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TWO CLASSES OF ALMOST GALOIS
COVERINGS FOR ALGEBRAS
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PIOTR DOWBOR and ADAM HAJDUK (Toruń)

Abstract. We prove that for any representation-finite algebra A (in fact, finite locally
bounded k-category), the universal covering F : Ã → A is either a Galois covering or an
almost Galois covering of integral type, and F admits a degeneration to the standard
Galois covering F̄ : Ã → Ã/G, where G = Π(ΓA) is the fundamental group of ΓA. It is
shown that the class of almost Galois coverings F : R → R′ of integral type, containing
the series of examples from our earlier paper [Bol. Soc. Mat. Mexicana 17 (2011)], behaves
much more regularly than usual with respect to the standard properties of the pair (Fλ, F•)
of adjoint functors associated to F .

Introduction. The covering technique has remained one of the most im-
portant and efficient tools of modern representation theory of finite-dimen-
sional algebras over a field. They were invented over thirty years ago by Bon-
gartz, Gabriel and Riedtmann in order to study and classify representation-
finite algebras ([19, 23, 3, 18], see also [20, 26]).

Coverings are usually used to reduce a problem for modules over an al-
gebra to an analogous one, often much simpler, for its cover category. This
allows one to answer many interesting theoretical questions and to obtain
classifications for various classes of algebras (or matrix problems). From gen-
eral results, in some cases it is possible to determine the representation type
of an algebra A (more precisely, a finite locally bounded k-category) and to
construct all indecomposable A-modules of the first kind with respect to F
by applying the push-down functor Fλ : modR→ modA, where F : R→ A
is a Galois covering (see [18, 14, 11, 15] and also [6, 7]).

The approach to describing the category modA of all finite-dimensional
A-modules by using Galois coverings is helpful in principle only if A is a
standard algebra. It is clear that to study nonstandard algebras one should
extend the class of coverings by admitting also some non-Galois ones, and
next develop for this larger class a theory similar to that for Galois cover-
ings.
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The series of our recent articles [8, 9, 10] realizes this idea. We have intro-
duced and thoroughly examined the notion of an almost Galois G-covering
functor F : R→ R′ (between locally bounded k-categories) of type L, where
L is a totally ordered factor group of G, in particular, covering functors of
integral type (see [8, 2.2]). These functors behave nicely as regards the preser-
vation of the representation types and as regards the nice properties of the
pair (Fλ, F•) of the functors associated to F , where F• : MODR′ → MODR
is the pull-up functor, Fλ : MODR→ MODR′ is the left adjoint to F•, and
MODR (respectively MODR′) denotes the category of all right modules
over R (respectively R′). To some extent they are similar to Galois cover-
ings. Recall that if R is a locally bounded k-category equipped with a free
action of a group G ⊆ Autk-cat(R) on obR and F : R → R′ is an almost
Galois G-covering functor of integral type then

(∗) F•Fλ(N) ∼=
⊕
g∈G

gN and Fλ(gN) ∼= Fλ(N) for every g ∈ G,

whenever N is an indecomposable module in modR with Ext1
R(N, hN) = 0

for all h ∈ G≺e, where ≺ is an ordering on G induced in some natural way
from the standard ordering < on Z. Properties of this kind are essential if one
thinks about reconstructing indecomposable R′-modules from those over R.
It is also shown that a G-covering functor F of integral type can always be
“built into the triangle” of the form

(M)

R

F

����������

F̄

��/
///////

R′  R̄

where R̄ is the quotient (i.e. orbit category) R/G of R by G, F̄ : R → R̄
is the canonical Galois covering functor with group G, given by the natural
projection, and R′  R̄ indicates that R̄ is a degeneration of R′ (see [8,
2.5]). In fact this degeneration (of finite locally bounded categories) is a
very special one, namely, it can be extended to a degeneration of covering
functors, F ′ to F̄ , in the sense of [10, 2.4] (see [10, Theorem 2.6]).

Almost Galois coverings of integral type can be constructed (in the
scheme (M)) for many classical examples of nonstandard algebras in the
representation-finite as well as in the tame case (see [9, Example 2.3 and
Theorem 4.2]; there R is a universal cover of the standard form R̄ of R′).
They seem to be a proper tool for understanding the structure of algebras
of this kind and the way of constructing them.

In the present paper we study the properties of coverings for finite cate-
gories from two classes, containing the examples mentioned above. The first
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class consists of square-free categories and is closely related to representation-
finite algebras. The second one is defined in a purely combinatorial way, refer-
ring to the notion of s-flower (see 3.2). In each case we are mainly interested
in fact in the same general questions: whether a G-covering F of the category
from the class considered is an almost Galois covering of integral type, and
(if this is the case) whether the pair (Fλ, F•) consisting of the push-down and
pull-up functors associated to F behaves more regularly than in the general
situation, in the context of the isomorphisms (∗) described above.

The paper is divided into three sections. Section 1 contains preliminaries,
i.e. the notation and basic definitions and facts.

In Section 2 we consider the class of square-free finite locally bounded
categories. Recall that it contains all Auslander categories for representation-
finite k-algebras. We show that if F : R→ R′ is aG-covering functor between
square-free categories and R = R(Q, I) satisfies certain natural conditions,
then F is either a Galois covering or an almost Galois covering of integral
type, with respect to some slightly modified action of G on R; moreover, the
isomorphisms (∗) hold for F with respect to the original action (see Theorem
2.1(A)). As a consequence, we infer that for any finite representation-finite
locally bounded category A, the universal covering F : Ã → A, where Ã
is a common universal cover for A and for its standard form Ā (see [18, 4]
for definition), is either a Galois covering or an almost Galois covering of
integral type. In this situation F also admits a degeneration to the canonical
Galois covering F̄ : Ã→ Ā = Ã/G, where G is the fundamental group of the
Auslander–Reiten quiver ΓA (see Theorem 2.1(B)). Additionally, we discuss
in detail the scope of validity of the isomorphisms (∗) for the case when R
is a special biserial string category (Corollary 2.6).

Section 3 is devoted to properties of series of natural important examples
of almost Galois G-coverings F : R → R′ of integral type, with G being an
infinite cyclic group, introduced in [8, 4.1]. It occurs that they fit into a more
general combinatorial scheme, which can be axiomatized (see 3.2). We show
that the pairs (Fλ, F•) of adjoint functors associated to F behave in this case
in a much more regular way with respect to the isomorphisms (∗) than in
the general situation of coverings of integral type (Theorem 3.8; announced
in [8, 4.3]). In particular, the set of testing elements h ∈ G≺e in the Ext-
vanishing condition is finite, very concrete and does not depend on N in
indR. (Note that in the general situation this set is always finite, but strongly
depends on the support of N .) Theorem 3.8 is a specialization of the main
result of this part, Theorem 3.2, which says that in the abstract situation
described by the system of combinatorial axioms, the push-down and pull-up
functors (Fλ, F•) associated to the almost Galois covering F , with an infinite
cyclic group G, have just the nice properties mentioned above. The proof of
this result requires a deep and detailed analysis of the shape of R-modules
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F•Fλ(N), which refers to the construction of the functors Φr and Φn (3.2
and 3.4, respectively), and their nontrivial properties (Proposition 3.4 and
Corollary 3.6).

1. Preliminaries and notation. In the paper we use standard defini-
tions and notation, e.g. we denote by N (resp., by Z) the set of all natural
numbers with 0 (resp., the set of all integers). For a positive n ∈ N, we set
[n] := {1, . . . , n} and Sub(n) := {e = (e1, . . . , ep) ∈ Np : 1 ≤ e1 < · · · <
ep ≤ n, p ≥ 1}.

Below, we briefly recall the most important notions and facts used in
the next sections. For basic information concerning representation theory of
algebras we refer to [1].

1.1. Let k be an algebraically closed field. Following [3] a k-category
R (each set R(x, y) of morphisms from x to y in R, x, y ∈ obR, is a k-
linear space and composition of morphisms in R is k-bilinear) is called locally
bounded if all objects of R have local endomorphism rings, different objects
are nonisomorphic, and the sums

∑
y∈R dimk R(x, y) and

∑
y∈R dimk R(y, x)

are finite for each x ∈ obR. The Jacobson radical of R is always denoted by
J(R). Recall that R is square-free if dimk(J/J

2)(x, y) ≤ 1 for all x, y ∈ obR,
where J = J(R). By dimR we denote the family (dimk J(x, y))x,y∈obR, and
if S is a subcategory of R, then Ŝ is the full subcategory of R formed by all
x ∈ obR such that R(x, y) 6= 0 or R(y, x) 6= 0, for some y ∈ obS. Note that
for locally bounded categories R and R′, any full, faithful and dense functor
F : R → R′ is always invertible. Consequently, R and R′ are equivalent if
and only if they are isomorphic.

For a locally bounded k-category R, by an R-module we mean a con-
travariant k-linear functor from R to the category of all k-vector spaces.
An R-module M is locally finite-dimensional (resp. finite-dimensional) if
dimkM(x) is finite for each x ∈ obR (resp. dimkM =

∑
x∈obR dimkM(x),

the dimension of M , is finite). We denote by MODR the category of all
R-modules, by ModR (resp. modR) the full subcategory of MODR formed
by all locally finite-dimensional (resp. finite-dimensional) R-modules and
by indR the full subcategory of modR formed by all indecomposable ob-
jects.

For any M from ModR, by the dimension vector of M we mean the
collection dimkM = (dimkM(x))x∈obR ∈ NobR and by the support of M
the set suppM = {x ∈ obR : M(x) 6= 0}. The category R is called locally
representation-finite (resp. locally support-finite) if for every x ∈ obR, there
exist only a finite number of pairwise nonisomorphic modules M in indR
with M(x) 6= 0 (resp. the union R(x) of all suppM , for M in indR with
M(x) 6= 0, is a finite set).
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Locally bounded categories are used in a natural way to study mod-
ules over algebras. With any finite locally bounded category R we can as-
sociate a finite-dimensional basic algebra A(R) =

⊕
x,y∈obRR(x, y), with

multiplication induced by composition in R. It is clear that we always have
an equivalence modA(R) ' modR of module categories, where modA de-
notes the category of all finite-dimensional A-modules for any algebra A.
Conversely, if A is finite-dimensional algebra, modA can be interpreted as
modR(A), where R(A) is a full subcategory of modA formed by a fixed
set of representatives of isomorphism classes of indecomposable projective
A-modules.

For locally bounded categories we have the notions of representation
types: finite, tame and wild; moreover, just as for algebras, the tame-wild
dichotomy holds true (see [5, 17, 16]).

A specially important role in representation theory of algebras is played
by algebras and categories of quivers with relations.

Let Q = (Q0, Q1) be a quiver, where Q0 is the set of vertices and Q1

the set of arrows, together with the functions s, t : Q1 → Q0 attaching
to each arrow its source and sink, respectively. Recall that by a walk of
length n ≥ 0 in Q starting at x and ending at y, for x, y ∈ Q0, we mean a
sequence w = β1 . . . βn consisting of arrows and their formal inverses such
that s(βi) = xi−1 and t(βi) = xi if βi ∈ Q1, and s(β−1

i ) = xi and t(β−1
i ) =

xi−1 if β−1
i ∈ Q1, for some x0, x1, . . . , xn ∈ Q0, x0 = x, xn = y. A trivial

walk from x to x is always denoted by εx. For a walk w as above we set
Q0(w) = {x0, . . . , xn} and Q1(w) := {β1, . . . , βn, β

−1
1 , . . . , β−1

n } ∩ Q1. It is
clear that Q(w) := (Q0(w), Q1(w)) is a subquiver of Q. We say that a walk
w = β1 . . . βn is reduced if βi+1 6= β−1

i for every i, and is an (oriented) path
if βi ∈ Q1 for every i. Note that if Q is a tree then for each reduced walk
w = β1 . . . βn the subquiver Q(w) is a line of type An+1. (A quiver L is called
a line if its diagram, i.e. the associated unoriented graph, is of the type Am
for m ∈ N, A∞ or ∞A∞). The set of all walks (resp. paths, arrows) from x
to y is denoted by W(x, y) =WQ(x, y) (resp. P(x, y) = PQ(x, y), Q1(x, y)).
For walks w ∈ β1 . . . βn ∈ W(x, y) and w′ = β′1 . . . β

′
m ∈ W(y, z), the walk

ww′ = β1 . . . βnβ
′
1 . . . β

′
m ∈ W(x, z) is called the composition of w and w′.

The path algebra of a finite quiver Q is the k-algebra

A(Q) =
(⊕
w∈P

kw, ·
)

with unit 1 =
∑

x∈Q0
εx, where P =

⋃
x,y∈Q0

P(x, y) and · is induced by
composition of paths. If I is an admissible ideal in A(Q), i.e. (Q, I) is a
finite bounded quiver, then we set A(Q, I) = A(Q)/I. The algebra A(Q, I)
is finite-dimensional and called the algebra of the bounded quiver (Q, I). It
is well known that modA(Q) ' repk(Q, I), where repk(Q, I) denotes the
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category of all finite-dimensional representations of the quiver Q over k,
satisfying the relations from I (see [1]).

Similarly, given a quiver Q we construct the path k-category R(Q) of Q.
We set obR(Q) = Q0 and R(Q)(x, y) =

⊕
w∈P(y,x) kw for x, y ∈ Q0. The

composition ◦ of morphisms in R(Q) is again defined as the k-bilinear map
given on the basis by composition of paths in Q. If I is an admissible ideal
in the category R(Q) (in the sense of [3]) then the factor category R(Q, I) =
R(Q)/I is locally bounded and called the category of the bounded quiver
(Q, I). It is easy to check that as above we have modR(Q) ' repk(Q, I). It
is easily seen that ifQ is finite then A(R(Q, I)) ∼= A(Q, I ′) andR(A(Q, I ′)) ∼=
R(Q, I), where I ′ =

⊕
x,y∈Q0

I(x, y).
We will often not distinguish between the category and the algebra of a

finite bounded quiver (Q, I).
Assume that (Q, I) is a bounded quiver such that Q is a tree. A reduced

walk w in Q is called a V -sequence if w does not contain any subwalk u
such that u or u−1 is a path α1 . . . αn ∈ I. Any V -sequence w defines an
indecomposable module N(w) over R = R(Q, I). The module N(w) as a
representation of Q has one-dimensional spaces k at all vertices “visited” by
w and zero spaces otherwise; the structure maps are given by identities for
arrows belonging to w and zero maps otherwise. Note that N(w) = N(w−1),
and N(w′) ∼= N(w) if and only if w′ = w or w′ = w−1.

1.2. Let R and R′ be a pair of locally bounded k-categories. Recall from
[3, 18] that a functor F : R → R′ is called a covering functor if F is dense
and for any x ∈ obR and a ∈ obR′, F induces k-isomorphisms

(∗)
⊕

y∈F−1(a)

R(x, y) ∼= R′(F (x), a) and
⊕

y∈F−1(a)

R(y, x) ∼= R′(a, F (x)).

