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Abstract. We investigate when the direct sum of semi-projective modules is semi-
projective. It is proved that if R is a right Ore domain with right quotient division ring
Q 6= R and X is a free right R-module then the right R-module Q⊕X is semi-projective
if and only if there does not exist an R-epimorphism from X to Q.

1. Introduction. In this work all rings have an identity and all modules
are unital right modules. Following [2, 4.20] and [10, p. 260], an R-module
M is called semi-projective provided for all endomorphisms α and β of M
with β(M) ⊆ α(M) there exists an endomorphism γ of M such that β = αγ.
As Wisbauer [10, p. 260] observes, an R-module M with endomorphism ring
S = End(MR) is semi-projective if and only if αS = HomR(M,α(M)). In
[11, Examples 5.6], the semi-projectivity notion has been discussed, as well
as a stronger condition called intrinsically projective. Examples 5.6 of [11]
say in particular that a module MR with endomorphism ring S is semi-
projective if S is a right PP-ring and the kernels of endomorphisms of M
are M -generated. In particular, if SM is flat and S is right semi-hereditary,
then M is semi-projective (see [11, Examples 5.6]). For an endomorphism α
of an R-module M we define D(α) as HomR(M,α(M)).

The remainder of our work is organized as follows. In Section 2, we
give some basic properties of semi-projective modules, and provide some
characterizations. We prove that every nonsingular extending module is
semi-projective (Corollary 2.6). Let R be a Dedekind domain and let M
be an R-module which is a direct sum of cyclic modules. Then M is quasi-
projective iff it is semi-projective iff it is direct projective (Theorem 2.11).
It is shown that every direct summand of a semi-projective module inher-
its this property (Lemma 2.7), while a direct sum of semi-projective mod-
ules need not be semi-projective (Corollary 2.10). We show that a module
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M =
⊕

i∈IMi with HomR(Mi,Mj) = 0 for all i 6= j in I is semi-projective
iff Mi is semi-projective for all i ∈ I.

The focus in Section 3 is on studying direct sums of semi-projective
modules over right Ore domains. We prove that if R is a right Ore domain
with right quotient division ring Q 6= R and X is a free right R-module then
the right R-module Q ⊕ X is semi-projective if and only if there does not
exist an R-epimorphism from X to Q (Corollary 3.6).

In Section 4, we observe that if R is a PID with field of fractions Q,
and X is a proper submodule of Q such that R ⊆ X, then M is finitely
generated iff it is projective iff it is semi-projective iff it is direct projective
(Theorem 4.3).

2. Semi-projective modules. Let R be a ring. An R-module M is
called direct projective if for every direct summand K of M every epimor-
phism from M to K splits (see [2, 4.21] or [10, p. 365]). It is pointed out in
[2, p. 33] that M is direct projective if every submodule N such that M/N
is isomorphic to a direct summand of M is also a direct summand of M . In
[7, p. 57], direct projective modules are called modules which satisfy condi-
tion (D2). Note the following elementary fact.

Lemma 2.1. A module M is direct projective if and only if for all endo-
morphisms α and β of M with β(M) ⊆ α(M) and α(M) a direct summand
of M there exists an endomorphism γ of M such that β = αγ.

Proof. Suppose first thatM is direct projective. Let α and β be endomor-
phisms of M with β(M) ⊆ α(M) and K = α(M) a direct summand of M .
Because M is direct projective, there exists a homomorphism δ : K → M
such that αδ = 1. Now γ = δβ is an endomorphism of M such that β = αγ.

Conversely, suppose that M has the stated condition. Let L be a di-
rect summand of M and ϕ : M → L be an epimorphism. There exists a
submodule L′ of M such that M = L ⊕ L′. Let θ : M → L be the canon-
ical projection. Clearly θ(M) = L = ϕ(M). By hypothesis, there exists an
endomorphism λ of M such that θ = ϕλ. Let ι : L → M denote the inclu-
sion mapping. For all y ∈ L, y = θ(y) = ϕλ(y) = ϕλι(y). It follows that
ϕ(λι) = 1 and hence ϕ : M → L splits. Thus M is direct projective.

Lemma 2.1 shows that we have the following hierarchy:

projective ⇒ quasi-projective ⇒ semi-projective ⇒ direct projective.

In particular, every semisimple module, being quasi-projective, is semi-
projective (see, for example, [1, p. 191, Ex. 17]).

