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A HARTOGS TYPE EXTENSION THEOREM FOR GENERALIZED
(N, k)-CROSSES WITH PLURIPOLAR SINGULARITIES

BY

MAŁGORZATA ZAJĘCKA (Kraków)

Abstract. The aim of this paper is to present an extension theorem for (N, k)-crosses
with pluripolar singularities.

1. Introduction. Statement of the main result

1.1. Introduction. The topic of separately holomorphic functions have
a long history in complex analysis. The problem was first investigated by
W. F. Osgood [Osg 1899]. Seven years later F. Hartogs [Har 1906] proved
his famous theorem stating that every separately holomorphic function is, in
fact, holomorphic. Since then the interest switched to a more general prob-
lem: whether a function f defined on a product D×G of two domains, and
separately holomorphic on some subsets A ⊂ D and B ⊂ G, is holomorphic
on the whole D × G (see for example papers of M. Hukuhara [Huk 1942]
and T. Terada [Ter 1967]). This led to the question of possible holomorphic
extension of a function separately holomorphic on objects called crosses.

In a recent paper [Lew 2012] A. Lewandowski introduces an object called
a generalized (N, k)-cross TN,k, a generalization of the (N, k)-cross defined
by M. Jarnicki and P. Pflug [JarPfl 2010], and proves an extension theo-
rem for this new type of cross with analytic singularities. In this paper we
will prove a similar extension theorem for TN,k crosses with pluripolar sin-
gularities, generalizing Theorem 10.2.9 of [JarPfl 2011] and the Main The-
orem of [JarPfl 2003]. We will also introduce another type of generalized
(N, k)-crosses, called YN,k crosses, a natural object to consider in light of
Theorem 3.6. This theorem will turn out to be a strong tool, allowing us
to prove two Hartogs-type extension theorems for functions separately holo-
morphic on XN,k, TN,k and YN,k crosses, including the Main Theorem of
this paper.

The paper is divided into four sections. In the first section we define
generalized (N, k)-crosses and we state the Main Theorem. Section 2 contains

2010 Mathematics Subject Classification: 32D15, 32U15.
Key words and phrases: crosses, generalized crosses, separately holomorphic functions,
pluripolar sets, relative extremal function.

DOI: 10.4064/cm127-2-1 [143] c© Instytut Matematyczny PAN, 2012



144 M. ZAJĘCKA

some useful definitions and facts. Section 3 is dedicated to (N, k)-crosses,
their properties and recent cross theorems. It also contains the statement
of Theorem 3.6 and the proof of the Main Theorem. In the last section we
present a detailed proof of Theorem 3.6.

1.2. Generalized (N, k)-crosses and the main result. Let Dj be
a Riemann domain over Cnj and let Aj ⊂ Dj be locally pluriregular (see
Definition 2.1), j = 1, . . . , N , where N ≥ 2. For α = (α1, . . . , αN ) ∈ {0, 1}N
and Bj ⊂ Dj , j = 1, . . . , N , define

Xα := X1,α1 × · · · × XN,αN , Xj,αj :=
{
Dj when αj = 1,
Aj when αj = 0,

j = 1, . . . , N,

Bα
0 :=

∏
j∈{1,...,N}:αj=0

Bj , Bα
1 :=

∏
j∈{1,...,N}:αj=1

Bj .

For α ∈ {0, 1}N we merge c0 ∈ Dα
0 and c1 ∈ Dα

1 into (
!
c0, c1) ∈

∏n
j=1Dj

by putting variables in right places.
We also use the following convention: for D ⊂ Dα

0 , G ⊂ Dα
1 , α ∈ {0, 1}N ,

define
!
D ×G := {(

!
a, b) : a ∈ D, b ∈ G}.

To simplify notation define

T Nk := {α ∈ {0, 1}N : |α| = k}, J := {α ∈ {0, 1}N : 1 ≤ |α| ≤ k}.

Definition 1.1. For k ∈ {1, . . . , N} we define an (N, k)-cross XN,k by

XN,k = XN,k((Aj , Dj)
N
j=1) :=

⋃
α∈T Nk

Xα.

For α ∈ YNk let Σα ⊂ Aα0 and put

XΣα := {z ∈ Xα : zα 6∈ Σα}, a ∈ YNk ,

where zα denotes the projection of z on Dα
0 .

Definition 1.2. We define a generalized (N, k)-cross TN,k by

TN,k = TN,k((Aj , Dj)
N
j=1, (Σα)α∈T Nk

) :=
⋃

α∈T Nk

XΣα

and a generalized (N, k)-cross YN,k by

YN,k = YN,k((Aj , Dj)
N
j=1, (Σα)α∈YNk

) :=
⋃

α∈YNk

XΣα .

Observe that always TN,k ⊂ YN,k.
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Example 1.3. To see the difference between TN,k and YN,k consider for
example N = 3, k = 2, and let

Σ(1,1,0) = {z3} ⊂ A3, Σ(1,0,1) = {z2} ⊂ A2, Σ(0,1,1) = {z1} ⊂ A1,

Σα = ∅, α ∈ Y3
2 \ T 3

2 .

Observe that if Σα = ∅ for all α ∈ YNk , then

TN,k((Aj , Dj)
N
j=1, (Σα)α∈T Nk

) = YN,k((Aj , Dj)
N
j=1, (Σα)α∈YNk

)

= XN,k((Aj , Dj)
N
j=1).

Moreover, for k = 1 we have (Σα)α∈T Nk
= (Σα)α∈YNk

= (Σj)
N
j=1 and we use

the simplified notation
TN,1 = YN,1 =: T((Aj , Dj , Σj)

N
j=1).

Definition 1.4. For an (N, k)-cross WN,k ∈ {XN,k,TN,k,YN,k} we
define its center as

c(WN,k) := WN,k ∩ (A1 × · · · ×AN ).
Definition 1.5. For a crossXN,k = XN,k((Aj , Dj)

N
j=1) we define its hull

X̂N,k = X̂N,k((Aj , Dj)
N
j=1)

:=
{
(z1, . . . , zN ) ∈ D1 × · · · ×DN :

N∑
j=1

hAj ,Dj (zj) < k
}
,

where hB,D denotes the relative extremal function of B with respect to D
(see Definition 2.1).

