )V (B[d− 1], ÎBus

B ).

Thus,
d

R(B, ÎBus
B )

≤
µBus
B (∂B)

εd
≤ d

r(B, ÎBus
B )

,

and therefore bounds on r(B, ÎBus
B ) and R(B, ÎBus

B ) yield again a new ap-
proach to

2εd−1 ≤ µBus
B (∂B) ≤ 2dεd−1.

It is known that the right side is exact (see [2] and p. 242 in [18]). This cannot
be claimed for the left side. Thus, we formulate the following conjecture.

Conjecture 9. For d ≥ 3, µBus
B (∂B) ≥ dεd.

Our final proposition is also related to the Busemann measure in normed
spaces.

Proposition 10. If B is a centered convex body in Rd, then(
2d

d

)−1(4

d

)d
≤ λd−1(B)λ((IB)◦) ≤ 2d.
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Proof. As in the proof of Proposition 6 we get, using the relationship
between the volume of ÎBus

B and its minimal width and the lower estimate

on wB(ÎBus
B ), the inequality

λ(ÎBus
B ) ≥

(
2d

d

)−1
λ(B)

(
4εd−1
dεd

)d
.

Hence the left inequality in the proposition follows. Using the isodiametric
inequality (cf. [18]) and the upper estimate on DB(ÎBus

B ), we also obtain the
right inequality.

Finding the exact bounds on λd−1(B)λ((IB)◦) is another interesting
open problem in the area of affine isoperimetric inequalities (cf. [7]).
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