Let N denote the set of natural numbers 1, 2, . . . , Z the ring of integers
and Q the rational field. It is clear that, for any prime p in Z, the Prüfer
p-group Z(p∞) is not direct projective and hence not semi-projective. In con-
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trast, every nonsingular injective module is semi-projective. First we prove
a simple lemma.

Lemma 2.2. Let ε be any idempotent endomorphism of a module M with
endomorphism ring S. Then εS = D(ε).

Proof. Let β ∈ D(ε). This means that β is an endomorphism of M such
that β(M) ⊆ ε(M). Then ε = ε2 implies that

(1− ε)β(M) ⊆ (1− ε)ε(M) = 0.

Thus (1− ε)β = 0 and hence β = εβ ∈ εS.

Let α be an endomorphism of a module M with endomorphism ring S
such that α(M) is a direct summand of M . Then α(M) = ε(M) for some
idempotent endomorphism ε of M . If β ∈ D(α) then β(M) ⊆ α(M) = ε(M).
It follows that D(α) ⊆ D(ε). Now we consider an endomorphism of M whose
kernel is a direct summand of M .

Lemma 2.3. Let α be an endomorphism of a module M with endomor-
phism ring S such that the kernel of α is a direct summand of M . Then
D(α) = αS.

Proof. Let K = kerα. Then there exists a submodule L of M such that
M = K ⊕ L. Note that α(M) = α(K) + α(L) = α(L). Let λ : L → α(M)
be the homomorphism defined by λ(x) = α(x) for all x ∈ L. Note that λ is
an isomorphism. If β is any endomorphism of M such that β(M) ⊆ α(M)
then γ = λ−1β is an endomorphism of M such that β = αγ. It follows that
D(α) = αS.

A module M is called Rickart if the kernel of any endomorphism of M
is a direct summand of M . Thus we have

Corollary 2.4. Let M be a Rickart module. Then M is semi-projective.

Note that any Rickart module satisfies the sufficient condition of [11,
Examples 5.6] (see [10, 39.10 (1)]).

Corollary 2.5. Let M be a module with endomorphism ring S such
that S is a von Neumann regular ring. Then M is semi-projective.

Proof. By [8, Theorem 4], M is a Rickart module. Thus M is semi-
projective by Corollary 2.4.

A module M is called extending provided every submodule is essential
in a direct summand of M . For example, semisimple modules are extending,
as are uniform modules and injective modules.

Corollary 2.6. Every nonsingular extending module is semi-projective.

Proof. Let M be any nonsingular extending module. Let α be any en-
domorphism of M and let K = kerα. There exists a direct summand L of
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M such that K is an essential submodule of L. Now M/K ∼= α(M), which
is nonsingular. Thus L/K is nonsingular and hence K = L. This means
that K is a direct summand of M . Therefore M is a Rickart module. By
Corollary 2.4, M is semi-projective.

Note that the Z-module Q is semi-projective (Corollary 2.6) but not
quasi-projective (see, for example, [3, Theorem]). It is not difficult to check
that every direct summand of a semi-projective (respectively, direct projec-
tive) module is semi-projective (respectively, direct projective), as we show
next for completeness.

Lemma 2.7. Every direct summand of a semi-projective (respectively, di-
rect projective) module is also semi-projective (respectively, direct projective).

Proof. Let a semi-projective module M be a direct sum of submodules
M1,M2. Let α and β be endomorphisms of M1 such that β(M1) ⊆ α(M1).
Now define endomorphisms λ and µ of M as follows: λ(m1 +m2) = α(m1)
and µ(m1 + m2) = β(m1) for all m1 ∈ M1 and m2 ∈ M2. Clearly
µ(M) ⊆ λ(M). By hypothesis, there exists an endomorphism ν of M such
that µ = λν. If ι : M1 →M denotes the inclusion mapping and π : M →M1

the canonical projection then let γ denote the endomorphism πνι of M1. It
is easy to check that β = αγ. It follows that M1 is a semi-projective module.
The case of a direct summand of a direct projective module can be proved
similarly.

It is stated in [9] that the direct sum of any collection of semi-projective
modules is also semi-projective. This is not true in general although it is true
sometimes. For example, Haghany and Vedadi [5, p. 490] prove that if R is
a commutative domain with field of fractions F then the R-module R ⊕ F
is semi-projective. We shall show that the direct sum of semi-projective
modules need not be semi-projective, nor even direct projective. Then we
shall go on to investigate when the direct sum of semi-projective modules is
semi-projective.

First we shall show that the direct sum of semi-projective modules need
not be direct projective.