Let WN,k ∈ {TN,k,YN,k} and let M ⊂WN,k. For α ∈ YNk and a ∈ Aα0
let Ma,α denote the fiber

Ma,α := {z ∈ Dα
1 : (

!
a, z) ∈M}.

For (z′, z′′) ∈
∏k
j=1Dj ×

∏N
j=k+1Dj , k ∈ {1, . . . , N − 1}, define

M(z′,·) :=
{
b ∈

N∏
j=k+1

Dj : (z
′, b) ∈M

}
,

M(·,z′′) :=
{
a ∈

k∏
j=1

Dj : (a, z
′′) ∈M

}
.

Definition 1.6. Let M ⊂ TN,k be such that for all α ∈ T Nk and a ∈
Aα0 \ Σα the set Dα

1 \Ma,α is open. A function f : TN,k \M → C is called
separately holomorphic on TN,k \M (written f ∈ OS(TN,k \M)) if for all
α ∈ T Nk and a ∈ Aα0 \Σα, the function

(†) Dα
1 \Ma,α 3 z 7→ f((

!
a, z)) =: fa,α(z)

is holomorphic.
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For a generalized (N, k)-cross YN,k we give an analogous definition.

Definition 1.7. Let M ⊂ YN,k be such that for all α ∈ YNk and a ∈
Aα0 \ Σα the set Dα

1 \Ma,α is open. A function f : YN,k \M → C is called
separately holomorphic on YN,k \M (written f ∈ OS(YN,k \M)) if for all
α ∈ T Nk and a ∈ Aα0 \Σα, the function (†) is holomorphic.

Remark 1.8. Observe that if f ∈ OS(YN,k \M), then (†) is also holo-
morphic for all α ∈ YNk and a ∈ Aα0 \Σα.

Let M ⊂ TN,k. For α ∈ YNk and b ∈ Dα
1 let Mb,α denote the fiber

Mb,α := {z ∈ Aα0 : (
!
z, b) ∈M}.

The following class of functions plays an important role in the Main
Theorem. It is a natural extension of the class OS(TN,k \M)∩C(TN,k \M).

Definition 1.9. Let M ⊂ TN,k be such that for all α ∈ T Nk and a ∈
Aα0 \Σα the set Dα

1 \Ma,α is open. We denote by OcS(TN,k \M) the space
of all f ∈ OS(TN,k \M) such that for all α ∈ T Nk and b ∈ Dα

1 , the function

Aα0 \ (Σα ∪Mb,α) 3 z 7→ f((
!
z, b)) =: fb,α(z)

is continuous.

The following theorem is the main result of this paper. It is an ana-
logue and a natural generalization of Theorem 10.2.9 of [JarPfl 2011]. It also
extends the main result of [Lew 2012].

Main Theorem (Extension theorem for (N, k)-crosses with pluripo-
lar singularities). Let Dj be a Riemann domain of holomorphy over Cnj ,
Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N . For α ∈ T Nk let Σα ⊂ Aα0 be
pluripolar. Let

XN,k := XN,k((Aj , Dj)
N
j=1), TN,k := TN,k((Aj , Dj)

N
j=1, (Σα)α∈T Nk

).

Let M be a relatively closed, pluripolar subset of TN,k such that for all α ∈
T Nk and a ∈ Aα0 \Σα the fiber Ma,α is pluripolar. Let

F :=

{
OS(XN,k \M) if Σα = ∅ for all α ∈ T Nk ,
OcS(TN,k \M) otherwise.

Then there exists a relatively closed pluripolar set M̂ ⊂ X̂N,k and a gen-
eralized (N, k)-cross T′N,k := TN,k((Aj , Dj)

N
j=1, (Σ

′
α)α∈T Nk

) ⊂ TN,k with
Σα ⊂ Σ′α ⊂ Aα0 , Σ′α pluripolar, α ∈ T Nk , such that:

• M̂ ∩ (c(TN,k) ∪T′N,k) ⊂M ,
• for any f ∈ F there exists a function f̂ ∈ O(X̂N,k\M̂) such that f̂ = f
on (c(TN,k) ∪T′N,k) \M ,
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• M̂ is singular with respect to {f̂ : f ∈ F} (1),
• if M = ∅, then M̂ = ∅,
• if for all α ∈ T Nk and a ∈ Aα0 \ Σα the fiber Ma,α is thin in Dα

1 , then
M̂ is analytic in X̂N,k.

The following remark shows that the Main Theorem can be stated anal-
ogously to Theorem 10.2.9 of [JarPfl 2011].

Remark 1.10. Observe that for any relatively closed pluripolar setM ⊂
TN,k and for all α ∈ T Nk there exists a pluripolar set Σ0

α ⊂ Aα0 such that
Σα ⊂ Σ0

α and for all a ∈ Aα0 \Σ0
α the fiberMa,α is pluripolar. Then the Main

Theorem implies its version with (Σα)α∈T Nk
and TN,k replaced by (Σ0

α)α∈T Nk
and T0

N,k := TN,k((Aj , Dj)
N
j=1, (Σ

0
α)α∈T Nk

) .

2. Preliminaries

2.1. Relative extremal function

Definition 2.1 (Relative extremal function). Let D be a Riemann do-
main over Cn and let A ⊂ D. The relative extremal function of A with respect
to D is the function

hA,D := sup{u ∈ PSH(D) : u ≤ 1, u|A ≤ 0}.
For an open set G ⊂ D we define hA,G := hA∩G,G.

A set A ⊂ D is called pluriregular at a point a ∈ A if h∗A,U (a) = 0 for any
open neighborhood U of a, where h∗A,U denotes the upper semicontinuous
regularization of hA,U .

We call A locally pluriregular if A 6= ∅ and A is pluriregular at every
point a ∈ A.

2.2. N-fold crosses. Let Dj be a Riemann domain over Cnj and let
Aj ⊂ Dj be a nonempty set, j = 1, . . . , N , where N ≥ 2. For k = 1, for
historical reasons, we call XN,1((Aj , Dj)

N
j=1) an N-fold cross X and we write

X = X(A1, . . . , AN ;D1, . . . , DN ) = X((Aj , Dj)
N
j=1) =

N⋃
j=1

(A′j ×Dj ×A′′j ),

where
A′j := A1 × · · · ×Aj−1, j = 2, . . . , N,

A′′j := Aj+1 × · · · ×AN , j = 1, . . . , N − 1,

A′1 ×D1 ×A′′1 := D1 ×A′′1, A′N ×DN ×A′′N := A′N ×DN .