Given a covering functor F : R → R′ one can study interrelations be-
tween the module categories MODR and MODR′ by using the pair of func-
tors

MODR
Fλ−→←−
F•

MODR′

where F• : MODR′ → MODR is the pull-up functor associated with the
functor F , assigning to eachX in MODR′ the R-moduleX◦F , and the push-
down functor Fλ : MODR → MODR′ is the left adjoint to F• (see [21]).
The R-module Fλ(N), for N in MODR, is defined as follows: Fλ(N)(a) =⊕

x∈F−1(a)N(x) for a ∈ obR′, and Fλ(N)(α) = [N( ·xαy)] :
⊕

x∈F−1(a)N(x)

→
⊕

y∈F−1(b)N(y) for α ∈ R′(b, a), where
∑

y∈F−1(b) F ( ·xαy) = α for x ∈
F−1(a). We also have the right adjoint Fρ : MODR → MODR′ to F•,
where the R-module Fρ(N) is given by Fρ(N)(b) =

∏
y∈F−1(b)N(y) for
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b ∈ obR′, and Fρ(N)(α) = [N(xα
·
y)] :

∏
x∈F−1(a)N(x)→

∏
y∈F−1(b)N(y)

for α ∈ R′(b, a), where
∑

x∈F−1(a) F (xα
·
y) = α for any y ∈ F−1(b).

Clearly, F•(modR′) ⊂ ModR and Fλ(modR), Fρ(modR) ⊂ modR′.
Let G ⊆ Autk-cat(R) be a subgroup of the group Autk-cat(R) of all k-

automorphisms of a locally bounded k-category R. Then G also acts on the
category MODR by translations g(−), which assign to each M in MODR
the R-module gM = M ◦ g−1. Given M in MODR, we set GM = {g ∈ G :
gM ' M}. We say that G acts freely on indR if GM = {idR} for every
indecomposable M from modR.

Assume now that G acts freely on objects of R (i.e. Gx = {idR} for every
x ∈ obR). Then the covering functor F : R → R′ is called a G-covering if
the set F−1(a) is G-invariant and the action of G on F−1(a) is transitive,
for every a ∈ obR′. Note that in this situation we can identify obR′ with
a fixed set (obR)0 of representatives of G-orbits from (obR)/G. Moreover,
the isomorphisms (∗) then have the form

⊕
g∈GR(x̄, gȳ) ∼= R′(x̄, ȳ) and⊕

g∈GR(gȳ, x̄) ∼= R′(ȳ, x̄), respectively, where x̄, ȳ ∈ (obR)0. For any g ∈ G,
we denote by R′(x̄, ȳ)g the image of R(x̄, g−1ȳ) via the first of them.

Recall that for G as above there exists one distinguished G-covering func-
tor. Namely, we can always form the quotient (orbit category) R̄ = R/G,
which is again locally bounded (we set ob R̄ = (obR)/G, and the morphism
spaces are defined in terms of G-orbits of morphisms in R; see [3, 18] for the
precise definition). Then the natural projection yields a G-covering functor
F̄ : R→ R̄ such that F̄ g = F̄ for all g ∈ G, called a Galois covering.

Galois covering functors have nice properties and are well understood (see
[3, 18]). In particular, the restrictions of the functors F̄λ and F̄ρ to modR
are naturally isomorphic; for any N in MODR we have the natural isomor-
phisms F̄λ(N) ∼= F̄λ(gN) and F̄•F̄λN ∼=

⊕
g∈G

gN ; for any indecomposable
N,N ′ in modR, F̄λ(N) ∼= F̄λ(N ′) yields an isomorphism N ′ ∼= gN for some
g ∈ G. Moreover, if G acts freely on indecomposables, i.e. GM = {idR} for
all indecomposable objects M in modR (always in case G is torsion free),
then F̄λ preserves indecomposability. There exist many results concerning
nice behavior of Galois coverings with respect to preserving representation
types in specific situations (see [18, 14, 11, 15], also [6, 7]).

1.3. The most significant example of a Galois covering functor is related
to the combinatorial construction of the universal covering (Q̃, Ĩ) and the
fundamental group Π1(Q, I) of a quiver with relations (Q, I) given in [22].
This construction is based on the notion of a minimal relation.

Let (Q, I) be a bounded quiver, where Q = (Q0, Q1) is a connected quiver
and I an admissible ideal in the path k-category R(Q) of Q. Recall that an
element ρ =

∑m
j=1 t

(j)δ(j) ∈ I(b, a), where a, b ∈ Q0, m ≥ 2 and t(j) ∈ k, is
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called a minimal linear relation if
∑

j∈Ω t
(j)δ(j) /∈ I(b, a) for any nonempty

Ω ( {1, . . . ,mi}. Notice that the ideal I always has a set of generators
consisting of zero relations and minimal relations.

Following the idea from [3] one can define Π1(Q, I) = Π1((Q, I), a0)
and Q̃ = Q̃(a0), for a fixed a0 ∈ Q0, as follows (see also [8] for details).
Set W =

⋃
a,b∈Q0

W(a, b), P =
⋃
a,b∈Q0

P(a, b) and consider the equivalence
relation ∼⊆ W ×W generated by the relations of the following two types:

(i) uαα−1v ∼ uv and (ii) uδv ∼ uδ′v,

where u, v ∈ W, α ∈ Q1 or α−1 ∈ Q1, and δ, δ′ ∈ P are such that δ = δj1
and δ′ = δj2 , with 1 ≤ j1, j2 ≤ m, j1 6= j2, for some minimal linear relation
ρ ∈ I(b, a) as above. The relation ∼ depends only on the set of all minimal
linear relations in I and it is a congruence with respect to composition of
walks. Then the set Π1(Q, I) := W(a0, a0)/∼ carries the structure of a
group. We define a quiver Q̃ similarly, setting

Q̃0 :=
( ⋃
a∈Q0

WQ(a0, a)
)
/∼

and
Q̃1([va], [vb]) := {([va], α) : α ∈ Q1(a, b), vaα ∼ vb}

for any [va] ∈ WQ(a0, a)/∼, [vb] ∈ WQ(a0, b)/∼, where [v] := [v]∼ for
v ∈ W. (Then PQ̃([va], [vb]) = {([va], δ) : δ ∈ PQ(a, b), vaδ ∼ vb}.) No-
tice that Q̃1([va], [vb]) and PQ̃([va], [vb]) can be alternatively written in the
form Q̃1([va], [vb]) = {(α, [vb]) : α ∈ Q1(a, b), vaα ∼ vb}) and PQ̃([va], [vb]) =

{(δ, [vb]) : δ ∈ PQ(a, b), vaδ ∼ vb}. The pairs ([va], δ) and (δ, [vb]) represent
the same path δ̃ in Q̃, which depending on the presentation is called a lifting
of δ to Q̃ starting at [va], respectively, ending at [vb].

It is clear that Π1(Q, I) acts on Q̃ by quiver automorphisms defined by
composition of appropriate walks, and that the mapping [va]∼ 7→ a, va ∈
WQ(a0, a), yields a quiver morphism p : Q̃ → Q. The map p is a Galois
covering of quivers with group Π1(Q, I). In fact p : (Q̃, Ĩ) → (Q, I) is a
morphism of bounded quivers, where Ĩ by definition is the ideal generated
by liftings of all minimal and zero relations in I to Q̃. Moreover, the functor
F̄ : R(Q̃, Ĩ)→ R(Q, I) induced by p is a Galois covering functor with group
Π1(Q, I).

We finish this section with some practical remark, which is useful when
one wants to compute the universal covering (Q̃, Ĩ) for a concrete finite
bounded quiver (Q, I). The admissible ideal I in R(Q) is usually given in
the form I = 〈ρl : l ∈ Λ〉, where all ρl are elements of the spaces I(b, a),
a, b ∈ Q0, and Λ is a finite set, in case Q is finite. Without loss of generality
one can always assume that each ρl is either zero or a minimal linear relation.
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Then it is easily seen that the equivalence relation ∼ is generated by all
relations of type (i) and only those of type (ii) for which δ and δ′ appear in
some minimal linear relation ρl, l ∈ Λ.

1.4. Recently in [8], a certain class of G-coverings was introduced and
investigated, more general than the Galois coverings. They are called almost
Galois coverings and seem to be important in the context of a better under-
standing of the behavior of nonstandard algebras. Below we present a little
different definition of them, which is equivalent to but more handy than the
original one (cf. [8, Definition 2.2.1], [9, 3.1]).

Let G ⊆ Autk-cat(R) be a group of k-automorphisms acting freely on
obR, and (obR)0 a fixed set of representatives of G-orbits in obR. If p :
G → L is a surjective group homomorphism then the set (obR)0 yields a
G-invariant L-grading | − | on the morphisms of R: for σ ∈ R(g1x̄, g2ȳ) with
x̄, ȳ ∈ (obR)0 we set |σ| := p(g−1

2 g1). Clearly, |τσ| = |τ | · |σ| and |g(σ)| = |σ|
for all σ ∈ R(x, y), τ ∈ R(y, z) and g ∈ G. Notice that we always have a
G-grading of R̄ defined by the decompositions R̄(x̄, ȳ) =

⊕
g∈G R̄(x̄, ȳ)g, for

x̄, ȳ ∈ (obR)0; moreover, this grading is compatible via F̄ and p with |(−)|.
Note that if L = (L,≤) is an ordered group (so torsion-free) then the

homomorphism p induces on G the canonical structure of an ordered group
(G,�), where g1 ≺ g2 if and only if p(g1) < p(g2), for g1, g2 ∈ G. We usually
assume that L = (L,≤) is a totally ordered abelian (torsion-free) group and
then we say that G = (G,�) is L-totally ordered. In case L = (Z,≤), ≤ is the
standard order in Z. Notice that each group G is always {0}-totally ordered,
and if G is a free (resp. an abelian free) group then it is Z-totally ordered in
a canonical way since G admits a standard homomorphism p : G→ Z (free
generators are mapped to 1).

Let F : R → R′ be a G-covering functor. For any x ∈ obR, b ∈ obR′

and g ∈ G, we denote by bφ
(x,g) the k-isomorphism

bφ
(x,g) := (bf

x)−1◦ bfgx :
⊕

y∈F−1(b)

R(gx, y)→
⊕

y′∈F−1(b)

R(x, y′).

F is said to be an almost Galois covering of type L (with group G) if G
admits a surjective homomorphism p : G→ L, where L is a totally ordered
group as above, such that for any σ ∈ R(gx, y) the homogeneous coordinate
presentation

(∗) bφ
(x,g)(σ) (= (bf

x)−1(F (σ))) =
∑
y′

τy′

has the following shape: τg−1y = g−1(σ) and |τy′ | > |σ| if τy′ 6= 0 for all
y′ ∈ F−1(b) \ {g−1y}, where τy′ ∈ R(x, y′) (in particular, τhg−1y = 0 for each
nontrivial h ∈ ker p). In the above we identify an element in R(x, z) with its
image under the canonical inclusion in

⊕
z∈F−1(b)R(x, z).
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Note that we can briefly rephrase the condition above in the form

(∗∗) bφ
(x,g)(σ) = g−1(σ) +

∑
l>|σ|

τl

where τl =
∑
|τy′ |=l

τy′ for l ∈ L. It is easily seen that this can be required
only for x = x̄ ∈ (obR)0. One can show that the definition does not depend
on the choice of the set (obR)0.

In case L = Z (resp. L = {0}, L is abelian), F is called an almost Galois
G-covering functor of integral (resp. trivial, abelian) type. It is easily seen
that the class of almost Galois G-coverings of trivial type coincides exactly
with the class of Galois covering functors with the group G.

Recall that due to [8, Theorem 3.1.1(b)] and [10, Corollary 3.4], the push-
down functors for almost Galois coverings of integral type behave similarly
to those for Galois coverings. Namely, if F : R → R′ is an almost Galois
G-covering functor of abelian type then (i) F•Fλ(N) ∼=

⊕
g∈G

gN for any
indecomposable N in modR satisfying Ext1

R(N, hN) = 0 for all h ∈ G≺ e,
where ≺ is defined as above. If F is of integral type then for such N also
(ii) Fλ(gN) ∼= Fλ(N) for every g ∈ G. Notice that in contrast to the Galois
covering case these isomorphisms are not necessarily natural. Observe also
that the Ext-vanishing condition holds automatically for N if supp hN ∩
̂suppN = ∅ for all h 6= e. In particular, if R is locally support-finite it holds
for all N in indR, provided the group G is small enough in the sense that
for every x ∈ obR, hR(x) ∩ R̂(x) = ∅ for all h 6= e.

In this paper we will make a deeper analysis of the isomorphism (i) in a
more specific situation (see 3.2).

Finally recall that a nice behavior and properties of the class of almost
Galois coverings of integral type are partially connected with the notion of
degeneration of functors introduced in [10, Definition 2.4]. More precisely,
they follow from [10, Theorem 2.6], which says that any such covering func-
tor admits a degeneration of the best possible kind to the canonical Galois
covering functor F̄ : R→ R̄ = R/G associated with an action of G on R.

2. The representation-finite case

2.1. The main aim of this section is to prove the following result.

Theorem (A). Let G be a group, Q a connected quiver equipped with
the action · : G×Q→ Q of G, which is free on Q0, I C R(Q) an admissible
G-invariant ideal and F : R → R′ a G-covering functor with respect to the
induced action of G on R, where R := R(Q, I). Assume that the following
properties are satisfied:

• R′ is square-free,
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• I is homogeneous with respect to the path length Z-grading on R(Q),
• Π(Q, I) ∼= {1}.

Then there exists an action ? : G × R → R which coincides with · on
obR (= Q0) and has the following properties:

(a) F is an almost Galois G-covering of integral or trivial type with re-
spect to ?.

(b) g?N ∼= gN for any N in modR and g ∈ G, where g?N := N◦ g−1? (−)
and gN := N ◦ g−1 · (−).

Consequently, for N in indR we have F•Fλ(N) ∼=
⊕

g∈G
gN and Fλ(gN) ∼=

Fλ(N) for all g ∈ G, provided N satisfies the condition Ext1
R(N, hN) = 0 for

all h ∈ G≺ e, where ≺ is defined as in 1.4.

The proof of Theorem (A) needs some preparations and will be given
in 2.6. It intensively uses the notion of an abstract grading which we in-
troduce in the next subsection. However, first we discuss certain important
consequences of our result for the case of representation-finite algebras.

Let A be a representation-finite locally bounded k-category. We denote
by (indA)0 the full subcategory of indA formed by a fixed selection of rep-
resentatives of isoclasses containing all projectives of the form Px := A(−, x)
for x ∈ obA, by Π(ΓA) the fundamental group of ΓA and by k(Γ̃A) the mesh
category of the universal covering Γ̃A of ΓA, where ΓA is regarded as a trans-
lation quiver. It is well known that there exists a classical Π(ΓA)-covering
functor FA : k(Γ̃A) → (indA)0 (see [3] for the definitions and the construc-
tion of FA). Then the universal cover Ã of A is the full subcategory of k(Γ̃A)
formed by the union of the sets F−1

A (Px) for x ∈ obA (see [18]).

Theorem (B). Let A be a category as above. Assume that A is finite.

(a) FA : k(Γ̃A) → (indA)0 is an almost Galois Π(ΓA)-covering of inte-
gral or trivial type with respect to some action ? of Π(ΓA) on k(Γ̃A),
which coincides on objects with the canonical action ◦ : Π(ΓA) ×
Γ̃A → Γ̃A given by composition of paths.