Lemma 2.8. Let R be a ring and let X and Y be R-modules such that the
R-module X ⊕ Y is direct projective. Then every epimorphism ϕ : X → Y
splits.

Proof. Clear by [7, Lemma 4.6(i)].

Corollary 2.9. Given any semi-projective R-module Y which is not
projective, there exists a projective R-module X such that the R-module
X ⊕ Y is not direct projective (and hence not semi-projective).
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Proof. There exists a free R-module X and a nonsplitting epimorphism
ϕ : X → Y . By Lemma 2.8, the module X ⊕ Y is not direct projective.

Corollary 2.10. The Z-module Z ⊕ Q is semi-projective but the Z-
module Z(N) ⊕Q is not direct projective (and hence not semi-projective).

Proof. The module Z⊕Q is semi-projective by [5, p. 490]. Because there
is an epimorphism from Z(N) to Q, Lemma 2.8 shows that the Z-module
Z(N) ⊕Q is not direct projective.

Now we show that every finitely generated direct projective Z-module is
quasi-projective. In fact, more is true. Let R be a (commutative) Dedekind
domain and let M be a nonzero torsion cyclic R-module. It is well known
that M is a direct sum of primary cyclic R-modules. Let X be a nonzero
primary cyclic R-module. Being cyclic, X ∼= R/A for some proper ideal A
of R and being primary, Pn ⊆ A for some positive integer n. Now every
nonzero ideal of R is invertible and A is a product of maximal ideals. It
follows that A = P k for some positive integer k with 1 ≤ k ≤ n.

Theorem 2.11. Let R be any Dedekind domain. Then the following
statements are equivalent for an R-module M which is a direct sum of cyclic
submodules:

(i) M is quasi-projective.
(ii) M is semi-projective.

(iii) M is direct projective.

Proof. (i)⇒(ii)⇒(iii). Clear.

(iii)⇒(i). Let M be a direct sum of cyclic submodules Mi (i ∈ I) and
suppose that M is direct projective. Suppose that M is not torsion. Then
Mj
∼= R for some j ∈ I. If M is not free then there exists k ∈ I such

that Mk is torsion cyclic and hence there exists a nonsplitting epimorphism
ϕ : Mj → Mk. By Lemma 2.8, Mj ⊕Mk is not direct projective and, by
Lemma 2.7, neither is M . Thus M is free.

Now suppose that M is a torsion R-module. Let P be any maximal ideal
in R and let N denote the P -primary component of M . Suppose that N 6= 0.
By the above remarks, N =

⊕
λ∈ΛNλ for some index set Λ and nonzero

cyclic P -primary submodules Nλ (λ ∈ Λ). Again by the above remarks,
for each λ ∈ Λ there exists a positive integer mλ such that Nλ

∼= R/Pmλ .
If mµ < mν for some µ 6= ν then there is a nonsplitting epimorphism
R/Pmν → R/Pmµ . By Lemmas 2.7 and 2.8, N is not a direct projective
module and hence neither is M . Thus mµ = mν for all µ 6= ν in Λ. It follows
that N is quasi-projective. We have proved that every primary component
of M is quasi-projective and hence so also is M . This proves the result.
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Corollary 2.12. Every finitely generated direct projective Z-module is
quasi-projective.

Proof. By Theorem 2.11.

Let R be a ring and let X and M be (right) R-modules. Then we shall
say that X is M -sprojective provided for every endomorphism α of M and
homomorphism β : X → M with β(X) ⊆ α(M) there exists a homomor-
phism γ : X → M such that β = αγ. It is clear that a module M is
semi-projective if and only if M is M -sprojective. Note the following ele-
mentary fact which should be compared with [1, Proposition 16.7]. We give
the proof for completeness.

Proposition 2.13. Given R-modules X and M , X is M -sprojective
if and only if for every submodule L of M such that M/L embeds in M
and for every homomorphism β : X → M/L there exists a homomorphism
γ : X → M such that β = πγ, where π : M → M/L is the canonical
projection.

Proof. The necessity is clear. Conversely, suppose that X and M have
the stated condition. Let α be an endomorphism of M and let β : X →M be
a homomorphism such that β(X) ⊆ α(M). Let N = α(M) and let K denote
the kernel of α. Then N ∼= M/K. For each x ∈ N there exists m ∈M such
that x = α(m). Define the isomorphism θ : N → M/K by θ(x) = m + K.
Note that π = θα. By hypothesis, there exists a homomorphism γ : X →M
such that πγ = θβ. This implies that β = θ−1πγ = αγ. It follows that X is
M -sprojective.