(1) That is, for all a ∈ M̂ and every open neighborhood Ua of a there exists f ∈ F
such that f̂ does not extend holomorphically to Ua. For more details see [JarPfl 2000,
Chapter 3].
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For Σj ⊂ A′j ×A′′j , j = 1, . . . , N put

Xj := {(a′j , zj , a′′j ) ∈ A′j ×Dj ×A′′j : (a′j , a′′j ) 6∈ Σj},
where

a′j := (a1, . . . , aj−1), j = 2, . . . , N,

a′′j := (aj+1, . . . , aN ), j = 1, . . . , N − 1,

(a′1, z1, a
′′
1) := (z1, a

′′
1), (a′N , zN , a

′′
N ) := (a′N , zN ).

We call TN,1((Aj , Dj , Σj)
N
j=1) =

⋃N
j=1Xj a generalized N-fold cross T.

For (a′j , a
′′
j ) ∈ A′j ×A′′j , j = 1, . . . , N , define the fiber

M(a′j ,·,a′′j ) := {z ∈ Dj : (a
′
j , z, a

′′
j ) ∈M}.

Our proof of the Main Theorem will be based on Theorem 3.6, which
is a technically more complicated analogue of Theorem 2.2 below (the first
inductive step in the proof of Theorem 3.6).

Theorem 2.2 ([JarPfl 2007, Theorem 1.1]). Let Dj be a Riemann do-
main of holomorphy over Cnj , Aj ⊂ Dj be locally pluriregular and let Σj ⊂
A′j ×A′′j be pluripolar, j = 1, . . . , N . Put

X := X((Aj , Dj)
N
j=1), T := T((Aj , Dj , Σj)

N
j=1).

Let F be a collection of functions f : c(T) \M → C and let M ⊂ T be such
that:

• for any j ∈ {1, . . . , N} and (a′j , a
′′
j ) ∈ (A′j×A′′j )\Σj the fiber M(a′j ,·,a′′j )

is pluripolar,
• for any j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ (A′j × A′′j ) \ Σj there exists a

closed pluripolar set M̃a,j ⊂ Dj such that M̃a,j ∩Aj ⊂M(a′j ,·,a′′j ),
• for any a ∈ c(T) \M there exists an r > 0 such that for all f ∈ F
there exists an fa ∈ O(P(a, r)) with fa = f on P(a, r)∩ (c(T)\M) (2),
• for any f ∈ F , any j ∈ {1, . . . , N}, and any (a′j , a

′′
j ) ∈ (A′j ×A′′j ) \Σj

there exists f̃a,j ∈ O(Dj\M̃a,j) such that f̃a,j = f(a′j , ·, a′′j ) on Aj\Ma,j.

Then there exists a relatively closed pluripolar set M̂ ⊂ X̂ such that:

• M̂ ∩ c(T) ⊂M ,
• for any f ∈ F there exists f̂ ∈ O(X̂\M̂) such that f̂ = f on c(T)\M ,
• M̂ is singular with respect to {f̂ : f ∈ F},
• if for all j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ (A′j×A′′j )\Σj we have M̃a,j = ∅,

then M̂ = ∅,

(2) P(a, r) denotes the polydisc in the Riemann domain D1 × · · · ×DN centered at a
with radius r. For more details see [JarPfl 2000, Chapter 1].
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• if for all j ∈ {1, . . . , N} and (a′j , a
′′
j ) ∈ (A′j × A′′j ) \Σj the set M̃a,j is

thin in Dj, then M̂ is analytic in X̂.

3. (N, k)-crosses

3.1. Basic properties of (N, k)-crosses. The following properties will
be implicitly used throughout the paper.

Lemma 3.1 (Properties of (N, k)-crosses, see [JarPfl 2010, Remark 5]).

(i) XN,1 = X((Aj , Dj)
N
j=1), X̂N,1 = X̂((Aj , Dj)

N
j=1),

(ii) XN,k is arcwise connected,
(iii) X̂N,k is connected,
(iv) if D1, . . . , DN are Riemann domains of holomorphy, then X̂N,k is a

Riemann domain of holomorphy,
(v) XN,k ⊂ XN,k+1 and X̂N,k ⊂ X̂N,k+1, k = 1, . . . , N − 1,
(vi) XN,k = X(XN−1,k−1, AN ;XN−1,k, DN ), k = 2, . . . , N − 1, N > 2.

The following technical lemmas will also be useful.

Lemma 3.2 ([JarPfl 2010, Lemma 4]). Let Dj be a Riemann domain of
holomorphy over Cnj and Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N .
Then for all z = (z1, . . . , zN ) ∈ X̂N,k we have

h
X̂N,k−1,X̂N,k

(z) = max
{
0,

N∑
j=1

hAj ,Dj (zj)− k + 1
}
.

Lemma 3.3. Let Dj be a Riemann domain of holomorphy over Cnj and
Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N . Then for z ∈ X̂N,k,

h
XN,k−1,X̂N,k

(z) = h
X̂N,k−1,X̂N,k

(z).

Proof. The inequality “≥” follows from properties of the relative ex-
tremal function (see [JarPfl 2011, Proposition 3.2.2]). To show the opposite
inequality fix u ∈ PSH(X̂N,k) such that u ≤ 1 and u|XN,k−1

= 0. Then
u|

X̂N,k−1
∈ PSH(X̂N,k−1) and u|X̂N,k−1

≤ h
XN,k−1,X̂N,k−1

. Using a reasoning
analogous (3) to that for Proposition 5.1.8(i) of [JarPfl 2011] we show that
h
XN,k−1,X̂N,k−1

≡ 0 on X̂N,k−1, which finishes the proof.

3.2. Cross theorems for (N, k)-crosses. In this section we present
some recent results on (N, k)-crosses which will be used in the proof of the
Main Theorem. Observe that our main result generalizes both of them.