(b) A admits an almost Galois G-covering F : R → A of integral or
trivial type, where G is a free group and R is a simply connected
representation-finite locally bounded k-category equipped with an ac-
tion of G which is free on obR. More precisely, for R we can take the
common universal cover Ã of A and of the standard form Ā of A, for
G the fundamental group Π(ΓA), and then the functor F : Ã → A
admits a degeneration in the sense of [10] to the canonical Galois
covering functor F̄ : Ã → Ā := Ã/Π(ΓA) given by the projection
with respect to restriction of the action ◦.

The proof of Theorem (B) will be given in 2.7.
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2.2. Let S be a set and L a group. A function d : S2 → L is called an
L-grading (on S) if

(•) d(y, z)d(x, y) = d(x, z) for all x, y, z ∈ S.
Assume that · : G× S → S is an action of a group G on S. We say that

d : S2 → L is a G-invariant L-grading (on S) if d is an L-grading such that

(••) d(gx, gy) = d(x, y) for all x, y ∈ S and g ∈ G.
Clearly, L-gradings on S are a special case of G-invariant L-gradings, for

G being the trivial group.
Below we formulate straightforward properties of the notions introduced.

Lemma. Let d be a G-invariant L-grading on S, where G, S, L are as
above.

(a) d(x, x) = eL for any x ∈ S.
(b) For any x ∈ S, the map px = p

(d)
x : G → L given by px(g) :=

d(x, g−1x) for g ∈ G is a group homomorphism. Moreover, for any
x, y ∈ S we have py = d(x, y) px(−) d(x, y)−1; in particular, px = py
if L is abelian.

(c) d(g1x, g2y) = d(x, y) px(g−1
2 g1) = py(g

−1
2 g1) d(x, y) and d(g1x, g2y) =

d(z, y) pz(g
−1
2 g1) d(z, x)−1 for all x, y, z ∈ S and g1, g2 ∈ G.

Remark. (i) If px0 is not surjective for some x0 ∈ S (equivalently, px
is not surjective for every x ∈ S) then d(S2) is not necessarily contained in
L0 := px0(G) (clearly d(S2) = L0 in the opposite situation).

(ii) If G ⊆ Autk-cat(R) is a subgroup of the group Autk-cat(R) then any
G-invariant L-grading d : (obR)2 → L of the set obR yields a G-invariant
homogeneous L-grading of R: R(x, y) =

⊕
l∈LRl(x, y) for x, y ∈ obR, where

Rl(x, y) = R(x, y) if l = d(x, y), and Rl(x, y) = 0 otherwise. (Clearly, not
conversely, since by definition a homogeneous L-grading of R is a function
d : {(x, y) ∈ (obR)2 : R(x, y) 6= 0} → L satisfying the equality in (•) only
for the triples (x, y, z) such that R(y, z) ·R(x, y) 6= 0).

Example. (a) Let ∆ = (∆0, ∆1) be a quiver. Then for any walk (i.e.
unoriented path) w = αε11 . . . αεnn , where α1, . . . , αn ∈ ∆1 and ε1, . . . , εn ∈
{±1}, we denote by `(w) its “oriented length”

`(w) := ε1 + · · ·+ εn.

Clearly, if w′ is a walk such that s(w′) = t(w) then `(ww′) = `(w) + `(w′).
Assume now that∆ is a connected and simply-connected quiver equipped

with the action of the group G which is free on ∆0. Then the map

d : (∆0)2 → Z
defined by setting

d(x, y) = `(w)
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where w is the unique walk with the starting point s(w) = y and the ending
point t(w) = x, is a G-invariant L-grading on ∆0, with L := Z.

(b) If ∆ = Q̃ and G = Π(Q), where Q̃ is the universal cover of the
quiver Q, and Π(Q) the fundamental group of Q, then G acts in a standard
way on ∆. Denote by Q(0) the Kronecker quiver and by Q(m), for m ≥ 1,
the oriented cycle with m vertices. Then for Q = Q(m) with m ∈ N and the
G-invariant grading d defined as above we have

Im p(d)
x = mZ for every x ∈ ∆0,

and clearly d((∆0)2) * L0.

From now on we assume that the action · is free. Let S̄ be a fixed set of
representatives of G-orbits in S. For any x ∈ S we denote by x̄ the unique
element in S̄ such that x ∈ Gx̄.

Corollary. Let G, S, L and S̄ be as above. Then for a fixed x̄0 ∈ S̄,
the mapping d 7→ d| := (px̄0 , {d(x̄0, x̄)}x̄∈S̄\{x̄0}) yields a bijection between the
set of all G-invariant L-gradings on S and the set Hom(G,L)× LS̄\{x̄0}.

Proof. By (b) of the Lemma, the map is well defined. Given a collection
∂ = (p, {∂x̄}) ∈ Hom(G,L) × LS̄\{x̄0}, it is easy to show that ∂̃ : S2 → L
defined by setting

∂̃(x, y) := ∂ȳ p(g
−1
2 g1) ∂−1

x̄

for (x, y) ∈ S2, where x = g1x̄, y = g2ȳ and ∂x̄0 = e, is a G-invariant
L-grading of S. The mapping ∂ 7→ ∂̃ defines an inverse to d 7→ d|.

2.3. Now we consider the case L = G. (We then use the abbreviated
name G-grading of S.) We say that a G-grading d : S2 → G is trivial if there
exists a collection Ḡ = {gx̄}x̄∈S̄ ⊂ G such that

(∗) d(x, y) = gȳg
−1
2 g1g

−1
x̄

for all (x, y) ∈ S2, where x = g1x̄, y = g2ȳ.

Lemma.

(a) For a subset Ḡ = {gx̄}x̄∈S̄ ⊂ G, the function d = d(Ḡ) : S2 → G

defined above is a G-grading of S such that px := p
(d)
x ∈ Aut0(G) for

every x ∈ S, where Aut0(G) denotes the group of all inner automor-
phisms of G, and pgx̄x̄ = idG for every x̄ ∈ S̄ (in particular, px = idG
for every x ∈ S if G is abelian). Moreover, if Ḡ′ = {g′x̄}x̄∈S̄ ⊂ G

is another collection then d(Ḡ) = d(Ḡ′) if and only if there exists
h ∈ Z(G) such that gx̄ = hg′x̄ for all x̄ ∈ S̄.

(b) The definition does not depend on the choice of S̄, and the G-grading
d : S2 → G is trivial if and only if there exists a subset S̄′ = {x̄′}x∈S
of representatives of G-orbits in S such that d(x, y) = g−1

2 g1 for all
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(x, y) ∈ S2, where g1, g2 ∈ G satisfy x = g1x̄
′, y = g2ȳ

′ (then clearly
px̄′ = idG for every x̄′ ∈ S̄′).

(c) For a fixed x̄0 ∈ S̄ the mapping d 7→ d| as in Corollary 2.2 yields a
bijection between the set of all trivial G-gradings on S and the subset
Aut0(G)×GS̄\{x̄0} ⊆ Hom(G,G)×GS̄\{x̄0}.

Proof. An easy check on definitions.

Remark. (i) If d : S2 → G is a G-grading and π : G → L is a group
homomorphism then d′ := πd : S2 → L is a G-invariant L-grading of S. In
case d is a trivial grading, d′ can be regarded as an L0-grading for L0 :=

p′x̄0
(G) (= π(G)), where x0 ∈ S is arbitrarily fixed and p′x := p

(d′)
x ; moreover,

p′x = π for every x ∈ S̄′, where S̄′ = {gx̄x̄ : x̄ ∈ S̄} (cf. (b)).
(ii) The grading | − | of morphisms in the definition of an almost Galois

covering is in fact given by the composition d′ := pd̄ of a homomorphism
p : G → L and the trivial grading d̄ = d(Ḡ) : (obR)2 → G defined by the
collection Ḡ whose members are all equal to the unit e ∈ G, for a fixed
set (obR)0 (cf. Remark 2.2(ii)). More precisely, for σ ∈ R(x, y) we have
|σ| = d′(x, y) (= p(g−1

2 g1)), where x = g1x̄ and y = g2ȳ with x̄, ȳ ∈ (obR)0.

The following result will play an important role in further considerations.

Proposition. Let L = (L,<) be an ordered group, d : S2 → L a G-
invariant L-grading of S, d̄ : S2 → G a trivial G-grading of S and d′ :=

pd̄ : S2 → L0 the induced G-invariant L0-grading, where p := p
(d)
x0 for a

fixed x0 ∈ S and L0 := p(G) (= p
(d′)
x (G) for all x ∈ S). Then for any

x = g1x̄, x
′ = g′1x̄ ∈ Gx̄ and y = g2ȳ, y

′ = g′2ȳ ∈ Gȳ the following conditions
are equivalent:

• d(x, y) < d(x′, y′),
• d′(x, y) < d′(x′, y′),
• p(g−1

2 g1) < p(g′−1
2 g′1).

Proof. The assertion follows immediately from the formulas

d(x, y) = d(x0, ȳ) p(g−1
2 g1) d(x0, x̄)−1,

d′(x, y) = p(gȳ) p(g
−1
2 g1) p(g−1

x̄ ),

and the analogous one for the pair x′, y′ (see Lemma 2.2(c), (∗) and the
definition of d′).

2.3. Now we briefly discuss a functorial description of k∗-gradings, which
we use in the proof of Theorem 2.1(A).

Lemma. Let R be a locally bounded k-category.

(a) The mapping α 7→ u(x, y) · α, for α ∈ R(x, y) and x, y ∈ obR, given
by a collection u′ = (u(x, y)) of nonzero scalars indexed by the set
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{(x, y) ∈ (obR)2 : R(x, y) 6= 0} defines an automorphism of R if and
only if u(y, z)u(x, y) = u(x, z) whenever R(y, z) · R(x, y) 6= 0. In
particular, each k∗-grading u : (obR)2 → k∗ yields an automorphism
ϕu : R→ R, given by the formula above.

(b) If ϕ = ϕu : R → R is the automorphism given by a k∗-grading
u : (obR)2 → k∗ then the autoequivalence ϕ(−) : MODR→ MODR,
attaching to an R-module N the module ϕN := N◦ϕ−1, is isomorphic
to the functor IdMODR.

Proof. (a) An easy check on definitions.
(b) Fix x ∈ obR. For N in MODR we define a map ξN : ϕN → N by

setting
ξN (y) := u(x, y)−1 idN(y)

for y ∈ obR. Note that ξN is an R-homomorphism, since for any α ∈ R(y, z)
we have

ξN (y) ◦ ϕN(α) = (u(x, y)−1 idN(y)) ◦ (u(y, z)−1N(α))

= (u(x, y)−1 u(y, z)−1)N(α)

= u(x, z)−1N(α) = N(α) ◦ (u(x, z)−1 idN(z))

= N(α) ◦ ξN (z).

It is clear that the homomorphisms ξN , for N in MODR, yield a natural
family of isomorphisms, and hence the required isomorphism of functors.

2.5. In the proof of Theorem 2.1(A) we will also use the notion of min-
imal (linear) relations of some special kind (cf. 1.3).

Let (Q, I) be a bounded quiver, where Q = (Q0, Q1) is a quiver and I
an admissible ideal in the path k-category R(Q) of Q. A nonzero element
ρ =

∑m
j=1 t

(j)δ(j) ∈ I(x, y), where x, y ∈ Q0, m ≥ 2 and t(j) ∈ k∗, is called
a strictly minimal (linear) relation in I if

∑
j∈Ω s

(j)δ(j) /∈ I(x, y) for any
nonempty Ω ( {1, . . . ,m} and (s(j)) ∈ (k∗)Ω (in particular, δ(j) /∈ I(x, y)
for every j ∈ [m]). Clearly, a strictly minimal relation is minimal.

Remark. If ρ =
∑m

j=1 t
(j)δ(j) ∈ I(x, y) is a strictly minimal linear re-

lation and ρ′ :=
∑m

j=1 s
(j)δ(j) belongs to I(x, y), where (0) 6= (s(j)) ∈ k[m],

then (s(j)) ∈ (k∗)[m] and ρ′ = c ·ρ for some c ∈ k∗, i.e. (t(j)) and (s(j)) define
the same point in Pm−1(k). Indeed, we can assume that s(m) 6= 0 and then
ρ′′ := ρ− (t(m)/s(m))ρ′ ∈ I(x, y) ∩ (

∑m−1
j=1 kδ(j)), so ρ′′ = 0.

Lemma.

(a) The ideal I is generated by all zero relations and strictly minimal
relations in I.
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(b) For any w,w′ ∈ W(y, x), we have w ∼ w′ if and only if there exist
w0 = w,w1, . . . , wr = w′ ∈ W(y, x) and strongly minimal relations
ρ1 =

∑m1
j=1 t

(j)
1 δ

(j)
1 ∈ I(z′1, z1), . . . , ρr =

∑mr
j=1 t

(j)
r δ

(j)
r ∈ I(z′r, zr),

with t(j)i ∈ k∗, such that wi = uiδ
(1)
i u′i and wi+1 = uiδ

(2)
i u′i for every

i ∈ [r], where ui ∈ W(y, zi), u′i ∈ W(z′i, x) are some walks.

Proof. We start by fixing some notation. For σ :=
∑

δ∈P(y,x) t
(δ)δ ∈

R(Q), where x, y ∈ Q0 and t(δ) ∈ k, we denote by Ω(σ) the path support
of σ, which is by definition the set {δ ∈ P(y, x) : t(δ) ∈ k∗}. We claim that
each minimal relation ρ :=

∑m
j=1 t

(j)δ(j) ∈ I(x, y) is a linear combination of
strongly minimal relations σ1, . . . , σp ∈ I(x, y) such that Ω(σ1), . . . , Ω(σp) ⊆
Ω(ρ) = {δ(1), . . . , δ(m)}. Notice that I is generated by all zero relations and
minimal relations in I, so by the observation after the definition of strongly
minimal relation, our claim immediately implies (a).

To prove the claim observe that for any ρ =
∑m

j=1 t
(j)δ(j) ∈ I(x, y) with

m ≥ 2 and t(j) ∈ k∗ such that δ(j) /∈ I(x, y) for every j, we have the following:
either ρ is a strongly minimal relation, or there exists a nonempty subset
Ω ( {1, . . . ,m} and a strongly minimal relation σ =

∑
j∈Ω s

(j)δ(j) ∈ I(x, y)

with Ω(σ) = {δ(j) : j ∈ Ω}. Moreover, in the latter case there exists c ∈ k∗
such that that Ω(ρ′) ( Ω(ρ) for ρ′ := ρ− cσ ∈ I(x, y). (Set c := t(j)/s(j) for
a fixed j ∈ Ω.) Note that |Ω(ρ′)| ≥ 2 by our assumption on ρ.

Now starting with the minimal relation ρ and applying inductively the
procedure above we immediately obtain a presentation of ρ as a linear com-
bination of strongly minimal relations, and thus assertion (a) is proved.

It is easily seen that to prove (b) it suffices to show that if ρ :=
∑m

j=1 t
(j)δ(j)

∈ I(x, y), with m ≥ 2 and t(j) ∈ k∗, is a minimal relation then for any pair
j, j′ ∈ [m] there exist δ0 = δ(j), δ1, . . . , δr′ = δ(j′) ∈ P(y, x) such that for
every i ∈ [r′] the paths δi−1, δi are distinct and belong to Ω(σl(i)) for some
l(i) ∈ [p], where σ1, . . . , σp are strongly minimal relations defined for ρ as
above.