Proposition 2.14. Given a module M , every direct sum of M -sprojec-
tive modules is also M -sprojective.

Proof. Adapt the proof of [1, Proposition 16.10(1)].

It is not clear if there are analogues of [1, Proposition 16.12] for M -
sprojective modules. By Lemma 2.8 if R is a commutative domain which
is not a field and U a simple R-module then the R-module R ⊕ U is not
semi-projective. Note that HomR(U,R) = 0 but HomR(R,U) 6= 0. Compare
this fact with the following result.

Remark 2.15. Let a module M be a direct sum of submodules Mi (i ∈ I)
such that HomR(Mi,Mj) = 0 for all i 6= j in I. Then M is semi-projective
if and only if Mi is semi-projective for all i ∈ I.

Proof. The necessity follows by Lemma 2.7. Conversely, suppose that
Mi is semi-projective for all i ∈ I. For each k ∈ I, let ιk : Mk → M
denote the inclusion mapping and let πk : M → Mk denote the canonical
projection. Let α be any endomorphism of M . For all j 6= k in I, πjαιk ∈
HomR(Mk,Mj) = 0. Thus α(Mk) ⊆ Mk for all k ∈ I. But this implies
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that α(M) =
⊕

i∈I α(Mi). Now let β be an endomorphism of M such that
β(M) ⊆ α(M). For each k ∈ I, β(Mk) ⊆ α(Mk) and hence there exists
an endomorphism γk of Mk such that αιkγk = βιk. Define γ =

∑
k∈I γkπk,

which is an endomorphism of M . It is easy to check that β = αγ. It follows
that M is semi-projective.

Recall that an element c of a ring R is called regular provided cr 6= 0
and rc 6= 0 for all 0 6= r ∈ R. Following [4, p. 104] an R-module X is called
divisible in case X = Xc for every regular element c of R. An R-module Y
is called torsion if for all y ∈ Y there exists a regular element c in R such
that yc = 0. On the other hand, an R-module Z is called torsion-free if
whenever z ∈ Z satisfies zd = 0 for some regular element d of R then z = 0.
Note the following corollary of Remark 2.15 which provides many examples
of semi-projective modules.

Corollary 2.16. Let R be a prime right Goldie ring such that R is not
right primitive and let a right R-module M be a direct sum of a torsion-free
divisible submodule X and a torsion semisimple submodule Y . Then M is
semi-projective.

Proof. Let Q denote the classical right quotient ring of R. Then it is
well-known that X is isomorphic to a direct sum of isomorphic copies of the
R-module Q and that X is nonsingular injective (see, for example, [4, Propo-
sitions 6.12 and 6.13]). Let ϕ ∈ HomR(Y,X) and let y ∈ Y . There exists a
regular element d ∈ R such that yd = 0 and hence ϕ(y)d = ϕ(yd) = 0. It
follows that ϕ(y) = 0 for all y ∈ Y and hence ϕ = 0. Thus HomR(Y,X) = 0.
Now suppose that HomR(X,Y ) 6= 0. Then HomR(Q,V ) 6= 0 for some simple
R-module V . Let α : Q→ V be a nonzero homomorphism. Because R is not
right primitive, V has nonzero annihilator in R and hence V c = 0 for some
regular element c of R. Then α(Q) = α(Qc) = α(Q)c = V c = 0, a contradic-
tion. It follows that HomR(X,Y ) = 0. By Corollary 2.6 and Remark 2.15,
M is semi-projective.

In particular, if R is a prime ring and R satisfies a polynomial identity
(a PI ring for short) then we have the following result.

Corollary 2.17. Let R be a prime PI ring which is not Artinian and let
a right R-module M be a direct sum of a torsion-free divisible submodule X
and a torsion semisimple submodule Y . Then M is semi-projective.

Proof. By [6, Corollary 13.6.6] R is right Goldie and by [6, The-
orem 13.3.8] R is not right primitive. Apply Corollary 2.16.

A module M is called semi-Hopfian if the kernel of every epimorphism
ϕ : M →M is a direct summand of M . Note the following fact.
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Lemma 2.18. Every direct projective module is semi-Hopfian.

Proof. This is clear since every epimorphism from M to M splits.

Semi-Hopfian modules are semi-projective in the case of divisible mod-
ules over prime PI rings and this may be true more widely.