(3) Instead of the classical cross theorem for N -fold crosses we use the cross theorem
for (N, k)-crosses (see Theorem 3.4).
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Theorem 3.4 (Cross theorem for (N, k)-crosses, cf. [JarPfl 2011, The-
orem 7.2.7]). Let Dj be a Riemann domain of holomorphy over Cnj and
Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N . For k ∈ {1, . . . , N} let
XN,k := XN,k((Aj , Dj)

N
j=1). Then for every f ∈ OS(XN,k) there exists

a unique function f̂ ∈ O(X̂N,k) such that f̂ = f on XN,k.

The following result is a special case of Theorem 2.12 of [Lew 2012], which
is a cross theorem without singularities for generalized (N, k)-crosses.

Theorem 3.5 (Cross theorem for generalized (N, k)-crosses). Let Dj be
a Riemann domain over Cnj , Aj ⊂ Dj be pluriregular, j = 1, . . . , N . For
α ∈ T Nk let Σα be a subset of Aα0 . Then for every f ∈ OcS(TN,k) there exists
an f̂ ∈ O(X̂N,k) such that f̂ = f on TN,k.

3.3. Extension theorem for generalized (N, k)-crosses with pluri-
polar singularities. Now we state the already mentioned main technical
result, an analogue of Theorem 2.2 which is crucial for the proof of the Main
Theorem. Its proof will be given in Section 4.

Theorem 3.6. Let Dj be a Riemann domain of holomorphy over Cnj ,
and Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N . For α ∈ YNk let Σα be
a pluripolar subset of Aα0 . Let WN,k ∈ {XN,k,TN,k,YN,k}, M ⊂ c(WN,k)
and F a collection of functions f : c(WN,k) \M → C} such that:

(T1) M is pluripolar (4),
(T2) for any α ∈ YNk and a ∈ Aα0 \Σα the fiber Ma,α is pluripolar,
(T3) for any α ∈ YNk and a ∈ Aα0 \ Σα there exists a closed pluripolar set

M̃a,α ⊂ Dα
1 such that M̃a,α ∩Aα1 ⊂Ma,α (5),

(T4) for any a ∈ c(WN,k) \M there exists an r > 0 such that for all f ∈ F
there exists an fa ∈ O(P(a, r)) with fa = f on P(a, r)∩(c(WN,k)\M),

(T5) for any f ∈ F , α ∈ YNk , and a ∈ Aα0 \ Σα there exists an f̃a,α ∈
O(Dα

1 \ M̃a,α) such that f̃a,α = fa,α on Aα1 \Ma,α (6).

Then there exists a relatively closed pluripolar set M̂ ⊂ X̂N,k such that:

• M̂ ∩ c(WN,k) ⊂M ,
• for any f ∈ F there exists an f̂ ∈ O(X̂N,k \ M̂) such that f̂ = f on
c(WN,k) \M ,
• M̂ is singular with respect to {f̂ : f ∈ F},

(4) Actually we can assume less: M is such that the set {aj ∈ Aj : M(·,aj ,·) is not
pluripolar} is pluripolar for all j ∈ {1, . . . , N}.

(5) When k = N we assume that there exists an M̃ ⊂ D1×· · ·×DN closed pluripolar
such that M̃ ∩ c(WN,k) ⊂M .

(6) When k = N we assume that there exists an f̃ ∈ O(D1× · · ·×DN \ M̃) such that
f̃ = f on c(WN,k) \M .
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• if for all α ∈ YNk and a ∈ Aα0 \Σα we have M̃a,α = ∅, then M̂ = ∅,
• if for all α ∈ YNk and a ∈ Aα0 \Σα the set M̃a,α is thin in Dα

1 , then M̂
is analytic in X̂N,k.

Theorem 3.6 has one immediate and useful consequence, which might
be called the main extension theorem for generalized (N, k)-crosses with
pluripolar singularities (see analogous theorem for N -fold crosses, Theorem
10.2.6 of [JarPfl 2011]).

Proposition 3.7. Let Dj, Aj and Σα be as in Theorem 3.6. Let

WN,k ∈ {XN,k,TN,k,YN,k}.
Let M ⊂WN,k and F ⊂ OS(WN,k \M) be such that:

(P1) M ∩ c(WN,k) is pluripolar,
(P2) for any α ∈ YNk and a ∈ Aα0 \ Σα the fiber Ma,α is pluripolar and

relatively closed in Dα
1 ,

(P3) for any a ∈ c(WN,k) \M there exists an r > 0 such that for all f ∈ F
there exists an fa ∈ O(P(a, r)) with fa = f on P(a, r)∩(c(WN,k)\M).

Then there exists a relatively closed pluripolar set M̂ ⊂ X̂N,k such that:

• M̂ ∩ c(WN,k) ⊂M ,
• for any f ∈ F there exists an f̂ ∈ O(X̂N,k \ M̂) such that f̂ = f on
c(WN,k) \M ,
• M̂ is singular with respect to {f̂ : f ∈ F},
• if for all α ∈ YNk and a ∈ Aα0 \Σα we have Ma,α = ∅, then M̂ = ∅,
• if for all α ∈ YNk and a ∈ Aα0 \ Σα the fiber Ma,α is thin in Dα

1 , then
M̂ is analytic in X̂N,k.

Proof. Define M ′ :=M ∩ c(WN,k) and F := {f |c(WN,k)\M : f ∈ F}. We
show that they satisfy the assumptions of Theorem 3.6.

Indeed, for α ∈ YNk and a ∈ Aα0 \Σa define M̃a,α :=Ma,α and f̃a,α := fa,α.
Then:

• M ′ is pluripolar and for all α ∈ YNk and a ∈ Aα0 \ Σa the fibers M ′a,α
are pluripolar by (P1),
• for all α ∈ YNk and a ∈ Aα0 \ Σa, the set M̃a,α is relatively closed and

pluripolar,
• for all f ∈ F , α ∈ YNk , and a ∈ Aα0 \Σa, the function f̃a,α is holomorphic

on Dα
1 \ M̃a,α (cf. (P2), Definitions 1.6, 1.7 and Remark 1.8),

• from (P3), for any a ∈ c(WN,k) \M there exists an r > 0 such that
for all f ∈ F there exists an fa ∈ O(P(a, r)) with fa = f on P(a, r) ∩
(c(WN,k) \M).