It is clear that Ω(σ1) ∪ · · · ∪ Ω(σp) = Ω(ρ). Now, for any sequence i :
1 ≤ i1 < · · · < ip′ ≤ p, where p′ ≥ 1, we set Ω′(i) :=

⋃
i∈{i1,...,ip′}

Ω(σi) and
Ω′′(i) :=

⋃
i∈[p]\{i1,...,ip′}

Ω(σi). We will show that if Ω′(i)∩Ω′′(i) = ∅ then
p′ = p (i.e. {i1, . . . , ip′} = [p]); hence, Ω′(i) = Ω(ρ) and Ω′′(i) = ∅. Indeed,
we have ρ = ρ′+ρ′′ for ρ′ :=

∑
i∈{i1,...,ip′}

ciσi and ρ′′ :=
∑

i∈[p]\ {i1,...,ip′}
ciσi,

where ρ =
∑p

i=1 ciσi with ci ∈ k. As Ω(ρ′) ⊆ Ω′ := Ω′(i) and Ω(ρ′′) ⊆ Ω′′

:= Ω′′(i), we have ρ′ =
∑

j: δ(j)∈Ω′ t
(j)δ(j) ∈ I(x, y), ρ′′ =

∑
j:δ(j)∈Ω′′ t

(j)δ(j) ∈
I(x, y) by the disjointness of Ω′ and Ω′′. On the other hand Ω′ is
nonempty, so from minimality of ρ it follows that Ω′ = Ω(ρ), Ω′′ = ∅ and
p′ = p.
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As a consequence, for any i, i′ ∈ [p], i 6= i′, there exists a sequence i1 = i,
. . . , ir′′ = i′ ∈ [p], where r′′ ≥ 1, such that Ω(σi1) ∩ Ω(σi2), . . . , Ω(σir′′−1

) ∩
Ω(σir′′ ) 6= ∅. Hence, for any j, j

′ ∈ [m], j 6= j′, there exist δ0 = δ(j), δ1, . . . , δr′

= δ(j′) ∈ P(y, x), r′ ≥ 1, such that for every i ∈ [r′] the paths δi−1, δi
belong Ω(σl(i)) for some l(i) ∈ [p]. If now δi−1 = δi for some i, then we can
always remove one of these two paths from the sequence. Consequently, the
sequence of minimal length, among all sequences with fixed j, j′, also satisfies
the condition δi−1 6= δi, for every i ∈ [r′]. Thus the proof of the second claim
and of (b) is complete.

2.6. Proof of Theorem 2.1(A). We start by specifying a surjective ho-
momorphism p : G → L appearing in the definition of an almost Galois
covering. To do this we define a G-invariant Z-grading d : (obR)2 → Z as in
Example 2.2. For any x, y ∈ obR = Q0 we set

d(x, y) = `(w) := ε1 + · · ·+ εn

where w = αε11 . . . αεnn is a fixed walk in Q with starting point s(w) = y
and ending point t(w) = x. Note that W(y, x) 6= ∅ since Q is connected.
Moreover, the definition of d(x, y) does not depend on the choice of w. Indeed,
any w,w′ ∈ W(y, x) are equivalent in the sense of the homotopy relation
∼ = ∼I , since Π(Q, I) = {1} (see [22] for the precise definition). This
means that there exist w0 = w,w1, . . . , wr = w′ ∈ W(y, x) such that for
every i we have wi = uiδ

(1)
i u′i and wi+1 = uiδ

(2)
i u′i, where ui ∈ W(y, zi),

u′i ∈ W(z′i, x) are some walks and ρi =
∑mi

j=1 t
(j)
i δ

(j)
i ∈ I(z′i, zi), with mi ≥ 2

and t(j)i ∈ k∗, are minimal (linear) relations. But the ideal ICR(Q) is length
homogeneous, so minimal relations are linear combinations of oriented paths
of the same length and we have `(w) = `(w′).

It is clear that the function d defined above is a G-invariant Z-grading,
since `(w′w) = `(w′) + `(w) and `(g(w)) = `(w) for any w ∈ W(y, x),
w′ ∈ W(z, y) and g ∈ G.

Now fix x ∈ Q0 and denote by p : G → L the homomorphism p
(d)
x :

G → Z treated as a surjective homomorphism with codomain L := Im p
(d)
x ,

where p(d)
x is defined for d as in 2.2. Clearly, either L = 0 or L ∼= Z, and the

definition of p does not depend on the choice of x (see Lemma 2.2(c)).
Our next aim is to define a modified action ? of G on R. For this we need

more detailed information on the behavior of the functor F .
We may assume that R′ = R(Q′, I ′), where Q′ = QR′ and I ′ C R(Q′)

is an admissible ideal. Observe that R is square-free, since so is R′. Con-
sequently, F induces a quiver map f : Q → Q′, which is a covering of
quivers (see [3, 3.3]). Moreover, f is G-invariant, since F is a G-covering
functor.
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By the very definition of f , for any arrow α ∈ Q1(y, x) there exists a
scalar aα ∈ k∗ such that

(i) F (α) + (J ′)2 = aα f(α) + (J ′)2

where α denotes the morphism in J(x, y) ⊆ R(x, y) defined by the arrow α,
f(α) the morphism in J ′(Fy, Fx) ⊆ R′(Fy, Fx) defined by the arrow f(α) ∈
Q′1(f(y), f(x)), J = J(R) and J ′ = J(R′). (We use the convention that for
ρ ∈ R(Q)(x, y) we denote by ρ the coset ρ+ I ∈ R(Q, I)(x, y), and similarly
for R′ = R(Q′, I ′).)

For any g ∈ G and α ∈ Q1 we set cα(g) := ag(α) a
−1
α . Note that by (i) we

have

(ii) F (g(α)) + (J ′)2 = cα(g)F (α) + (J ′)2

since f(g(α)) = f(α).
For a fixed g ∈ G, the family {cα(g)}α∈Q1 yields an automorphism

θg : R(Q)→ R(Q)

of the path category R(Q), which is determined by the formulas θg(x) = gx
for x ∈ Q0 and θg(α) = cα(g) g(α) for α ∈ Q1. (For any oriented path
δ = α1 . . . αn inQ we set θg(δ) = cδ(g) g(δ), where cδ(g) := cα1(g) . . . cαn(g).)
We show that

(iii) θg2 ◦ θg1 = θg2g1

for g1, g2 ∈ G. Observe that for any arrow α ∈ Q1(y, x) we have

cα(g2g1) = cα(g1)cg1(α)(g2)

since

cα(g2g1)F (α) + (J ′)2 = F (g2g1(α)) + (J ′)2

= cg1(α)(g2)F (g1(α)) + (J ′)2 = cα(g1)cg1(α)(g2)F (α) + (J ′)2

and F (α)+(J ′)2 is a nonzero coset in J ′/(J ′)2(Fx, Fy) (see (ii) and (i)). Now,
by an easy check we obtain the required equalities θg2g1(α) = θg2(θg1(α)).

Next we show that each θg induces an automorphism

θ̄g : R→ R,

equivalently, the inclusion

(∗) θg(I) ⊆ I
holds. For this we need further properties of the covering functor F .

First observe that for any path δ = α1 . . . αn ∈ P(y, x) we have

(iv) F (δ) + (J ′)n+1 = aδ f(δ) + (J ′)n+1

where aδ := aα1 . . . aαn , f(δ) := f(α1) . . . f(αn) ∈ PQ′(f(y), f(x)) and f(δ)
is a morphism in (J ′)n(Fx, Fy) ⊆ R′(Fx, Fy) defined by f(δ). Formula (iv)
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follows easily by induction on n ≥ 1, upon applying (i) and the equality

F (δ)− aδ f(δ) = (F ((α1 . . . αn−1)αn)− aαnF (α1 . . . αn−1) f(αn))

+ (aαnF (α1 . . . αn−1) f(αn)− aαnaα1...αn−1 f(α1 . . . αn−1) f(αn)).

An immediate consequence of (iv) is the formula

F (δ) + (J ′)n+1 = cδ(g)F (g(δ)) + (J ′)n+1

for any g ∈ G. In particular,

F (δ)− cδ(g)F (g(δ))− ζ ∈ (J ′)n+2

where the element ζ is a linear combination of morphisms defined by paths
ω ∈ PQ′(f(y), f(x)) such that `Q′(ω) = n+ 1. Then lifting all paths ω along
f we obtain by (iv) the equality

F (δ) + (J ′)n+2 = cδ(g)F (g(δ)) +
∑

δ′∈P̃n+1

c′δ′F (g(δ′)) + (J ′)n+2

where c′δ′ ∈ k and P̃l, for a fixed l ∈ N, denotes the set of all δ′ ∈ P̃ =

P̃(Fy, x) :=
⋃
y′∈F−1(Fy) P(y′, x) such that `(δ′) = l. Proceeding in an anal-

ogous way, we can prove by induction on l > `(δ) = n that

F (δ) + (J ′)l+1 = cδ(g)F (g(δ)) +
∑
δ′∈P̃l

c′δ′F (g(δ′)) + (J ′)l+1

for some c′δ′ ∈ k. Consequently,

(v) F (δ) = cδ(g)F (g(δ)) +
∑

δ′∈P̃: `(δ′)>n

c′δ′F (g(δ′))

since R′ is locally bounded.
Now we prove (∗). Let ρ =

∑m
j=1 t

(j)δ(j) ∈ I(x, y) be a generator of I.
Since I is a homogeneous ideal, we can assume that ρ is a homogeneous
element, so all `(δ(j)) are equal to some n ≥ 2. Then by (v) we have

0 = F (ρ) =

m∑
j=1

t(j)F (δ(j))

=

m∑
j=1

t(j)cδ(j)(g)F (g(δ(j))) +
∑

δ′∈P̃: `(δ′)>n

c′′δ′F (g(δ′))

= F
( m∑
j=1

t(j)cδ(j)(g) g(δ(j))
)

+
∑

δ′∈P̃: `(δ′)>n

c′′δ′F (g(δ′))

for some c′′δ′ ∈ k. Note that
∑m

j=1 t
(j)cδ(j)(g) g(δ(j)) belongs to R(gx, gy) and

d(gx, gy) = d(x, y) = n, whereas the element
∑

δ′∈P̃: `(δ′)>n c
′′
δ′ g(δ′) belongs
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to the direct sum of all morphism spaces R(gx, gy′), where y′ ∈ Gy satisfies
d(gx, gy′) = d(x, y′) > n. Consequently,

∑m
j=1 t

(j)cδ(j)(g) g(δ(j)) = 0, by a
property of covering functors, and

∑m
j=1 t

(j)θg(δ
(j))=

∑m
j=1 t

(j)cδ(j)(g)g(δ(j))
∈ I(gx, gy).

As a result, each θg induces an automorphism θ̄g of R and by (iii), the
family {θ̄g}g∈G yields an action ? : G × R → R of the group G on the
category R. Now we can show that F is an almost Galois G-covering functor
of integral or trivial type with respect to this action (see (a)).

Observe that by the definition of ?, replacing in (v) g by g−1 and x by
gx, for any x ∈ obR, b ∈ obR′, g ∈ G and any path δ ∈ P(y, gx) with
y ∈ F−1(b) we get

(v′) F (δ) = F (g−1 ? δ) +
∑

δ′∈P̃: `(δ′)>`(δ)

c′δ′F (g(δ′))

for some c′δ′ ∈ k, where P̃ = P̃(b, gx), and consequently

(vi) bφ
(x,g)(δ) = g−1 ? δ +

∑
δ′∈P̃: `(δ′)>`(δ)

c′δ′ g(δ′).

On the other hand, by Proposition 2.3, we have the equivalence

(vii) | δ′| > | δ| ⇔ `(δ′) > `(δ)

where |−| is determined as in 1.4 by a fixed selection of (obR)0 and the
surjective homomorphism p defined in the first part of the proof (we apply
Proposition 2.3 for L = Z and L0 = Im p

(d)
x =: L, see also Remark 2.3(ii)

and the definition of d). Consider two cases:

• L = {0}. Then by (vii), for δ, there exists no δ′ ∈ P̃ such that `(δ′) >
`(δ). Consequently, bφ(x,g)(δ) = g−1 ? δ for all collections (x, b, g, δ), hence
F (σ) = F (g−1 ? σ) for every σ ∈ R(gx, y) and F is a Galois G-covering
functor with respect to the action ?.
• L 6= {0}. Then we can assume that L = Z as ordered groups and by

(vii), equality (vi) can be be written in the form

(vi′) bφ
(x,g)(δ) = g−1 ? δ +

∑
δ′∈P̃: | δ′|>| δ|

g(δ′).

Consequently, for any σ ∈ R(gx, y) the formula 1.4(∗∗) holds and F is an
almost GaloisG-covering functor of integral type with respect to the action ?.

To prove that (b) of Theorem 2.1(A) holds for ?, fix N in modR and
g ∈ G. Since g?N ∼= gN if and only if g−1

(g?N) ∼= N , and g−1
(g?N) = ϕN for

ϕ := g−1 · (−) ◦ g ? (−) : R→ R, it suffices to show that the automorphism
ϕ is defined by some k∗-grading u of obR (i.e. ϕ = ϕu, see Lemma 2.4).
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To see this, note first that ϕ is given by the mapping δ 7→ cδ(g)δ for
δ ∈ P(y, x), where x, y ∈ obR. Next for any w = β1 . . . βn ∈ W(y, x) with
β1, . . . , βn ∈ Q1 ∪Q−1

1 , we set

(viii) cw(g) := cβ1(g) . . . cβn(g)

where cβi(g) := cβi−1(g)−1 if βi−1 ∈ Q1. We show that cw(g) = cw′(g) for
any w,w′ ∈ W(y, x).

Notice that w ∼ w′, since Π(Q, I) = {1}. Consequently, by Lemma
2.5(b) and formula (viii) it suffices to show that cδ(1) = · · · = cδ(m) , where
ρ :=

∑m
j=1 t

(j)δ(j) ∈ I(x, y) is a strongly minimal (linear) relation. Indeed,

g−1θg(ρ) = g−1
( m∑
j=1

t(j)cδ(j)(g)g(δ(j))
)

=
m∑
j=1

t(j)cδ(j)(g)δ(j) ∈ I(x, y),

since I is invariant with respect to g−1 and θg. Hence, by Remark 2.5, the
coefficients cδ(j)(g) for j ∈ [m] are all equal, so cw(g) = cw′(g).

Now for any x, y ∈ obR, we set
u(x, y) := cw(g)

where w ∈ W(y, x) is a fixed unoriented path in Q (R is connected). It is
easily seen that this defines a k∗-grading u : (obR)2 → k∗ of obR; moreover,
ϕ = ϕu (see the definition of ϕ). As a result, by Lemma 2.5(b) we have
g−1

(g?N)) = ϕN ∼= N , and hence g?N ∼= gN .
Finally observe that once we have proved that (a) and (b) hold for ?, the

last assertion of Theorem 2.1(A) follows almost immediately. Indeed, by [8,
Theorem 3.1.1] and [10, Corollary 3.4], for anyN satisfying the Ext-vanishing
condition we have

F•Fλ(N) ∼=
⊕
g∈G

g?N and Fλ(g?N) ∼= Fλ(N) for all g ∈ G.

(F is an almost Galois G-covering of integral type with respect to ?; in case F
is a Galois covering, the formula holds for all N in modR.) Since g?N ∼= gN
from (b), we hence obtain

F•Fλ(N) ∼=
⊕
g∈G

gN and Fλ(gN) ∼= Fλ(N) for all g ∈ G,

and the proof is complete.