Proposition 2.19. Let R be a prime PI ring. Then the following state-
ments are equivalent for a divisible R-module X:

(i) X is semi-projective.
(ii) X is direct projective.

(iii) X is semi-Hopfian.
(iv) X is nonsingular.

Moreover, in this case X is injective.

Proof. (i)⇒(ii). By Lemma 2.1.
(ii)⇒(iii). By Lemma 2.18.
(iii)⇒(iv). Suppose that X is not nonsingular. There exist a nonzero

element x ∈ X and a nonzero central element c ∈ R such that xc = 0 (see,
for example, [6, Theorem 13.6.4 and Corollary 13.6.6]). Let Y = {u ∈ X :
uc = 0}. It is easy to check that Y is a submodule of X. Now X = Xc
because c is a regular element of the prime ring R. Define a mapping θ :
X → X by θ(w) = wc for all w ∈ X. It is easy to check that θ is an
epimorphism with kernel Y . Suppose that Y is a direct summand of X.
Then X = Xc implies that Y = Y c = 0, a contradiction. Thus Y is not a
direct summand of X and hence X is not semi-Hopfian.

(iv)⇒(i). By [4, Proposition 6.12], X is injective. Then X is semi-pro-
jective by Corollary 2.6.

The last part follows by [4, Proposition 6.12].

3. Modules over right Ore domains. Following [6, 3.1.1], a ring Q
is called a quotient ring if every regular element of Q is a unit. Given a
quotient ring Q a subring R of Q is called a right order in Q if for each
element q ∈ Q there exist r ∈ R and a regular element c of R such that
q = rc−1. Given a submodule X of the right R-module Q we define O(X) =
{q ∈ Q : qX ⊆ X}. Note that O(X) is a subring of Q. Compare the next
result with [6, Proposition 3.1.15].

Lemma 3.1. Let a ring R be a right order in a quotient ring Q and let
X be a submodule of the right R-module Q such that X contains a regular
element of R. Then α is an endomorphism of the right R-module X if and
only if there exists q ∈ O(X) such that α(x) = qx for all x ∈ X.

Proof. Given q ∈ O(X) it is clear that the mapping α : X → X defined
by α(x) = qx (x ∈ X) is an R-homomorphism. On the other hand, let β be
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an endomorphism of X. Let c be a regular element of R such that c ∈ X.
There exists p ∈ X such that β(c) = p. Let x ∈ X. Then x = ab−1 for some
a ∈ R and regular element b ∈ R. Note that xb = a ∈ R. There exist a1 ∈ R
and a regular element c1 ∈ R such that ac1 = ca1. Then xbc1 = ca1 and
hence

β(x)bc1 = β(xbc1) = β(ca1) = β(c)a1 = pa1.

It follows that β(x) = pa1c
−1
1 b−1 = pc−1ab−1 = (pc−1)x. Thus β(x)

= (pc−1)x for all x ∈ X. Note that (pc−1)X = β(X) ⊆ X and hence
pc−1 ∈ O(X).

Proposition 3.2. Let R be a right Ore domain with right quotient
division ring Q. Then every submodule of the right R-module Q is semi-
projective.

Proof. Let X be any submodule of QR. If X = 0 then X is clearly
semi-projective. Suppose that X 6= 0. Let S = End(XR) and let α, β ∈ S
with β(X) ⊆ α(X). If α = 0 then β = 0 and hence β ∈ αS. Suppose
that α 6= 0. By Lemma 3.1, there exist p, q ∈ O(X) with α(x) = px and
β(x) = qx for all x ∈ X. Clearly p 6= 0 and

qX = β(X) ⊆ α(X) = pX ⊆ Q.
Because p is nonzero we have p−1q ∈ Q. Moreover, p−1q ∈ O(X). Define
a mapping γ : X → X by γ(x) = (p−1q)x (x ∈ X). Then γ ∈ S and
β = αγ ∈ αS. It follows that X is semi-projective.

The next lemma is elementary but is included for completeness.

Lemma 3.3. Let a module M be the direct sum of a projective submodule
X and a submodule Y . Then M is semi-projective if and only if for all
endomorphisms α, β of M with β(X) = 0 and β(Y ) ⊆ α(M) there exists an
endomorphism γ of M such that β = αγ.