Thus from Theorem 3.6 we get the conclusion.
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As we have already mentioned in Section 2, Theorem 3.6 or, to be more
precise, Proposition 3.7 implies the Main Theorem. The idea of the proof is
based on Lemmas 10.2.5, 10.2.7, and 10.2.8 of [JarPfl 2011].

Proof that Proposition 3.7 implies Main Theorem. Let Dj , Aj , Σα, XN,k,
TN,k, M , and F be as in Theorem 1.2. We have to check the assumptions
of Proposition 3.7. Because M is pluripolar, for all α ∈ YNk there exists a
pluripolar set Σα such that for all a ∈ Aα0 \Σα the fiber Ma,α is pluripolar.
Moreover, because M is relatively closed, all the fibers Ma,α are relatively
closed. To check the last assumption we need the following lemma.

Lemma 3.8. Under the assumptions of Theorem 1.2, for every a ∈
c(TN,k) \ M there exists an r > 0 such that for any f ∈ F there exists
an fa ∈ O(P(a, r)) with fa = f on P(a, r) ∩ (c(TN,k) \M).

Proof. Fix a ∈ c(TN,k) \M . Let ρ > 0 be such that P(a, ρ)∩M = ∅ (7).
Define new crosses

Xa,ρ
N,k := XN,k((Aj ∩ P(aj , ρ),P(aj , ρ))Nj=1) (8),

Ta,ρ
N,k := TN,k((Aj ∩ P(aj , ρ),P(aj , ρ))Nj=1, (Σα ∩ P(aα, ρ))α∈T Nk ).

Fix α ∈ T Nk and a ∈ (
∏
j:αj=0(Aj ∩ P(aj , ρ))) \ (Σα ∩ P(aα, ρ)). Then( ∏

j:αj=1

P(aj , ρ)
)
\Ma,α =

∏
j:αj=1

P(aj , ρ),

so for any f ∈ F the function
∏
j:αj=1 P(aj , ρ) 3 z 7→ fa,α(z) is holo-

morphic and f ∈ OS(Ta,ρ
N,k). For F = OcS(TN,k \ M) we additionally fix

b ∈
∏
j:αj=1 P(aj , ρ). We have( ∏

j:αj=1

P(aj , ρ)
)
\((Σα∩P(aα, ρ))∪Mb,α) =

( ∏
j:αj=1

P(aj , ρ)
)
\(Σα∩P(aα, ρ))

and for any f ∈ OcS(TN,k \ M) the function (
∏
j:αj=1 P(aj , ρ)) \ (Σα ∩

P(aα, ρ)) 3 z 7→ fb,α(z) is continuous. Thus OcS(TN,k \M) ⊂ OcS(T
a,ρ
N,k).

Using Theorem 3.4 for F = OS(XN,k \ M) and Theorem 3.5 for F =
OcS(TN,k \M), we get

∀f ∈ F ∃f̂a ∈ O(X̂a,ρ
N,k) : f̂a = f on Ta,ρ

N,k (9).

Choosing r ∈ (0, ρ) so small that P(a, r) ⊂ X̂a,ρ
N,k finishes the proof.

(7) Recall that M is relatively closed.
(8) From the definition of a polydisc in a Riemann domain we obviously have P(aj , ρ)⊂

Dj , j = 1, . . . , N .
(9) Recall that if Σα = ∅ for all α ∈ T Nk , then TN,k = XN,k and Ta,ρ

N,k = Xa,ρ
N,k.
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Now, it is clear that all necessary assumptions are satisfied and we can
apply Proposition 3.7. We obtain a pluripolar relatively closed set M̂ such
that for all f ∈ F there exists an f̂ with f̂ = f on c(TN,k) \M and M̂ is
singular with respect to {f̂ : f ∈ F}.

Fix α ∈ T Nk and define Dα := Dα
0 and Gα := Dα

1 . Then both Dα and

Gα are Riemann domains and X̂N,k ⊂
!
Dα ×Gα is a Riemann domain of

holomorphy. From Proposition 9.1.4 of [JarPfl 2011] there exists a pluripolar
set Σ′α ⊂ Aα0 such that Σα ⊂ Σ′α and for all a ∈ Aα0 \ Σ′α the fiber M̂a,α is
singular with respect to {f̂a,α : f ∈ F}. In particular, because every f̂a,α is
holomorphic on (X̂N,k)a,α \ M̂a,α, we have M̂a,α ⊂ Ma,α for a ∈ Aα0 \ Σ′α.
Hence

M̂ ∩T′N,k =
⋃

α∈T Nk

{z ∈ M̂ ∩ Xα : zα 6∈ Σ′α} ⊂M.

Now for all α ∈ T Nk and a ∈ Aα0 \ Σ′α the functions f̂a,α and fa,α are
holomorphic onDα

1 \Ma,α (thanks to the inclusion M̂∩T′N,k ⊂M) and equal
on Aα1 \Ma,α, which is not pluripolar. Thus we have f̂a,α = fa,α everywhere
on Dα

1 \Ma,α, for every α and a. Hence finally f̂ = f on T′N,k \M .

4. Proof of Theorem 3.6. First we show that it is sufficient to prove
Theorem 3.6 with WN,k = XN,k.

Lemma 4.1. Theorem 3.6 with WN,k = XN,k implies Theorem 3.6 with

WN,k ∈ {TN,k,YN,k}.
Proof. LetDj , Aj , Σα,XN,k, TN,k,YN,k,M ⊂ c(WN,k) and a collection

F of functions f : WN,k \M → C, where WN,k ∈ {TN,k,YN,k}, be as in
Theorem 3.6. Assume that this theorem is true with WN,k = XN,k.