Remark. (a) The functor F : R→ R′ admits a degeneration in the sense
of [10] to the canonical Galois covering functor F̄ (?) : R→ R̄(?) := R/(G, ?),
defined by the action ? of G on R (see [10, Theorem 2.6]).

(b) If Q is a tree then there exists an automorphism ϕ : R→ R, identify-
ing theG-actions ? and · onR, i.e. satisfying the equality ϕ◦g? (−) = g·(−)◦ϕ
for every g ∈ G. We set ϕ(δ) = a−1

δ δ for δ ∈ P(y, x) with x, y ∈ Q0. This
yields a well defined functor, since Q is a tree, and the G-equivariance fol-
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lows from the equalities a−1
α = a−1

g(α)cα(g) for α ∈ Q1 and g ∈ G. Con-
sequently, we can identify F̄ (?) with the canonical Galois covering functor
F̄ : R→ R̄ := R/(G, ·), defined by the original action · : G×R→ R. More
precisely, ϕ induces an isomorphism ϕ̄ : R̄(?) → R̄ such that F̄ ◦ϕ = ϕ̄◦ F̄ (?);
hence, F̄ and F̄ (?) are isomorphic in the sense of [10, 2.4]. In this way the
functor F also admits a degeneration to F̄ .

We end this subsection with an interesting corollary fromTheorem 2.1(A),
concerning algebras which admit a cover that is a string special biserial
category (see e.g. [25] for the definition). Recall that if R is a string tree
category then any indecomposable R-module is a string module, i.e. it is
isomorphic to N(w) for some V -sequence w (see 1.1).

Let Q be a tree and h : Q→ Q a nontrivial quiver automorphism acting
freely on Q0. We say that a line L in Q is h-orientable if L has a common
arrow with some line L′ such that hL′0 ∩ L′ 6= ∅, i.e. containing x and hx
for some x ∈ Q0. (L and L′ have a common arrow if and only if |L0 ∩ L′0|
≥ 2.) Notice that clearly there also exist examples of lines which are not
h-orientable. Observe that if L is h-orientable then one of the two total
orderings of “consecutive vertices” of L is distinguished, by the condition
that it coincides on L0 ∩ L′0 with that of the two orderings for L′ in which
x is smaller than hx, where x is as above. (Note that the choice of the
orderings does not depend on the choice of x and L′!) It is now clear that
for L as above we have the notions of predecessor y− and successor y+ for
y ∈ L0. Moreover, if L is finite and nontrivial then in the two-element set
B(L) consisting of the border points of L, the left border l(L) and the right
border r(L) are well defined.

For a reduced walk w we say that w is h-orientable if so is the line Q(w)
(see 1.1).

Corollary. Let G be a group, Q a connected tree equipped with an
action · : G × Q → Q of G, which is free on Q0, I C R(Q) an admis-
sible G-invariant ideal such that R(Q, I) is a special biserial category, and
F : R → R′ a G-covering functor with respect to the induced action of G
on R := R(Q, I), where R′ is square-free. Then F admits a degeneration
to the canonical Galois covering G-functor F̄ : R → R̄ := R/(G, ·) in the
sense of [10]. Moreover, for an indecomposable R-module N in modR we
have F•Fλ(N) ∼=

⊕
g∈G

gN and Fλ(gN) ∼= Fλ(N) for all g ∈ G, provided
the V -sequence w such that N ∼= N(w) satisfies the negations of both con-
ditions 1o

(h) and 2o
(h) in the Lemma below, for all h ∈ G≺e such that w is

h-orientable.

Proof. Note that all the assumptions of Theorem 2.1(A) are satisfied.
Thus, there exists an action ? : G × R → R which coincides with · on
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obR (= Q0) and has the properties as in the statement of the theorem. Now
our first assertion follows immediately from Remark 2.6.

Fix a module N in indR. By [25] there exists a unique, up to the inverse
operation, V -sequence w in R(Q, I) such that N ∼= N(w) (see 1.1). Note that
ifN is a simple module, i.e. w is a trivial walk, then the required isomorphism
always holds. Now if w is a nontrivial V -sequence as in the theorem then by
the lemma below, we have

(∗) HomR(hN, τN) = 0

for all h ∈ G≺e, where τ is the Auslander–Reiten translate in modR. By the
Auslander–Reiten formula [1, Theorem 2.13], (∗) immediately implies the
required equality Ext1

R(N, hN) = 0 for all h ∈ G≺ e. Hence, the proof of the
second assertion is finished (see 1.4).

Let Q and G be as above. Then for any x ∈ Q0 and h ∈ G\{e} we denote
by L(x, h) the full subquiver of Q formed by the set

⋃
m∈Z h

mQ[x, hx]0,
where Q[x, hx] is the unique (finite) line in Q connecting x and hx. Note
that L(x, h) itself is not necessarily a line.

Lemma. Let G, Q, I, R be as above and N = N(w) be an R-module,
where w is a nontrivial V -sequence in (Q, I). Let h ∈ G. If HomR(hN, τN)
6= 0 then either

1o
(h): Q(w)0 ∩ hQ(w)0 6= ∅ and then for x := l(Q(w) ∩ hQ(w)) and
L := L(x, h) the following conditions are satisfied:
• y := r(Q(w) ∩ hQ(w)) /∈ L0,
• L is a line having the shape

· · · · · · h−1x · · · · · · x− → x · · · · · · y → y+ · · · · · · ,
• if l(Q(w)) /∈ L0 then there exists β ∈ Q(w)1 such that s(β) =
h−1x and t(β) /∈ L0,
• if r(w) /∈ L0 then there exists γ ∈ Q(w)1 such that t(β) = y and
s(γ) /∈ L0;

or

2o
(h): Q(w)0 ∩ hQ(w)0 = ∅ and then there exists α ∈ Q1 with s(α) ∈

B(Q(w)) and t(α) /∈ Q(w)0 such that for x := t(α) and L :=
L(x, h) the following conditions are satisfied:
• L is a line having the shape

· · · · · · h−1x · · · · · · x− α→ x→ x+ · · · · · · ,
• h−1x ∈ Q(w)0,
• if B(w) * L0 then there exists β ∈ Q(w)1 such that s(β) = h−1x
and t(β) /∈ L0;

in particular, in each of the two cases, w is h-orientable.
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Proof. We apply the precise description of the V -sequence τw such that
τN(w) ∼= N(τw) [25, 13] and the criterion [12, 3.2] for deciding when for
two V -sequences w,w′ in R(Q, I) the space HomR(N(w), N(w′)) is nonzero.
The proof is not difficult, but very technical. It relies on a case-by-case
combinatorial analysis of the conditions from the criterion in the situation
w′ = τw; therefore, we leave it to the reader.

2.7. Theorem 2.1(B) follows almost immediately from Theorem 2.1(A),
once we know the two results presented below. The first of them is a straight-
forward property of almost Galois covering functors.

Lemma. Let F : R → R′ be an almost Galois G-covering functor of
type L. If R1 is a full connected G-invariant subcategory of R then so is the
restriction F1 : R1 → R′1 of F to R1, where R′1 is a full subcategory of R′
formed by F (obR1).

To formulate the second one, we recall [4] that a locally bounded k-
category R is schurian if dimk R(x, y) ≤ 1 for all x, y ∈ obR. A schurian
k-categoryR admits a multiplicative basis, if we can choose a basic vector yβx
in each non-zero morphism space R(x, y) in such a way that zβy · yβx = zβx
whenever R(y, z) · R(x, y) 6= 0. Any collection {yβx} as above is called a
multiplicative basis of R.

Proposition. Let R be a connected locally representation-finite locally
bounded k-category such that that Π(ΓR) = {1} (hence, R is schurian!).
Assume that � : G× R → R is an action of a group G that is free on obR.
If G is a free group then there exists a multiplicative basis of R which is
G-invariant with respect to �.

Proof. Repeat the arguments from [4, 3.2].
Proof of Theorem 2.1(B). (a) Since all the assumptions of Theorem

2.1(A) are satisfied, (a) automatically holds (see [3] for all the necessary
details).

(b) Let R := Ã, where Ã is the full subcategory of k(Γ̃A) formed by all
projective vertices (see 2.1). Then on identifying A with the full subcategory
of (indA)0 formed by all projective objects, the restriction of FA to R can be
regarded as a G-functor F : R→ A, where G := Π(ΓA) (see [3, 18] for all the
necessary details). Now by (a) and the lemma above, F is an almost Galois
G-covering functor F : R→ A of the respective type. Note that Π(ΓA) is a
free group [3, 4.2].

Let now F̄ : R→ Ā := R/(G, ·) and F̄ (?) : R→ Ā(?) := R/(G, ?) be the
canonical Galois covering functors defined by the restriction of the actions
◦ and ? of G to R. Then the functor F : R → A admits a degeneration
to F̄ (?) (see [10, Theorem 2.6]). On the other hand G is a free group so by
the Proposition there exist multiplicative bases B and B(?) of the schurian



ALMOST GALOIS COVERINGS 277

category R which are G-invariant with respect to ◦ and ?, respectively. The
obvious bijection between B and B(?) yields an automorphism ϕ : R → R
such that ϕ ◦ g ? (−) = g · (−) ◦ ϕ for every g ∈ G. Consequently, as in
Remark 2.6, the functors F̄ (?) and F̄ are isomorphic in the sense of [10, 2.4],
since ϕ induces an isomorphism ϕ̄ : R̄(?) → R̄ such that F̄ ◦ϕ = ϕ̄ ◦ F̄ (?). In
this way the functor F also admits a degeneration to F̄ .

3. An interesting class of coverings. In this section we discuss a
certain special class of almost Galois G-covering functors of integral type
between bounded quiver categories (with G being an infinite cyclic group),
containing the series of important natural examples presented in [8, Theorem
4.1.1]. Functors from this class behave more regularly than usual with respect
to nice properties of the associated push-down and pull-up functors (see 1.4).
We start by establishing some notation.

3.1. Let (Q, I) be a connected bounded quiver with fundamental group
G = Π(Q, I) and universal covering (Q̃, Ĩ), where Π(Q, I) = Π((Q, I), a0)
and Q̃ = Q̃(a0) for some fixed a0 ∈ Q0. Suppose that {wa}, a ∈ Q0, is a
fixed collection of paths such that wa ∈ W(a0, a). Then [wa], a ∈ Q0, forms
a set of representatives of fibers of the canonical Galois functor

F̄ : R̃→ R̄

and we have F̄−1(a) = G[wa] for any a ∈ Q0, where R̄ = R(Q, I) and
R̃ = R(Q̃, Ĩ). In particular, setting (ob R̃)0 := {[wa] : a ∈ Q0} we obtain
the trivial G-invariant G-grading d : (obR)2 → G on obR = Q̃0, given by
the formula d(y, x) := [wbv

−1
b vaw

−1
a ] for x = [va], y = [vb] ∈ Q̃0, where va ∈

W(a0, a) and vb ∈ W(a0, b) (cf. 2.3 and [8, 2.3]). Recall that the collection
above also yields the degree function

deg :W → G

given by the formula deg(v) := [wbvw
−1
a ] for v ∈ WQ(b, a) (see [8, Corollary

2.3.2]).
For any g = [u] ∈ G and a ∈ Q0 we set

ag = g[wa] = [uwa] ∈ Q0.

If δ ∈ P(b, a) is a path in Q then the lifting

δ̃ = ([uwb], δ) : [uwb]→ [uwbδ]

of δ to Q̃ is denoted by δ̃g. Note that

δ̃g ∈ P̃(bg, ag deg(δ)).

Assume now that G is an infinite cyclic group with a fixed generator
g = [u] for some u ∈ W(a0, a0). Then we have the identification Z = G given
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by i 7→ gi for i ∈ Z, and we write ai (resp. δ̃i) instead of agi (resp. δ̃gi);
moreover,

δ̃i ∈ P̃(s(δ)i, t(δ)i+deg(δ)).

Observe that if δ = δ(1) . . . δ(m) then

(∗) δ̃i = δ̃(1)
i δ̃(2)

i+i1 · · · δ̃(m)
i+i1+···+im−1

where il = deg δ(l) for l = 1, . . . ,m (see [8, Proposition 2.3.5]).
Note that clearly in this case G is Z-totally ordered in a natural way

and then for any v1, v2 ∈ W(b, a) we have v1 ≺′ v2 if and only if deg(v1) <
deg(v2), where by definition v1≺′ v2 if and only if 0 = [εa0 ]< [wav

−1
1 v2w

−1
a ]

in G = Z (see [8, Lemma 2.3.1]).
The following specialization of [8, Theorem 2.3.3] plays a crucial role in

our further considerations.

Theorem. Let (Q, I), a0, G, R, R̃ be as above and I ′ be an admis-
sible ideal in the path category R(Q) such that dimR′ = dim R̄, where
R′ = R(Q, I ′). Assume that F : R(Q̃) → R′ is a k-functor satisfying the
conditions:

(a) Fob : obR(Q̃)→ obR′ is given by p0 : Q̃0 → Q0,
(b) F (α̃) = (α +

∑
α≺′δ aδ,α̃δ) + I ′ for any lifting α̃ ∈ Q̃1 of α ∈ Q1,

where δ are oriented paths in Q (not belonging to I ′) and aδ,α̃ ∈ k,
(c) F (Ĩ) = 0.

Then the functor F ′ : R̃→ R′ induced by F is an almost Galois G-covering
functor of integral type.

(Notice that deg determines the grading |−|, which is a basic tool for ver-
ification that F ′ is an almost Galois G-covering functor; cf. 1.4(∗∗), Remark
2.3(ii) and [8, proof of Theorem 2.3.3].)

Finally recall that we also have at our disposal the natural filtration on
the category R′, which for any pair a, b ∈ Q0 is given by the formula

(∗∗) R′(a, b)(g) :=
∑

δ∈P(b,a): g≤deg δ

k(δ + I ′)

where g ∈ G (see [8, 2.3]).

3.2. Let F ′ : R̃ → R′ be an almost Galois covering as in Theorem 3.1,
where G is an infinite cyclic group (with a fixed generator) and L = Z.
Assume that F ′ satisfies the following condition:

(z): F (β̃i) = (β + bβ,iυβ) + I ′ for every (β, i) ∈ Q1 × Z, where υβ ∈
P(s(β), t(β)) depends only on β, and deg υβ > deg β if (bβ,i′)i′ 6= 0
in kZ.
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Observe now that if δ = β(1) . . . β(m), where all β(j) are arrows, then

(∗) F (δ̃i) =
(
δ +

∑
e∈Sub(m)

bδ,i,e δ(e)

)
+ I ′

for any i ∈ Z, where bδ,i,e ∈ k is a product b1 . . . bm with

bj =

{
1 if j 6= e1, . . . , ep,
bβ(j),i+i1+···+il−1

if j = el,

and the path δ(e) is a composition υ(1) . . . υ(m) with

υ(j) =

{
β(j) if j 6= e1, . . . , ep,

υβ(j) if j = el,

for any e ∈ Sub(m) := {e′ = (e′1, . . . , e
′
p) ∈ Np : 1 ≤ e′1 < · · · < e′p ≤ m,

p ≥ 1}. In particular, we have

(∗∗) deg δ(e) > deg δ

if bδ,i,e 6= 0 (see [8, Corollary 2.3.2]).