Proof. The necessity is clear. Conversely, suppose that M , X and Y have
the stated property. Let ϕ, θ be endomorphisms of M with ϕ(M) ⊆ θ(M).
Let ι : X → M denote the inclusion mapping. Because X is projective,
there exists a homomorphism λ : X → M such that ϕι = θλ. Let µ be
the endomorphism λπ of M , where π : M → X is the canonical projection.
Then ν = ϕ − θµ is also an endomorphism of M . It is clear that ν(X) = 0
and ν(M) ⊆ θ(M). By hypothesis, there exists an endomorphism γ of M
such that ν = θγ and hence ϕ = θ(µ+ γ). Thus M is semi-projective.

Before proving the next result we note the following well known fact
which we shall prove for completeness.

Lemma 3.4. Let R be a right Ore domain with right quotient division
ring Q 6= R. Then HomR(Q,R) = 0.
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Proof. Let ϕ ∈ HomR(Q,R). For each nonzero element c of R, Q = Qc
and hence ϕ(Q) = ϕ(Qc) = ϕ(Q)c ⊆ Rc. Suppose that ϕ(Q) 6= 0. Then
R contains a minimal left ideal and hence R = Q, a contradiction. Thus
HomR(Q,R) = 0.

Let R be a ring and M an R-module. We shall denote by g(MR) the
least cardinal κ such that there exists an index set Λ of cardinality κ and
elements mλ (λ ∈ Λ) with M =

∑
λ∈ΛmλR. We have already noted that

the Z-module Q ⊕ Z(N) is not semi-projective. Compare this fact with the
following result.

Theorem 3.5. Let R be a right Ore domain with right quotient division
ring Q and let X be a projective right R-module such that g(XR) < g(QR).
Then the right R-module M = Q⊕X is semi-projective.

Proof. Note that X is a direct summand of a free R-module Y such that
g(XR) ≤ g(YR). By Lemma 2.7 we can suppose without loss of generality
that X is free. Let ei (i ∈ I) be a basis of X with |I| = κ. Note next
that if ϕ is an endomorphism of M then πQϕι is an endomorphism of the
R-module Q, where ι : Q → Q ⊕ X is the inclusion mapping and πQ :
Q⊕X → Q the canonical projection. By Lemma 3.1 there exists p ∈ Q such
that πQϕι(u) = pu for all u ∈ Q. Next note that if πX : Q⊕X → X is the
canonical projection then πXϕι : Q → X is an R-homomorphism. Because
X is free, Lemma 3.4 gives πXϕι = 0. Thus ϕ(u, 0) = (pu, 0) for all u ∈ Q.

Let α and β be nonzero endomorphisms of M such that β(M) ⊆ α(M)
and β(X) = 0. There exist q, qi (i ∈ I) in Q and ai (i ∈ I) in R such that
α(u, 0) = (qu, 0) (u ∈ Q) and α(0, ei) = (qi, ai) for all i ∈ I. Next there
exists q′ ∈ Q such that β(u, 0) = (q′u, 0) for all u ∈ Q. Note that β 6= 0
implies that q′ 6= 0. For each u ∈ Q, there exist w ∈ Q, a finite nonempty
subset F of I and ri ∈ R (i ∈ F ) such that

(q′u, 0) = β(u, 0) = α
(
w,
∑
i∈F

eiri

)
=
(
qw +

∑
i∈F

qiri,
∑
i∈F

airi

)
.

It follows that q′u = qw +
∑

i∈F qiri. Suppose that q = 0. Then q′u =∑
i∈F qiri. This implies that

Q = q′Q ⊆
∑
i∈I

qiR.

In this case, g(QR) ≤ |I| = κ, a contradiction.

Thus q 6= 0. There exist w′ ∈ Q, a finite nonempty subset G of I and
si ∈ R (i ∈ G) such that

q′ = qw′ +
∑
i∈G

qisi = qq,
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where q = w′ +
∑

i∈G q
−1qisi ∈ Q. Define a mapping γ : M → M by

γ(u, z) = (qu, 0) for all u ∈ Q and z ∈ X. It is clear that γ is an endomor-
phism of M . Moreover, for all u ∈ Q, z ∈ X we have

β(u, z) = β(u, 0) = (q′u, 0) = (qqu, 0) = αγ(u, z).

Thus β = αγ. By Lemma 3.3, the module M is semi-projective.

Theorem 3.5 has a number of immediate corollaries.

Corollary 3.6. Let R be a right Ore domain with right quotient di-
vision ring Q 6= R and let X be a free right R-module. Then the right
R-module M = Q⊕X is semi-projective if and only if there does not exist
an epimorphism from X to Q.