Observe that c(YN,k) = c(XN,k) \∆ and c(TN,k) = c(XN,k) \ ∆̃, where

∆ :=
⋂

α∈T Nk

{a ∈ A1 × · · · ×AN : aα ∈ Σα},

∆̃ :=
⋂

α∈YNk

{a ∈ A1 × · · · ×AN : aα ∈ Σα},

are pluripolar subsets of c(XN,k), where aα denotes the projection of a on Aα0 .
Define M ′ :=M ∪ ∆̃ ⊂ c(XN,k). Then c(XN,k) \ ∆̃) \M = c(XN,k) \M ′

and

(∗) c(TN,k) \M
= (c(XN,k) \∆) \M ⊂ (c(XN,k) \ ∆̃) \M for M ⊂ c(TN,k),

(∗∗) c(YN,k) \M = (c(XN,k) \ ∆̃) \M for M ⊂ c(YN,k).
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Define F ′ := {f |c(XN,k)\M ′ : f ∈ F}. Then M ′ is pluripolar and for all
α ∈ YNk and a ∈ Aα0 \ Σα we have ∆̃a,α = ∅, so M ′a,α = Ma,α. Thus M ′
and F ′ satisfy the assumptions of Theorem 3.6 with WN,k = XN,k. Then
there exists M̂ ′ ⊂ X̂N,k, relatively closed, pluripolar, and having all the
properties of the conclusion. Properties (∗) and (∗∗) give us the conclusion
for WN,k ∈ {TN,k,YN,k}.

Proof of Theorem 3.6 with WN,k = XN,k.

Step 1. Theorem 3.6 is true for any N when k = 1 (Theorem 2.2) and
when k = N (by assumption).

Step 2. In particular, the theorem is true for N = 2, k = 1, 2. Assume
we already have Theorem 3.6 for (N − 1, k), where k ∈ {1, . . . , N − 1}, and
for (N, 1), . . . , (N, k − 1), where k ∈ {2, . . . , N − 1}. We need to prove it for
(N, k).

Step 3. Fix s ∈ {1, . . . , N} (to simplify notation let s = N). Let

QN := {aN ∈ AN :M(·,aN ) is not pluripolar}.
Then QN is pluripolar. Define

X
(s)
N−1,k := XN−1,k((Aj , Dj)

N
j=1,j 6=s), s = 1, . . . , N,

in particular

X
(N)
N−1,k = XN−1,k := XN−1,k((Aj , Dj)

N−1
j=1 ).

Fix an aN ∈ AN \ QN and consider the family {f(·, aN ) : f ∈ F} of
functions f : c(XN−1,k)→ C. Then:
• M(·,aN ) ⊂ c(XN−1,k) is pluripolar.
• For any α′ ∈ YN−1k and any a′ ∈ Aα′0 \Σα′ (10) the fiber (M(·,aN ))a′,α′

equals Ma,α, where a = (a′, aN ) and α = (α′, 0), so it is pluripolar.
• For α′ ∈ YN−1k and a′ ∈ Aα

′
0 \ Σα′ we define M̃a′,α′ := M̃a,α, where

a = (a′, aN ) and α = (α′, 0). Then M̃a′,α′ ⊂ Dα
1 = Dα′

1 is closed,
pluripolar and M̃a′,α′ ∩Aα

′
1 ⊂Ma′,α′ .

• For any a′ ∈ c(XN−1,k) \M(·,aN ) there exists an r > 0 (the same as
for a = (a′, aN )) such that for any f ∈ F there exists fa′ ∈ O(P(a′, r))
such that fa′ = f(·, aN ) on P(a′, r) ∩ (c(XN−1,k) \M(·,aN )).
• For f ∈ F , for any α′ ∈ YN−1k and any a′ ∈ Aα′0 \Σα′ , define f̃a′,α′ :=
f̃a,α ∈ O(Dα

1 \ M̃a,α) = O(Dα′
1 \ M̃a′,α′), where a = (a′, aN ) and α =

(α′, 0). Then f̃a′,α′ = fa′,α′ on Aα
′

1 \ (M(·,aN ))a′,α′ .

(10) By Aα
′

0 we denote the product
∏
j∈{1,...,N−1}:α′

j=0Aj , and analogously for Aα
′

1

and Dα′
1 .
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From the inductive assumption we get a relatively closed pluripolar set
M̂aN ⊂ X̂N−1,k such that:

• M̂aN ∩ c(XN−1,k) ⊂M(·,aN ),
• for any f ∈ F there exists an f̂aN ∈ O(X̂N−1,k \ M̂aN ) such that
f̂aN = f(·, aN ) on c(XN−1,k) \M(·,aN ),
• M̂aN is singular with respect to {f̂aN : f ∈ F},
• if for all α′ ∈ YN−1k and a′ ∈ Aα

′
0 \ Σα′ , we have M̃a′,α′ = ∅, then

M̂aN = ∅,
• if for all α′ ∈ YN−1k and a′ ∈ Aα′0 \ Σα′ , the set M̃a′,α′ is thin in Dα′

1 ,
then M̂aN is analytic in X̂N−1,k.

Define a new cross

ZN := X(c(XN−1,k), AN ; X̂N−1,k, DN ).

Observe that ZN with original M , Σ(0,1) := Σ(0,...,0,1), Σ(1,0) := QN , and
the family F satisfy all the assumptions of Theorem 3.6 with N = 2, k = 1.
Indeed:

• For all a′ ∈ c(XN−1,k)\Σ(0,...,0,1) and aN ∈ AN \QN the fibers M(a′,·),
M(·,aN ) are pluripolar by (T1), (T2) and the definition of QN .
• For all a′ ∈ c(XN−1,k) \Σ(0,...,0,1) from (T3) there exists an M̃a′ ⊂ DN

closed pluripolar such that M̃a′ ∩AN ⊂M(a′,·). For aN ∈ AN \QN set
M̃aN := M̂aN . Then M̃aN is closed pluripolar in X̂N−1,k and M̃aN ∩
c(XN−1,k) ⊂M(·,aN ).
• For all (a′, aN ) ∈ (c(XN−1,k)×AN )\M from (T4) there exists an r > 0

such that for all f ∈ F there exists an f(a′,aN ) ∈ O(P((a′, aN ), r)) such
that

f(a′,aN ) = f on P((a′, aN ), r) ∩ (c(XN,k \M)).

• For all a′ ∈ c(XN−1,k) \ Σα=(0,...,0,1) from (T5) there exists an fa′ ∈
O(DN \ M̃a′) such that fa′ = f on AN \M(a′,·). For aN ∈ AN \ QN
define faN := f̂aN . Then faN ∈ O(X̂N−1,k \ M̃aN ) and faN = f on
c(XN−1,k) \M(·,aN ).