Definition. Let K = (ω;α(1), . . . , α(2s);κ(1), . . . , κ(2s)) be a collection
formed by an oriented cycle ω, arrows α(1), . . . , α(2s) and oriented paths
κ(1), . . . , κ(2s) in Q, where s ∈ N. Denote by Q0(ω) the set of all vertices of
Q visited by ω, and by Q1(ω) the set of all arrows of Q forming ω. Then K
is called an s-flower in Q if it satisfies the following conditions:

• for each x ∈ Q0(ω) there exists exactly one arrow γ ∈ Q1(ω) such that
s(γ) = x (respectively, γ′ ∈ Q1(ω) such that t(γ′) = x),
• s(α(1)), t(α(2)), s(α(3)), . . . , s(α(2s−1)), t(α(2s)) ∈ Q0(ω), respectively,
t(α(1)), s(α(2)), t(α(3)), . . . , t(α(2s−1)), s(α(2s)) /∈ Q0(ω),
• t(α(1)) = s(κ(1)), t(κ(1)) = s(α(2)), t(α(2)) = s(κ(2)), . . . , t(α(2s)) =
s(κ(2s)), t(κ(2s)) = s(α(1)),
• κ(l) contains no arrow β such that s(β) ∈ Q0(ω) and t(β) /∈ Q0(ω)

(respectively, t(β) ∈ Q0(ω) and s(β) /∈ Q0(ω)), for any l = 1, . . . , 2s.

Let K be an s-flower as above. We fix some extra notation.
We denote by ωK the oriented cycle α(1)κ(1)α(2) . . . α(2s)κ(2s) in Q. If the

group G is cyclic and is generated by [ω] then we denote by r(K) the integer
r ∈ Z such that [ωK ] = [ω]r (we assume that a0 = s(ω)).

For any x ∈ Q0(ω), let ω(x) denote the oriented cycle γ(j) . . . γ(m) . . .
γ(j−1), where x=s(γ(j)) and ω=γ(1) . . . γ(m). Additionally, for l=1, . . . , 2s,
we set ω(l) := ω(s(α(l))) if l is odd, and ω(l) = ω(t(α(l))) if l is even.

For any β ∈ Q1 we set for simplicity dβ = deg β; moreover, for l =

1, . . . , 2s we set dl = degα(l) and d′l = deg κ(l).
If β = α(l), then for any i ∈ Z we set a(l)

i = bβ,i; if all bβ,i for i ∈ Z are
equal for some β, then their common value is denoted by bβ .
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Assume that deg υα(l) = dl + 1 for every l. Then for a fixed r ∈ N, to
any N in mod R̃ we associate the R(Q̃)-module Ṅ = Ṅ(0,...,r−1) in modR(Q̃)
defined as follows:

For any object xj ∈ Q̃0, (x, j) ∈ Q0 × Z, we set

Ṅ(xj) = N(xj−r+1)⊕ · · · ⊕N(xj);

for any arrow βj : xj → yj+dβ , (β, j) ∈ Q1 × Z, the map Ṅ(βj) : Ṅ(xj) →
Ṅ(yj+dβ ) is given in matrix form

[Ṅ(βj)
(i′,i)] :

j⊕
i=j−r+1

N(xi)→
j+dβ⊕

i′=j+dβ−r+1

N(xi′)

where

Ṅ(βj)
(i′,i) =


N(α̃(l)

i) if i′ = i+ dl, j − r + 1 ≤ i ≤ j,
(a

(l)
j − a

(l)
i+r)N((υ̃α(l))i) if i′ = i+ dl + 1, j − r + 1 ≤ i < j,

0 otherwise,

whenever β = α(l) for some l = 1, . . . , 2s, and

Ṅ(βj)
(i′,i) =

{
N(βi) if i′ = i+ dβ, j − r + 1 ≤ i ≤ j,
0 otherwise,

in the remaining case. It is clear that the mapping N 7→ Ṅ extends naturally
to a k-linear functor

Φ = Φr : mod R̃→ modR(Q̃).

For any m = 1, . . . , r we denote by Ṅ (m) the family {Ṅ (m)(xj)}xj∈Q̃0
of

k-spaces, where

Ṅ (m)(xj) = N(xj−m+1)⊕ · · · ⊕N(xj).

Lemma. Ṅ (0) = {0}, Ṅ (1), . . . , Ṅ (r) form an ascending chain

Ṅ (0) ⊆ Ṅ (1) ⊆ · · · ⊆ Ṅ (r) = Ṅ

of R̃-submodules of Ṅ such that Ṅ (m)/Ṅ (m−1) ∼= m−1N for every m ∈ Z
(= G), where the identification is given by m 7→ [ω]m.

Proof. An easy check on definitions.

The main aim of this section is to prove the general result announced
in [8, 4.3], which in an abstract situation described by certain combinato-
rial conditions guarantees nice, more regular than usual, properties of the
push-down and pull-up functors associated with an almost Galois covering of
integral type. This result will play a crucial role in the proof of [8, Theorem
4.3.1] (only formulated there).
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Theorem. Let F ′ : R̃ → R′ be an almost Galois covering as in 3.2(z).
Assume that Q contains an s-flower K = (ω;α(1), . . . , α(2s);κ(1), . . . , κ(2s))
satisfying the conditions below:

(i) 〈[ω]〉 = G (we assume that a0 = s(ω));
(ii) for any l = 1, . . . , 2s, there exist ml ∈ N, paths ν(1,l), . . . , ν(ml,l) ∈
P(s(α(l)), t(α(l+1))) and scalars f1,l, . . . , fml,l ∈ k such that:

• for any j=1, . . . ,ml, deg ν(j,l)≥deg(α(l)κ(l)α(l+1)), and deg ν(j,l)

> deg(α(l)κ(l)α(l+1)) if α(l′) ∈ Q1(ν(j,l)) for some l′,
• α(l)κ(l)α(l+1) −

∑ml
j=1 fj,lν

(j,l) ∈ I ′;
(iii) for any l = 1, . . . , 2s:

• if l ∈ 2N + 1 then ω(l)α(l)κ(l)α(l+1) − α(l)κ(l)α(l+1)ω(l + 1) ∈ I
and ω(l)α(l)κ(l)α(l+1) /∈ I,
• if l ∈ 2N then α(l)ω(l)κ(l)α(l+1) − α(l)κ(l)ω(l + 1)α(l+1) ∈ I and
α(l)ω(l)κ(l)α(l+1) /∈ I;

(iii)′ for any β ∈ Q1 \ {α(1), . . . , α(2s)}:
• ω(s(β))β ∈ I ′ if s(β) ∈ Q0(ω) and t(β) /∈ Q0(ω) (respectively,
βω(t(β)) ∈ I ′ if t(β) ∈ Q0(ω) and s(β) /∈ Q0(ω)),
• βω(t(β))− ω(s(β))β ∈ I ′ if s(β), t(β) ∈ Q0(ω);

(iv) for β ∈ Q1:
• all bβ,i = bβ for i ∈ Z are equal if β ∈ Q1 \ {α(1), . . . , α(2s)},
• υα(l) = ω(l)α(l) if l = 1, . . . , 2s − 1, while υα(l) = α(l)ω(l) if
l = 2, . . . , 2s,
• R′(t(β), s(β))(deg υβ+1) = 0 if (bβ,i)i∈Z 6= 0 in kZ (see 3.1(∗∗)).

Then the functor F ′ has the following properties:

(a) Φr is a functor from mod R̃ to mod R̃ and F ′•F ′λ ∼=
⊕

i∈Z
irΦr, where

r = r(K). In particular, if N in mod R̃ is an indecomposable module
such that Ext1

R̃
(N,iN) = 0 for all i = 1, . . . , r − 1, then F ′•F ′λ(N) ∼=⊕

i∈Z
iN .

(b) F ′• ∼= rF ′•.
(c) For any x, y ∈ obR′, α ∈ R′(y, x), and xi ∈ F ′−1(x), yj ∈ F ′−1(y)

we have g(xiα
·
yj ) = ·

gxiαgyj , where g = −1, and hence F ′ρ◦1(−) ∼= F ′λ.

First we formulate several simple observations directly connected with
our assumptions:

Remark. To (ii): If l ∈ 2N + 1 then ml ≥ 1, since by (ii) we also have
α(l)κ(l)α(l+1) /∈ I (see below).

To (iii): We always have ω(l)α(l)κ(l)α(l+1) ∼ α(l)κ(l)α(l+1)ω(l + 1), since
G is abelian; from (iii) it follows ω(l)α(l)κ(l)α(l+1), α(l)κ(l)α(l+1)ω(l + 1) /∈
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I ′ if l ∈ 2N + 1 (respectively, α(l)ω(l)κ(l)α(l+1) ∼ α(l)κ(l)ω(l + 1)α(l+1);
α(l)ω(l)κ(l)α(l+1), α(l)κ(l)ω(l + 1)α(l+1) /∈ I if l ∈ 2N).

To (iii′): From (iii′) we have ω(s(β))β ∈ I (resp. βω(t(β)) ∈ I) for β as
in the first case; always βω(t(β)) ∼ ω(s(β))β if s(β), t(β) ∈ Q0(ω).

To (iv): R′(t(β), s(β))(deg υβ+1) = 0 if and only if δ ∈ I for every δ ∈
P(s(β), t(β)) such that deg δ ≥ deg υβ + 1.

The proof of the Theorem needs some preparation (it will be given in 3.7).
We start by computing a precise formula for the functor F ′•F ′λ.

3.3. Let N be an R̃-module. Then F ′λ(N)(x) =
⊕

i∈ZN(xi) for any
x ∈ Q0.

Lemma. For any β ∈ Q1(x, y) the structure map

F ′λ(N)(β) = [N̄(β)(i′,i)] :
⊕
i∈Z

N(xi)→
⊕
i′∈Z

N(xi′)

is as follows:

N̄(β)(i′,i) =


N(β̃i) if i′ = i+ dβ,
−bβ,iN((υ̃β)i) if i′ = i+ deg υβ,
0 otherwise.

Proof. Fix β. We show that

(∗) β + I ′ = (F (β̃i)− bβ,iF ((υ̃β)i)) + I ′

for any i ∈ Z. If bβ,i = 0, the equality (∗) is trivially satisfied, since F (β̃)i =
(β + bβ,iυβ) + I ′. Assume that bβ,i 6= 0. Then, by 3.2(∗), we have

υβ + I ′ =
(
F ((υ̃β)i) +

∑
e∈Sub(lβ)

bυβ ,i,e (υβ)(e)

)
+ I ′.

Note that for any e ∈ Sub(lβ), either bυβ ,i,e = 0 or, by [8, Corollary 2.3.2],
deg (υβ)(e) > deg υβ , so (υβ)(e)) ∈ I ′, from assumption (iv).

In this way (∗) is proved. Now the assertion follows immediately from
the definition of F ′λ(N).

Recall that the R̃-module Ñ = F ′•F
′
λ(N) takes the value

Ñ(xj) = F ′λ(N)(F ′(xj)) =
⊕
i∈Z

N(xi)

at any xj ∈ Q̃0, where (x, j) ∈ Q0 × Z.

Proposition. For any β ∈ Q1(x, y) and j ∈ Z the structure map

F ′•F
′
λ(N)(β̃j) = [Ñ(β̃j)

(i′,i)] :
⊕
i∈Z

N(xi)→
⊕
i′∈Z

N(xi′)
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is given by

Ñ(β̃j)
(i′,i) =


N(β̃i) if i′ = i+ dβ,
(bβ,j − bβ,i)N((υ̃β)i) if i′ = i+ deg υβ,
0 otherwise.

Proof. Observe first that

F ′•F
′
λ(N)(β̃j) = F ′λ(N)(β) + bβ,jF

′
λ(N)(υβ),

since by definition F ′•F ′λ(N)(β̃j) = F ′λ(N)(F ′(β̃j)) and F ′(β̃j) = (β+ bβ,jυβ)
+ I ′. We showed that F ((υ̃β)i) = υβ + I ′, so F ′λ(N)(υβ) has the form

N(υβ) :
⊕
i∈Z

N(xi)→
⊕
i∈Z

N(yi+deg υβ ).

Now the required formula follows immediately from the lemma and the
considerations above.

3.4. In the proof of the theorem we use some abstract construction that
generalizes the description of the R̃-module F ′•F ′λ(N) from the proposition
above.

Let N be a module in MOD R̃. Then to any collection n = (ni) ∈ ZZ we
associate an R(Q̃)-module Ñn. For any object xj ∈ Q̃0, (x, j) ∈ Q0 × Z, we
set

Ñn(xj) =
⊕
i∈Z

N(xi).

For any arrow βj : xj → yj+dβ in Q̃, (β, j) ∈ Q1 × Z, the map Ñn(β̃j) :

Ñn(xj)→ Ñn(yj+dβ ) is defined as a matrix

[Ñn(β̃j)
(i′,i)] :

⊕
i∈Z

N(xi) →
⊕
i′∈Z

N(xi′),

where

Ñn(β̃j)
(i′,i) =


N(α

(l)
i ) if i′ = i+ dβ ,

(a
(l)
j − a

(l)
j+ni−j

)N((υ̃α(l))i) if i′ = i+ dβ + 1,
0 otherwise,

whenever β = α(l) for some l = 1, . . . , 2s, and

Ñn(β̃j)
(i′,i) =

{
N(βi) if i′ = i+ dβ ,
0 otherwise.

in the remaining case.
It is easily seen that for a fixed n ∈ ZZ, the mapping N 7→ Ñn extends

naturally to a k-linear functor

Φn : MOD R̃→ MODR(Q̃).
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Note that ΦidZ
=F ′•F

′
λ, since by Proposition 3.3 we have ÑidZ =F ′•F

′
λ(N)

for N in MOD R̃.
Let n = (ni) ∈ ZZ be fixed. Then for any m ∈ Z, we denote by n+

m (resp.
n−m) the collection (n′i) ∈ ZZ such that n′m = nm + r (resp. n′m = nm − r)
and n′i = ni for all i 6= m.

Proposition. The functors Φn+
m

and Φn (resp. Φn−m and Φn) are iso-
morphic for every m ∈ Z.

The following fact plays a crucial role in the proof.

Lemma. There exist scalars c1, . . . , c2s ∈ k and integers r1, . . . , r2s ∈ Z
such that:

• r1 + · · ·+ r2s = r,
• for any i ∈ Z the following system of equalities holds:

a
(1)
i + a

(2)
i+r1

= c1,

a
(2)
i + a

(3)
i+r2

= c2,

...

a
(2s)
i + a

(1)
i+r2s

= c2s.