Proof. Suppose first that M is not semi-projective. By Theorem 3.5,
g(Q) ≤ g(X) and hence there is an epimorphism from X to Q. Con-
versely, suppose that there is an epimorphism ϕ : X → Q and M is
semi-projective. By Lemma 2.8, ϕ splits and hence QR is projective. It
follows that HomR(Q,R) 6= 0, contradicting Lemma 3.4. Thus M is not
semi-projective.

Corollary 3.7. Let R be a right Ore domain with right quotient divi-
sion ring Q. Then the R-module Q⊕R is semi-projective.

Proof. Suppose that g(QR) ≤ g(RR). Clearly g(RR) = 1 and hence Q =
qR for some q ∈ Q. In this case Q ∼= R as right R-modules and thus Q⊕R is
a projective, and hence semi-projective, R-module. If g(RR) < g(QR) then
Q⊕R is semi-projective by Theorem 3.5.

Corollary 3.8. Let R be a right Ore domain with right quotient di-
vision ring Q and let X be a finitely generated projective right R-module.
Suppose that R is right noetherian or left Ore. Then the R-module Q ⊕X
is semi-projective.

Proof. The result follows by Theorem 3.5 if Q is not a finitely gener-
ated right R-module. Suppose that QR is finitely generated. If R is right
noetherian then QR is noetherian. For any nonzero c ∈ R, the ascending
chain

R ⊆ c−1R ⊆ c−2R ⊆ · · ·

must terminate: there exists a positive integer n such that c−nR = c−n−1R.
This gives c−n−1 = c−nb and hence cb = 1 for some b ∈ R. It follows that
Q = R and hence Q⊕X is a projective R-module. Now suppose that R is
a left Ore domain. In this case there exists a positive integer k such that
Q = (c−11 r1)R + · · · + (c−1k rk)R for some ri ∈ R, 0 6= ci ∈ R (1 ≤ i ≤ k).
By a standard argument we can suppose without loss of generality that
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c1 = · · · = ck. Then Q = c1Q = r1R + · · · + rkR ⊆ R. Thus Q = R and
againQ⊕X is a projective R-module. In any case,Q⊕X is semi-projective.

4. Some examples. We saw in Proposition 3.2 that if R is a right Ore
domain with right quotient division ring Q then every R-submodule X of
Q is semi-projective. Moreover, Corollary 3.7 shows that if X = Q then the
R-module X⊕R is semi-projective. Of course, if X = R then the R-module
X⊕R is projective and hence semi-projective. We shall show in this section
that in case R = Z these are the only possible choices for a submodule X of
Q so that the R-module X ⊕R is semi-projective.

Let R be any ring and consider an R-module M = X ⊕ R where X
is an R-module such that HomR(X,R) = 0. Let ϕ be any endomorphism
of the R-module M . Let ιX : X → M denote the inclusion mapping and
let πX : M → X and πR : M → R denote the canonical projections.
Note that πRϕιX ∈ HomR(X,R) = 0 and f = πXϕιX ∈ End(XR). Thus
ϕ(x, 0) = (f(x), 0) for all x ∈ X. Next there exist y ∈ X and a ∈ R such
that ϕ(0, 1) = (y, a). It follows that

ϕ(x, r) = (f(x) + yr, ar) (x ∈ X, r ∈ R).

It is now easy to prove the following result.

Lemma 4.1. With the above notation, ϕ is an endomorphism of M if
and only if there exists an endomorphism f of X and elements y ∈ X and
a ∈ R such that ϕ(x, r) = (f(x) + yr, ar) for all x ∈ X and r ∈ R.

Corollary 4.2. Let R be a right Ore domain with right quotient divi-
sion ring Q and let X be a nonzero submodule of the right R-module Q such
that HomR(X,R) = 0. Let M = X ⊕R. Then ϕ is an endomorphism of the
R-module M if and only if there exist q ∈ O(X), y ∈ X and a ∈ R such
that ϕ(x, r) = (qx+ yr, ar) for all x ∈ X and r ∈ R.

Proof. By Lemmas 3.1 and 4.1.

Now we prove a theorem about modules over a commutative principal
ideal domain (PID for short) (see also Theorem 2.11).

Theorem 4.3. Let R be a PID with field of fractions Q and let X be a
proper submodule of Q such that R ⊆ X. Then the following statements are
equivalent for the R-module M = X ⊕R:

(i) M is finitely generated.
(ii) M is projective.

(iii) M is semi-projective.
(iv) M is direct projective.