Then there exists an M̂N ⊂ ẐN relatively closed pluripolar such that:

• M̂N ∩ c(XN,k) ⊂M ,
• for any f ∈ F there exists an f̂N ∈ O(ẐN \ M̂N ) such that f̂N = f on
c(XN,k) \M ,
• M̂N is singular with respect to {f̂N : f ∈ F},
• if for all a′ ∈ c(XN−1,k) \ Σ(0,...,0,1) we have M̃a′ = ∅ and for all
aN ∈ AN \QN we have M̃aN = ∅, then M̂N = ∅,
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• if for all a′ ∈ c(XN−1,k) \ Σ(0,...,0,1) the set M̃a′ is thin in DN and for
all aN ∈ AN \QN the set M̃aN is thin in X̂N−1,k, then M̂N is analytic
in ẐN .

We repeat the reasoning above for all s = 1, . . . , N−1, obtaining a family
{f̂s}Ns=1 of functions such that for any s ∈ {1, . . . , N} we have f̂s = f on
c(XN,k) \M . Define a new function by

Ff (z) :=


f̂1(z) for z ∈ Ẑ1 \ M̂1,
...

f̂N (z) for z ∈ ẐN \ M̂N .
Assume for a moment that we have the following lemma.

Lemma 4.2. The function Ff is well defined on (
⋃N
s=1 Zs) \ (

⋃N
s=1 M̂s).

Step 4. Define a 2-fold cross

Z := X(XN−1,k−1, AN ; X̂N−1,k, DN ) ⊂
N⋃
s=1

Zs,

a pluripolar set

M̃ :=
( N⋃
s=1

M̂s

)
∩ (XN−1,k−1 ×AN )

and a family

F̃ := {f̃ := Ff |(XN−1,k−1×AN )\M̃ : f ∈ F}.

We show that Z, M̃ , and F̃ satisfy the assumptions of Theorem 3.6 with
N = 1 and k = 1:

• M̃ is pluripolar in XN−1,k−1 × AN , so there exist pluripolar sets P ⊂
XN−1,k−1, Q ⊂ AN such that for all z′ ∈ XN−1,k−1 \ P and aN ∈
AN \Q, the fibers M̃(z′,·), M̃(·,aN ) are pluripolar.
• Let z′ ∈ XN−1,k−1 \ P . Then there exists an s ∈ {1, . . . , N − 1} such

that

(?) {z′} ×DN ⊂ X
(s)
N−1,k ×As.

Indeed, let z′ ∈ XN−1,k−1. Then z′ = z′α for some α ∈ {0, 1}N−1,
|α| = k − 1, where z′α = (zα1 , . . . , zαN−1) and zαj = aj ∈ Aj when
αj = 0, while zαj = zj ∈ Dj otherwise. We may assume that z′ =
(z1, . . . , zk−1, ak, . . . , aN−1). Set s = k. Fix zN ∈ DN . Then (z1, . . . ,
zk−1, ak, . . . , aN−1, zN ) ∈ {z′} ×DN and

(z1, . . . , zk−1, ak, . . . , aN−1, zN ) ∈ X
(s)
N−1,k ×As.
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Define M̃z′ := (M̂s)(z′,·). Then M̃z′ is pluripolar relatively closed in
DN and M̃z′∩AN ⊂ M̃(z′,·). For aN ∈ AN\Q define M̃aN := (M̂N )(·,aN )

relatively closed pluripolar in X̂N−1,k such that M̃aN ∩ XN−1,k−1 ⊂
M̃(·,aN ).

• For any (z′, aN )∈(XN−1,k−1×AN )\M̃ there exist s∈{1, . . . , N−1} and
r > 0 such that P((z′, aN ), r) ⊂ Ẑs \ M̂s. Then f̂s ∈ O(P ((z′, aN ), r))
and f̂s = Ff = f̃ on P ((z′, aN ), r) ∩ ((XN−1,k−1 ×AN ) \ M̃).
• For z′ ∈ XN−1,k−1\P choose an s to have (?) and define f̃z′ := f̂s(z

′, ·).
Then f̃z′ is holomorphic on DN \M̃z′ and equals f̃(z′, ·) on AN \M̃(z′,·).
For aN ∈ AN \Q define f̃aN := f̂s(·, aN ). Then f̃aN is holomorphic on
X̂N−1,k \ M̃aN and equals f̃(·, aN ) on XN−1,k−1 \ M̃(·,aN ).

Now from Theorem 3.6 there exists a relatively closed pluripolar set M̂ ⊂ Ẑ
such that:

• M̂ ∩ (XN−1,k−1 ×AN ) ⊂ M̃ , in particular, M̂ ∩ c(XN,k) ⊂M ,
• for any f ∈ F there exists an f̂ ∈ O(Ẑ \ M̂) such that f̂ = f̃ on

(XN−1,k−1 ×AN ) \ M̃ , in particular f̂ = f on c(XN,k) \M ,
• M̂ is singular with respect to {f̂ : f ∈ F},
• if for all z′ ∈ XN−1,k−1 \ P we have M̃z′ = ∅ and for all aN ∈ AN \Q,
M̃aN = ∅, then M̂ = ∅,
• if for all z′ ∈ XN−1,k−1 \ P the set M̃z′ is thin in DN and for all
aN ∈ AN \Q the set M̃aN is thin in X̂N−1,k, then M̂ is analytic in Ẑ.

Now assume that for any α ∈ YNk and a ∈ Aα0 \ Σα we have M̃a,α = ∅.
Then for any s ∈ {1, . . . , N} and as ∈ As\Qs we have M̂as = ∅, which implies
that for all s ∈ {1, . . . , N} we have M̂s = ∅. Then from the definitions of
M̃z′ and M̃aN we see that for any z′ ∈ XN−1,k−1 \ P we have M̃z′ = ∅ and
for all aN ∈ AN \Q we have M̃aN = ∅, thus M̂ = ∅.

Analogously if for all α ∈ YNk and a ∈ Aα0 \Σα the fiber M̃a,α is thin inDα
1 ,

then for any s ∈ {1, . . . , N} and as ∈ As \Qs the set M̂as is analytic (thus
thin) in X̂

(s)
N−1,k, so for all s ∈ {1, . . . , N} the set M̂s is analytic in Ẑs. Because

fibers of analytic sets are also analytic we infer that for any z′ ∈ XN−1,k−1\P
the set M̃z′ is thin in DN and for any aN ∈ AN \Q the set M̃aN is thin in
X̂N−1,k. Thus, finally, M̂ is analytic in Ẑ.