Proof. To construct the pairs (cl, rl) ∈ k × Z, l = 1, . . . , 2s, satisfying
the required conditions, we analyze the (d + 1)th component zd+1(i) of the
element

z :=
(
α(l)κ(l)α(l+1) −

ml∑
m=1

fj,mν
(m,l)

)
+ I ′ ∈ R′(x, y)

via the isomorphisms

R′(x, y) ∼=
⊕
j∈Z

R̃(xj , yi) =
⊕
j′∈Z

R̄(x, y)j′

given by F ′, where x = t(α(l+1)), y = s(α(l)), d = dl+d
′
l+dl+1, and j′ = j−i

for i ∈ Z. Note that by [8, Proposition 2.3.5], z belongs to R′(x, y)(d), since
deg(α(l)κ(l)α(l+1)) = d and deg ν(m,l) ≥ d for all m; moreover, for any i ∈ Z
the dth component zd = zd(i) of z is equal to

(α(l)κ(l)α(l+1))∼i −
∑

m∈[ml]d

fj,mν̃(m,l)
i + Ĩ ∈ R̃(xi+d, yi),

where [ml]d′ = {m ∈ [ml] : deg ν(m,l) = d′} for d′ ∈ N. (When A is a very
long expression, for typographical reasons we will write (A)∼ instead of Ã.)
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To compute zd+1(i) we apply formulas 3.1(∗) and 3.2(∗). We assume first
that l is odd. Then

F ((α(l)κ(l)α(l+1))∼i) = F (α̃(l)
i)F (κ̃(l)

i+dl)F (α̃(l+1)
i+dl+d

′
l
)

= (α(l) + a
(l)
i ω(l)α(l)) ·

(
κ(l) +

∑
e∈Sub(pl)

be(κ
(l))(e)

)
· (α(l+1) + a

(l+1)
i+dl+d

′
l
α(l+1)ω(l + 1)),

where pl = `(κ(l)) and be = bκ(l),i+dl,e
. Expanding the product on the right

hand side, we obtain α(l)κ(l)α(l+1) and seven extra summands. Observe that
four of them belong to R′(x, y)(d+2), since for any e such that be 6= 0,
we have deg(α(l)(κ(l))(e)α

(l+1)ω(l + 1)), deg(ω(l)α(l)(κ(l))(e)α
(l+1)) > d+ 1,

deg(ω(l)α(l)(κ(l))(e)α
(l+1)ω(l+1)) > d+2, and deg(ω(l)α(l)κ(l)α(l+1)ω(l+1))

= d + 2 (see [8, Proposition 2.3.5] and 3.2(∗∗)). The next two summands,
a

(l)
i ω(l)α(l)κ(l)α(l+1) + I ′ and a

(l+1)
i+dl+d

′
l
α(l)κ(l)α(l+1)ω(l + 1) + I ′, belong to

R′(x, y)(d+1), as deg(ω(l)α(l)κ(l)α(l+1)) =d + 1 = deg(α(l)κ(l)α(l+1)ω(l + 1)).
Then by [8, Proposition 2.3.5] and assumption (iii),

z′d+1(i) := (a
(l)
i + a

(l+1)
i+dl+d

′
l
)(ω(l)α(l)κ(l)α(l+1))∼i + Ĩ

is the (d+ 1)th component of

(a
(l)
i ω(l)α(l)κ(l)α(l+1) + a

(l+1)
i+dl+d

′
l
α(l)κ(l)α(l+1)ω(l + 1)) + I ′.

The summand
∑

e∈Sub(pl)
beα

(l)(κ(l))(e)α
(l+1) + I ′ belongs to R′(x, y)(d+1),

since deg(α(l)(κ(l))(e)α
(l+1)) > d if be 6= 0 (see 3.2(∗∗)). Consequently, its

(d+ 1)th component has the form

z′′d+1(i) :=
∑

e∈Sub(pl)d+1

be(α
(l)(κ(l))(e)α

(l+1))∼i + Ĩ ,

where Sub(pl)d+1 = {e ∈ Sub(pl) : deg(α(l)(κ(l))(e)α
(l+1)) = d + 1}. Note

that the coefficients be do not depend on i ∈ Z, since κ(l) does not contain
arrows α(l′), so the coefficients bκ(l),i,e for different i are equal (see Definition
3.2 and (iv)).

Now we compute the (d + 1)th component z′′′d+1(i) of (
∑ml

m=1 fj,mν
(m,l))

+ I ′. We apply again the same technique. For any m ∈ [ml] we have

F (ν̃(m,l)
i) =

(
ν(m,l) +

∑
e′∈Sub(p′m)

b′e′(ν
(m,l))(e′)

)
+ I ′,

where p′m = `(ν(m,l)) and b′e′ = bν(m,l),i,e′ for e
′ ∈ Sub(p′m). It is easily seen
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that

z′′′d+1(i)

=
( ∑
m∈[ml]d+1

fj,mν̃(m,l)
i +

∑
m∈[ml]d

∑
e′∈Sub(p′m)d+1

fj,mb
′
e′((ν

(m,l))(e′))
∼
i

)
+ Ĩ ,

where Sub(p′m)d+1 = {e′ ∈ Sub(p′m) : deg((ν(m,l))(e′)) = d + 1}. Note that
as above, the coefficient b′e′ for e

′ ∈ Sub(p′m)d+1 does not depend on i ∈ Z,
since ν(m,l) does not contain arrows α(l′) (see (i) and (iv)).

Consequently, we obtain the equality

zd+1(i) = −z′d+1(i)− z′′d+1(i)− z′′′d+1(i).

Since z = 0 in R′(x, y), it follows that zd+1(i) = 0, and we have

z′d+1(i) = −z′′d+1(i)− z′′′d+1(i)

in R̃(xi+d+1, yi). If we pass to R̄(x, y)d+1 then all vectors z′′d+1(i) (resp.
z′′′d+1(i)) for i ∈ Z collapse to one vector z′′d+1 (resp. z′′′d+1), and we get the
equality

(a
(l)
i + a

(l+1)
i+dl+d

′
l
)z′ = −z′′d+1 − z′′′d+1

in R̄(x, y)d+1, where z′ = ω(l)α(l)κ(l)α(l+1) + I.
Observe that since z′ 6= 0, all coefficients a(l)

i + a
(l+1)
i+dl+d

′
l
, i ∈ Z, are equal.

Consequently, setting rl = dl+d
′
l and cl = a

(l)
0 +a

(l+1)
dl+d

′
l
we obtain the equality

a
(l)
i + a

(l+1)
i+rl

= cl for all i ∈ Z.
In case l is even we construct the pair (cl, rl) in an analogous way. We

set again rl = dl + d′l. (We assume α(2s+1) = α(1), a(2s+1)
i = a

(1)
i , and

so on.) A slight difference appears in the formula for F ((α(l)κ(l)α(l+1))∼i),
and for example, in computations of degrees, where we apply a dual set of
assumptions. As a result, in a final step of the discussion we consider the
vectors (a

(l)
i +a

(l+1)
i+dl+d

′
l
)(α(l)ω(l)κ(l)α(l+1) +I) ∈ R̄(x, y)d+1. Nevertheless, all

arguments used in the consecutive steps are exactly the same.
Finally notice that in fact the proof is already complete, since by the

properties of the function deg, the equality r1 + · · ·+ r2s = r follows imme-
diately from the definition of the integers r and rl for l = 1, . . . , 2s.

Corollary. There exists a scalar c ∈ k such that for any i ∈ Z,

a
(l)
i − a

(l)
i+r =

{
c if l ∈ 2N,
−c if l ∈ 2N + 1,

where l = 1, . . . , 2s.
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Proof. Let l = 1. Then from the Lemma we have the following 2s equal-
ities:

a
(1)
i + a

(2)
i+r1

= c1,

a
(2)
i+r1

+ a
(3)
i+r1+r2

= c2,

...

a
(2s)
i+r1+···+r2s−1

+ a
(1)
i+r = c2s.

If we multiply the lth equality by (−1)l+1, for l = 1, . . . , 2s, and next sum
up all of them, we obtain

a
(1)
i − a

(1)
i+r = c1 − c2 + c3 + · · · − c2s.

Now, modifying slightly the indices in the arguments above, one easily
checks that c = c1 − c2 + c3 + · · · − c2s satisfies the required conditions.

3.5. Proof of Proposition 3.4. Fixm ∈ Z. We show first that the functors
Φn and Φn+

m
are isomorphic.

For any N in MODR(Q̃) we construct the R(Q̃)-homomorphism

ϕ = ϕ+
n,m(N) : Ñ → Ñ ′,

where Ñ = Ñn and Ñ ′ = Ñn+
m
. Note that formally ϕ is a collection

{ϕ(xj) : Ñ(xj)→ Ñ ′(xj)}(x,j)∈Q0×Z

of k-linear maps, where each ϕ(xj) has matrix form

ϕ(xj) = [ϕ(xj)
(i′,i)] :

⊕
i∈Z

N(xi)→
⊕
i′∈Z

N(xi′).

Now we define ϕ. For any j ∈ Z we set

ϕ(xj)
(i′,i) =


idN(i) if i′ = i,

cN(ω̃(x)i) if i = j +m, i′ = j +m+ 1,
0 otherwise,

whenever x ∈ Q0(ω), and

ϕ(xj) =
⊕
i∈Z

idN(i)

in the opposite case.
It is clear that all the maps ϕ(xj), (x, j) ∈ Q0 × Z, defined above are

k-isomorphisms. We have to show that ϕ is an R(Q̃)-homomorphism. For
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this we have to verify the commutativity of all diagrams

(∗)β,j

Ñ(xj)

Ñ(β̃j)
��

ϕ(xj) // Ñ ′(xj)

Ñ ′(β̃j)
��

Ñ(yj+dβ )
ϕ(yj+dβ )

// Ñ ′(yj+dβ )

where β ∈ Q1(x, y) and j ∈ Z.
Clearly, for the commutativity of (∗)β,j it suffices to show the equalities

(∗)β,j;i Ñ ′(β̃j)ϕ(xj)|N(xi) = ϕ(yj+dβ)Ñ(β̃j)|N(xi)

for all i ∈ Z, and each equality (∗)β,j;i is equivalent to the collection of the
equalities

(∗)β,j;i,i′ πi′Ñ
′β̃jϕ(xj)|N(xi) = πi′ϕ(yj+dβ)Ñ(β̃j)|N(xi)

for all i′ ∈ Z, where πi′ :
⊕

i′′∈ZN(yi′′)→ N(yi′) is the canonical projection.
In fact, for a fixed j ∈ Z, we have to consider the equalities (∗)β,j;i only

in the following cases:

1o. i = j +m if β 6= α(1), . . . , α(2s),
2o. i = j +m, j +m− 1 if β = α(l) for l = 1, 3, . . . , 2s− 1,
3o. i = j +m, j +m− 1 if β = α(l) for l = 2, 4, . . . , 2s.

Observe that in all the remaining cases the equalities (∗)β,j;i follow trivially,
since by the definitions all the nonzero components of ϕ(xj) and ϕ(yj+dβ )
appearing in the formula are identities (respectively, all the components of
Ñ(β̃j) appearing essentially in the formula are equal to the corresponding
ones for Ñ ′(β̃j)).

Case 1o. Note first that it suffices to show (∗)β,j;j+m,j+m+dβ+1 (the re-
maining ones are evidently of the shape “0 = 0”). We consider three subcases:

If x, y /∈ Q0(ω) then (∗)β,j;j+m,j+m+dβ+1 is trivially satisfied.
If x ∈ Q0(ω) and y /∈ Q0(ω) (resp. x /∈ Q0(ω) and y ∈ Q0(ω)), then the

equality holds, since from assumption (iii)′ and Remark 3.2 we deduce that
N(β̃j+m+1)N(ω̃(x)j+m) = 0 (resp. N(ω̃(y)j+m+dβ

)N(β̃j+m) = 0).
Assume now that x, y ∈ Q0(ω). Then ω(x)β − βω(y) belongs to I and

(∗)β,j;j+m,j+m+dβ+1 follows from the equality N(β̃j+m+1)N(ω̃(x)j+m) =

N(ω̃(y)j+m+dβ
)N(β̃j+m) (see again (iii)′ and Remark 3.2; note that ω(x)β =

βω(y) if β ∈ Q1(ω)).

Case 2o. We have to verify only the equalities (∗)α(l),j;j+m,i′ for i
′ = j +

m+dl, j+m+dl+1, j+m+dl+2 and (∗)α(l),j;j+m−1,i′′ for i
′′ = j+m−1+dl, j+

m+dl, j+m+dl+1. Note first that (∗)α(l),j;j+m,j+m+dl
is trivially satisfied.

The equality (∗)α(l),j;j+m,j+m+dl+2 holds, since degω(l)υα(l) ≥ deg υα(l) + 1
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and, by (iv), ω(l)υα(l) belongs to I, so N((υ̃α(l))j+m+1)N(α̃(l)
j+m) = 0. Fi-

nally, since υα(l) = ω(l)α(l), by Corollary 3.4 we have

(a
(l)
j − a

(l)
j+nm+r)N((υ̃α(l))j+m) + cN(α̃(l)

j+m+1)N(ω̃(l)j+m)

− (a
(l)
j −a

(l)
j+nm

)N((υ̃α(l))j+m) = (−a(l)
j+nm+r + c+a

(l)
j+nm

)N((υ̃α(l))j+m) = 0.

Consequently, we obtain (∗)α(l),j;j+m,j+m+dl+1. The remaining three equali-
ties (for i = j +m− 1) are trivially satisfied, or follow from assumption (iv)
and Remark 3.2.

Case 3o. If i = j + m, we have to show only (∗)α(l),j;j+m,j+m+dl
and

(∗)α(l),j;j+m,j+m+dl+1. The first equality is trivially satisfied, the second one
follows from the equality

(a
(l)
j − a

(l)
j+nm+r)N((υ̃α(l))j+m)− (a

(l)
j − a

(l)
j+nm

)N((υ̃α(l))j+m)

− cN(ω̃(l)j+dl+m)N(α̃(l)
j+m) = (−a(l)

j+nm+r + a
(l)
j+nm

− c)N((υ̃α(l))j+m) = 0.

(We apply the equality υα(l) = ω(l)α(l) and again Corollary 3.4.)
Now assume i = j +m− 1. We have to verify the following three equali-

ties: (∗)α(l),j;j+m−1,j+m−1+dl
, (∗)α(l),j;j+m−1,j+m+dl

, (∗)α(l),j;j+m−1,j+m+1+dl
.

The first two are trivially satisfied. The third one follows from assumption
(iv) and Remark 3.2, since deg(υα(l)ω(l)) ≥ deg υα(l) + 1, so N(ω̃(l)j+dl+m)
N((υ̃α(l))j+m−1) = 0.

In this way the proof is complete.

3.6. Let n = (ni) ∈ ZZ be as above. Then for any m, q ∈ Z, we denote
by nqm the collection (n′i) ∈ ZZ such that n′m = nm + qr and n′i = ni for
all i 6= m. Then, keeping the notation from the proof above, we denote by
ϕqn,m(N) the R(Q̃)-isomorphism

ϕ+

nq−1
m ,m

(N) ◦ · · · ◦ ϕ+
n0
m,m

(N) : Ñn → Ñnqm
.

It is easily seen that the components ϕ(xj) = [ϕ(xj)
(i′,i)], (x, j) ∈ Q0×Z, of

the R(Q̃)-isomorphism ϕqn,m(N) are equal to
⊕

i∈Z idN(i) if x /∈ Q0(ω), and
otherwise they are given by the formula

ϕ(xj)
(i′,i) =


idN(i) if i′ = i,

qcN(ω̃(x)i) if i = j +m, i′ = j +m+ 1,
0 otherwise.

Proposition. Given n ∈ Z, the composition

ϕqn(N) = · · · ◦ ϕ(m+1) ◦ ϕ(m) ◦ · · · : Ñn → Ñnq

is well defined for any q = (qm) ∈ ZZ, and it yields an R(Q̃)-isomorphism
Ñn
∼= Ñnq , where nq = (ni + qir), ϕ(m) = ϕqmn(m−1),m(N) : Ñn(m−1)

→ Ñn(m)
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and n(m) = (n′i) ∈ ZZ with

n′i =

{
ni + qir if i ≤ m,
ni if i > m,

for any m ∈ Z.