Proof. (i)⇒(ii)⇒(iii)⇒(iv). Clear by Lemma 2.1.
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(iv)⇒(i). Suppose that X is not finitely generated. Then X being uni-
form implies that X is not projective. Note that HomR(X,R) = 0, for if
ϕ : X → R is a nonzero homomorphism then ϕ(X) is a nonzero projective
ideal of R. Hence X ∼= ϕ(X) because X is uniform, which is a contradiction.
Let T = End(XR). Suppose that T = Q. Then for any 0 6= a ∈ R, X = aX.
It follows that the R-module X is divisible and hence X = Q, a contradic-
tion. Thus T 6= Q, so there exists a prime element p of R such that p is not
a unit in T .

Now suppose that X/R = p(X/R). Then X = pX + R. Let α denote
the endomorphism of M defined by α(x, r) = (px + r, 0) for all x ∈ X and
r ∈ R. Clearly α(M) = X ⊕ 0 = π(M) where π : M → X ⊕ 0 is the
canonical projection. Suppose that π = αγ for some endomorphism γ of M .
By Lemma 4.1, 1 = pq for some q ∈ T , a contradiction. Thus in this case M
is not direct projective.

Next we suppose that X/R 6= p(X/R). Recall that Q/R is isomorphic to
the direct sum of the injective envelopes of the simple modules R/Rq, where
Rq is a maximal ideal of R. The module X/R is torsion and hence is a direct
sum of its primary components. It follows that if Y is the submodule of X
containing R such that Y/R is the p-primary component of X/R then Y =
R(1/pn)+R = R(1/pn) for some positive integer n. If Y ′ is the submodule of
X containing R such that Y ′/R is the sum of the other primary components
of X/R then X = Y +Y ′. Moreover Y ′/R = p(Y ′/R) so that Y ′ = pY ′+R.
Let β be the endomorphism of M defined by β(x, r) = (px+ r/pn, 0) for all
x ∈ X and r ∈ R. For all y′ ∈ Y ′ there exist z ∈ Y ′ and b ∈ R such that
y′ = pz+ b and hence (y′, 0) = β(z, pnb). Next note that (1/pn, 0) = β(0, 1).
It follows that β(M) = X ⊕ 0 = π(M). If π = βδ for some endomorphism δ
of M then Lemma 4.1 gives 1 = pq′ for some q′ ∈ T , a contradiction. Thus
M is not direct projective in this case also. We conclude that M is not direct
projective if M , and hence X, is not finitely generated.

Corollary 4.4. Let R be a PID with field of fractions Q and let X be
any nonzero submodule of Q. Then the following statements are equivalent
for the R-module M = X ⊕R:

(i) M is semi-projective.
(ii) M is direct projective.

(iii) X ∼= R or X ∼= Q.

Proof. (i)⇒(ii). By Lemma 2.1.
(ii)⇒(iii). There exists a nonzero c ∈ R such that c ∈ X. Clearly

M ∼= Mc−1 = Xc−1 ⊕Rc−1 ∼= Xc−1 ⊕R.
In addition, R = (Rc)c−1 ⊆ Xc−1. By Theorem 4.3, Xc−1 ∼= R or Xc−1 ∼= Q
and it follows that X ∼= R or X ∼= Q.
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(iii)⇒(i). By [5, p. 490] or Corollary 3.7.

In this paper we have been concerned with rings R and R-modules M
such that M = X ⊕ R for some R-module X with HomR(X,R) = 0. We
have seen that such modules M need not be semi-projective. In other words,
if S is the endomorphism ring of the R-module M then in many cases there
exists α ∈ S such that αS 6= D(α).

Now we show that αS is an essential submodule of the right S-module
D(α).

Theorem 4.5. Let R be a ring, X an R-module, M the R-module X⊕R
and let S be the endomorphism ring of the R-module M . Then αS is an
essential submodule of the S-module D(α) for every 0 6= α ∈ S.

Proof. There exists an epimorphism ϕ : F = R(Λ) → M . Let 0 6= α ∈ S
and 0 6= g ∈ D(α). By the projectivity of F , there exists a homomorphism
h : F → M such that αh = gϕ. Moreover since g 6= 0 and ϕ is surjective,
there exists λ ∈ Λ such that gϕελ 6= 0, where ελ is the inclusion map from R
to F . Consider the projection map π : M → R. Then α(hελπ) = g(ϕελπ) is
a nonzero element of αS ∩ gS, which shows that αS is essential in D(α).
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