Now we show that X̂N,k ⊂ Ẑ. First observe that if z = (z′, zN ) ∈ X̂N,k,
then z′ ∈ X̂N−1,k. From Lemma 3.3 for (z1, . . . , zN ) = (z′, zN ) ∈ X̂N,k we
get
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(‡) h
XN−1,k−1,X̂N−1,k

(z′) + hAN ,DN (zN ) = h
X̂N−1,k−1

(z′) + hAN ,DN (zN ).

For z ∈ X̂N−1,k−1 ⊂ X̂N,k we have (‡)= hAN ,DN (zN ), which is less than 1

from properties of the relative extremal function, and for z ∈ X̂N,k\X̂N−1,k−1
we use Lemma 3.2:

(‡) =
(N−1∑
j=1

hAj ,Dj (zj)
)
− k + 1 + hAN ,DN (zN ) < k − k + 1 = 1.

To show the opposite inclusion take (z1, . . . , zN ) = (z′, zN ) ∈ Ẑ. From
properties of the relative extremal function and Lemma 3.2 we get(N−1∑
j=1

hAj ,Dj (zj)
)
+ hAN ,DN (zN ) ≤ h

X̂N−1,k−1
(z′) + k − 1 + hAN ,DN (zN )

≤ h
XN−1,k−1,X̂N−1,k

(z′) + hAN ,DN (zN ) + k − 1 < 1 + k − 1 = k.

Thus, it remains to prove Lemma 4.2:

Proof of Lemma 4.2. Fix s and p. We want to show that f̂s = f̂p on
(Zs ∩Zp) \ (M̂s ∪ M̂p). To simplify notation we assume that s = N − 1 and
p = N .

Step 1. Every connected component of ZN−1 ∩ZN contains part of the
center.

From the definition of ZN−1 and ZN we have

ZN−1 ∩ ZN = (A1 × · · · ×AN−2 ×DN−1 ×AN ) ∪ (A1 × · · · ×AN−1 ×DN )

∪ (X̂N−2,k ×AN−1 ×AN ).
First take B1 := A1 × · · · × AN−2 × AN−1 × DN . Since the product of a
disconnected set with any set is not connected, connected components of B1

are products of connected components of Aj , j = 1, . . . , N − 1, and DN .
Since the last set is connected, every connected component of B1 “contains”
DN (in the sense of the last coordinate in the product), thus it contains a
part of the center A1 × · · · ×AN .

The case of B2 := A1 × · · · ×AN−2 ×DN−1 ×AN is similar.
Now take B3 := X̂N−2,k × AN−1 × AN . As in the previous cases, since

X̂N−2,k is connected, every connected component of B2 “contains” the whole
X̂N−2,k in the product. Since X̂N−2,k contains A1 × · · · ×AN−2, every con-
nected component of B2 must contain part of the center.

Step 2. One connected component of ẐN−1 ∩ ẐN contains the whole
ZN−1 ∩ ZN .

The intersection ẐN−1 ∩ ẐN contains the cross XN,1, which is connected
and contains the center. Thus the whole center must lie in one connected
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component of ẐN−1∩ẐN . Now take any connected component of ẐN−1∩ẐN
which intersects ZN−1∩ZN . From Step 1 it must contain part of the center,
so there is only one connected component of ẐN−1 ∩ ẐN intersecting (thus
containing) ZN−1 ∩ ZN .

Step 3. Every connected component of ẐN−1 ∩ ẐN with M̂N−1 ∪ M̂N

deleted is a domain, thus it is a connected component of (ẐN−1 ∩ ẐN ) \
(M̂N−1 ∪ M̂N ).

Take any connected component of ẐN−1 ∩ ẐN , name it Ω. Then Ω is
a domain. The set M̂N−1 is pluripolar and relatively closed in ẐN−1, thus
it is pluripolar and relatively closed in Ω, so Ω \ M̂N−1 is still a domain.
Because M̂N is relatively closed and pluripolar in ẐN , it is relatively closed
and pluripolar in Ω \ M̂N−1. So Ω \ (M̂N−1 ∪ M̂N ) is a domain.

Step 4. One connected component of (ẐN−1 ∩ ẐN ) \ (M̂N−1 ∪ M̂N )

contains the whole set (ZN−1 ∩ ZN ) \ (M̂N−1 ∪ M̂N ).
This follows immediately from Steps 2 and 3.

Step 5. f̂N−1 = f̂N on (ZN−1 ∩ ZN ) \ (M̂N−1 ∪ M̂N ).
Let Ω be a connected component from Step 4. Then both f̂N−1 and f̂N

are defined on Ω. On the non-pluripolar center we have f̂N−1 = f̂N . Since Ω
is a domain and contains the center, f̂N−1 = f̂N on Ω. Moreover, Ω contains
(ZN−1 ∩ ZN ) \ (M̂N−1 ∪ M̂N ), which finishes the proof.

The proof of Theorem 3.6 is finished.

Example 4.3. In the proof of Theorem 3.6 with k = 1 we do not need
the cross Ẑ—it is sufficient to take ẐN (see [JarPfl 2010] for details), however
for k > 1 Step 4 is necessary. Indeed, let A1 = A2 = A3 = (−1, 1), D1 =

D2 = D3 = D, X3,2 := X3,2((Aj , Dj)
3
j=1), Z3 := X(A1 × A2, A3; X̂2,2, D3).

Then X̂2,2 = D1 ×D2,

Ẑ3 := {z ∈ D1 ×D2 ×D3 : hA1×A2,D1×D2(z1, z2) + hA3,D3(z3) < 1}
= {z ∈ D1 ×D2 ×D3 : max{hAj ,Dj (zj), j = 1, 2}+ hA3,D3(z3) < 1},

and hAj ,Dj (ζ) =
2
π

∣∣Arg(1+ζ1−ζ
)∣∣, ζ ∈ D, j = 1, 2, 3 (see Example 3.2.20(a) in

[JarPfl 2011]). Take z=(0, w, w), where w= i/
√
3. Then z∈X3,2 but z 6∈ Ẑ3.
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