Proof. To prove that the composition ϕqn = ϕqn(N) is well defined we
show that the composition

ϕqn(xj) = · · · ◦ ϕ(m+1)(xj) ◦ ϕ(m)(xj) ◦ · · · :
⊕
i∈Z

N(xi)→
⊕
i′∈Z

N(xi′)

is well defined for any (x, j) ∈ Q0 × Z. We have to consider only the case
x ∈ Q0(ω), since otherwise ϕ(m)(xj) = id⊕

i∈ZN(xi) for any m.
Let (x, j) ∈ Q0×Z with x as above. It suffices to check that ϕqn(xj)|N(xi)

is well defined for every i ∈ Z. Fix i and set m = i − j. Note that given
n′ ∈ ZZ, we have ϕq

′

n′,m′(xj)(N(xi)) ⊆ N(xi), and ϕ
q′

n′,m′(xj)|N(xi) = idN(xi)

if m′ 6= m; ϕq
′

n′,m′(xj)(N(xi)) ⊆ N(xi)⊕N(xi+1) if m′ = m, for any q′ ∈ Z.
Moreover, by the assumptions,

(ϕq
′′

n′q
′
,m′+1

(xj) ◦ ϕq
′

n′,m′(xj))|N(xi) = ϕq
′

n′,m′(xj)|N(xi)

for any q′, q′′ ∈ Z. Then ϕqn(xj)(N(xi)) ⊆ N(xi)⊕N(xi+1), and

ϕqn(xj)|N(xi) : N(xi)→ N(xi)⊕N(xi+1)

is the composition of the maps

ϕ(m′)(xj)|N(xi) = idN(xi) : N(xi)→ N(xi)

for all m′ < m, the map

(ϕ(m+1)(xj) ◦ ϕ(m)(xj))|N(xi) = ϕ(m)(xj)|N(xi) : N(xi)→ N(xi)⊕N(xi+1)

and the maps

ϕ(m′)(xj)|N(xi)⊕N(xi+1) = idN(xi)⊕N(xi+1)

for all m′ ≥ m + 2. Consequently, ϕqn(xj) = ϕqn(N)(xj) is well defined,
ϕqn(xj)|N(xi) = ϕqmn(m−1),m(xj)|N(xi) for every i ∈ Z, and so is ϕqn = ϕqn(N).
(Note that ϕqn(xj)|N(xi) = ϕqmn(m−1),m(xj)|N(xi).) Now it is clear that ϕqn(N) :

Ñn → Ñnq is an R(Q̃)-homomorphism, so an isomorphism.

Corollary. The family ϕ = (ϕqn(N))N∈MOD R̃ of R(Q̃)-homomor-
phisms defines an isomorphism between the functors Φn and Φnq .

Proof. An easy check on definitions.
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3.7. Proof of Theorem 3.2. (a) We apply the last corollary for n = idZ
and q = (−quor(i))i∈Z. Then nq = rem, where rem = (remr(i))i∈Z, and we
obtain an isomorphism F ′•F

′
λ
∼= Φrem. We show that a decomposition

(∗) Ñrem
∼=
⊕
p∈Z

prṄ

in ModR(Q̃) holds for any N in Mod R̃.
To prove (∗) it suffices to check that (

⊕
p∈Z

prṄ)(β̃j) =
⊕

p∈Z
prṄ(β̃j)

and Ñrem(β̃j) coincide for all arrows β̃j such that β ∈ Q1(x, y) and j ∈ Z,
if we identify the spaces (

⊕
p∈Z

prṄ)(xj) =
⊕

p∈Z(
⊕j−pr

i=j−pr−r+1N(xi)) and
Ñrem(xj) =

⊕
i∈ZN(xi) in a natural way.

Fix a pair (x, j) ∈ Q0×Z. In case β 6= α(1), . . . , α(2s) the required equality
is trivially satisfied since bβ,i = bβ for all i ∈ Z, and therefore the maps under
consideration have the form⊕

i∈Z
N(βi) :

⊕
i∈Z

N(xi)→
⊕
i∈Z

N(yi+dβ ).

Assume that β = α(l) for some l = 1, . . . , 2s. Then Ñrem(β̃j) :
⊕

i∈ZN(xi)→⊕
i′∈ZN(yi′) is given by

Ñrem(β̃j)
(i′,i) =


N(α

(l)
i ) if i′ = i+ dβ ,

(a
(l)
j − a

(l)
j+remr(i−j))N((υ̃α(l))i) if i′ = i+ dβ + 1,

0 otherwise.
Now we fix p ∈ Z. Then the components of the map

prṄ(β̃j) = Ṅ(βj−pr) :

j−pr⊕
i=j−pr−r+1

N(xi)→
j−pr⊕

i=j−pr−r+1+dl

N(xi)

are as follows:
prṄ(β̃j)

(i′,i)

=


N(α

(l)
i ) if i′=i+ dβ, j − pr − r + 1≤i≤j − pr,

(a
(l)
j−pr − a

(l)
i+r)N((υ̃α(l))i) if i′=i+ dβ + 1, j − pr − r + 1≤i<j − pr,

0 otherwise.

Observe that a(l)
j−pr − a

(l)
i+r = a

(l)
j − a

(l)
j+remr(i−j) for any j − pr − r + 1 ≤ i <

j − pr, since by Corollary 3.4 we have a(l)
j−pr − a

(l)
i+r = a

(l)
j − a

(l)
i+pr+r =

a
(l)
j − a

(l)
j+(i−j)+pr+r, and i − j + pr + r = remr(i − j). Note also that

a
(l)
j − a

(l)
j+remr(i−j) = 0 for i = j − pr. In this way the maps Ñrem(β̃j) and

(
⊕

p∈Z
prṄ)(β̃j) coincide and thus (∗) is proved.
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It is clear that the proved decomposition yields a canonical isomorphism
Φrem

∼=
⊕

i∈Z
irΦ of functors and in this way the proof of the isomor-

phism F ′•F
′
λ
∼=
⊕

i∈Z
irΦ is complete. Notice that since for any N in mod R̃,

F ′•F
′
λ(N) belongs to Mod R̃, Φ(N) also belongs to mod R̃ and Φ is an endo-

functor of the category mod R̃.
To prove the second assertion of (a) fix N in mod R̃ and consider the

ascending chain
Ṅ (0) ⊆ Ṅ (1) ⊆ · · · ⊆ Ṅ (r) = Ṅ

of R̃-submodules of Ṅ defined in 3.2 such that Ṅ (l)/Ṅ (l−1) ∼= l−1N for all l
(see Lemma 3.2). Now, if Ext1

R̃
(lN,N) = 0 for all l such that 1 ≤ l ≤ r − 1,

then the decomposition F ′•F ′λ(N) ∼=
⊕

i∈Z
iN follows from the isomorphism

F ′•F
′
λ(N) ∼=

⊕
p∈Z

prṄ and basic properties of Ext-functors.
(b) For a fixed M in modR consider the family

ψ(M) = {ψ(xj) : M(x)→M(x)}(x,j)∈Q0×Z

defined by setting ψ(xj) = idM(x) if x /∈ Q0(ω), and ψ(xj) = idM(x) +
cM(ω(x)) if x ∈ Q0(ω). Note that each ψ(xj) is a k-isomorphism since
M(ω(x)) is nilpotent. We show that ψ(M) ∈ HomR̃(F ′•M, rF ′•M). We have
to check, for any βj : xj → yj+dβ , (x, j) ∈ Q0 × Z, the equality

(∗∗) (rF ′•M)(β̃j)ψ(xj) = ψ(yj+dβ )(F ′•M)(β̃j),

or equivalently,

(∗∗)′ (M(β) + bβ,j−rM(υβ))ψ(xj)− ψ(yj+dβ )(M(β) + bβ,jM(υβ)) = 0.

Fix (β, j) ∈ Q1 × Z. We consider several cases.
Assume first β 6= α(1), . . . , α(2s). It is clear that if x, y /∈ Q0(ω) then

(∗∗)′ holds trivially, since bβ,j−r = bβ,j . If x ∈ Q0(ω) and y /∈ Q0(ω) (resp.
y ∈ Q0(ω) and x /∈ Q0(ω)) then (∗∗)′ follows from M(β)M(ω(x)) = 0 =
M(υβ)M(ω(x)) (resp. M(ω(y))M(β) = 0 = M(ω(y))M(υβ), see assump-
tions (iv) and (iii)′). Finally, in case x, y /∈ Q0(ω), (∗∗)′ follows by analogous
arguments from the equality M(β)M(ω(x)) = M(ω(y))M(β) (see (iii)′ if β
does not belong to ω; otherwise it is obvious).

Next we assume that β = α(l) for l = 1, 3, . . . , 2s−1. Then υβ = ω(l)α(l),
bβ,j′ = a

(l)
j′ and by (iv), the verification of (∗∗)′ reduces to the verification of

the equality

a
(l)
j−rM(ω(l)α(l)) + cM(α(l))M(ω(l))− a(l)

j M(ω(l)α(l)) = 0.

Consequently, (∗∗)′ follows immediately from Corollary 3.4.
In the final case, β = α(l) for l = 2, 4, . . . , 2s, we proceed analogously.

Now (∗∗)′ reduces to the equality
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a
(l)
j−rM(α(l)ω(l))− cM(α(l))M(ω(l))− a(l)

j M(α(l)ω(l)) = 0,

which again holds true by Corollary 3.4.
In this way we showed that ψ(M) is an R̃-homomorphism. It is easily

seen that ψ = (ψ(M))M∈MODR is a natural transformation, which yields an
isomorphism F ′•

∼= rF ′•.
(c) We check the required formula for α = β + I ′, where β ∈ Q1(y, x).

Fix i. From equality 3.3(∗) we infer that xi
·βyi+dβ = β̃i, xi

·βyi+deg υβ
=

−bβ,i(υ̃β)i and xi
·βyj = 0 for the remaining cases. We also have at our dis-

posal the equality

β + I ′ = F (iβ̃)− bβ,i−dβF (i(υ̃β))

dual to 3.3(∗), where iw̃ = w̃i−degw for any w ∈ P(y, x). Consequently,
xi−dβ

·βyi = β̃i−dβ , xi−deg υβ

·βyi = −bβ,i−dβ (υ̃β)i−deg υβ and xi
·βyj = 0 for the

remaining cases. Now the required formula follows easily. The second asser-
tion is an immediate consequence of the first, by [8, Lemma 3.8.1(a)].

3.8. To end this section we discuss the series of examples introduced in
[8, 4.1]. In fact we show that they fit into the abstract scheme developed
in 3.2.

Let R(n)
t = R(Q(n), I

(n)
t ), t ∈ k, n = 1, . . . , 7, be algebras defined as

follows:

Q(1) : 1η
%% α(1)

((
2

α(2)

hh

I
(1)
t = (ν2α(1), α(2)ν2, α(1)α(2)α(1), α(2)α(1)α(2), α(1)α(2) − tα(1)να(2),
α(2)α(1) − ν3) (we also set w1 := ε1, w2 := α(1), ω := ν and r := 3);

Q(2) : 1ν
%% α(1)

((
2 γee

α(2)

hh

I
(2)
t = I(2)(h)t = (ν4, ν2α(1), α(2)ν2, α(1)α(2) − ν2 + tν3, α(2)α(1) − hγ2,
να(1)−α(1)γ, α(2)ν−γα(2)), where h ∈ k\{0, 1} is fixed (w1 := ν, w2 := α(1),
ω := ν, r := 2);

Q(3) : 3

α(2)

��<<<<<<<<

1

α(1)

AA�������� ν // 2
γ

oo

I
(3)
t = (α(1)α(2) − νγν, (γν)3γ, α(2)γα(1)α(2), α(1)α(2)γα(1),
α(2)γα(1) − tα(2)γνγα(1)) (w1 := ε1, w2 := ν, w3 := α(1), ω := νγ, r := 2);
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Q(4) : 2
α(2)
// 1

α(1)
oo

ν

�� γ // 3
δ
oo

I
(4)
t = (α(1)α(2) − ν2, ν3 − γδ, α(2)γ, δα(1), νγ, δν, α(1)α(2)α(1), α(2)α(1)α(2),
α(2)α(1) − tα(2)να(1)) (w1 := ν, w2 := α(1), w3 := γ, ω := ν, r := 2);

Q(5) : 2
α(2)
// 1

α(1)
oo

γ // 3
δ
oo

I
(5)
t = (α(2)γδγ, δγδα(1), α(1)α(2)α(1), α(2)α(1)α(2), α(2)α(1) − tα(2)γδα(1),
α(1)α(2) − (γδ)2) (w1 := ε1, w2 := α(1), w3 := γ, ω := γδ, r := 2);

Q(6) : 3

δ

��<<<<<<<<

1

γ

AA��������
ν

%% α(1)
// 2

α(2)

oo

I(6) = (α(2)α(1) − tα(2)να(1), νγ, να(1) − γδ, δα(2)ν, α(1)α(2) − ν2, δα(2)α(1),
α(1)α(2)α(1), α(2)α(1)α(2)) (w1 := ε1, w2 := α(1), w3 := γ, ω := ν, r := 2);

Q(7) : 3
γ

����������

1ν
%%

α(1)

// 2
α(2)

oo

δ

]]<<<<<<<<

I
(7)
t = (α(2)α(1) − tα(2)να(1), γν, α(2)ν − δγ, να(1)δ, α(1)α(2) − ν2, α(2)α(1)δ,
α(1)α(2)α(1), α(2)α(1)α(2)) (w1 := ε1, w2 := α(1), w3 := α(1)δ, ω := ν,
r := 2).

Set R̄(n) = R
(n)
0 , R′(n) = R

(n)
1 and R̃(n) = R(Q̃(n), Ĩ(n)), where (Q̃(n), Ĩ(n))

is a universal covering of (Q(n), I
(n)
0 ) for a0 = 1. Now we can prove the

existence of almost Galois coverings of integral type for R′(1), . . . , R
′
(7), which

behave in a more regular way than usual (see [8, Theorem 4.3.1]).

Theorem. For each n = 1, . . . , 7, the fundamental group Π(Q(n), I
(n)
0 )

= (Π(Q(n), I
(n)
0 ), a0) is an infinite cyclic group generated by [ω], where ω =

ω(n) is as above, and there exists an almost Galois G-covering F ′(n) : R̃(n) →
R′(n) of integral type, with G = Π(Q(n), I

(n)
0 ) (= [ω]Z), such that F ′(n) has

properties 3.2(a)–(c). More precisely, for F ′ : R̃→ R′ of the form F ′ = F ′(n),
for n = 1, . . . , 7, we have the following:

• for any x, y ∈ obR′, α ∈ R′(y, x), and xi ∈ F ′−1(x), yi′ ∈ F ′−1(y)
we have g(xiα

·
yi′

) = ·
gxiαgyi′ , where g = [ω]−1 (= −1); consequently,

F ′ρ ◦ 1(−) ∼= F ′λ;
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• F ′• ∼= rF ′•, where r = r(n) is as above;
• for N in ind R̃, the R-isomorphism F ′•F

′
λ(N) ∼=

⊕
j∈Z

iN holds, pro-
vided Ext1

R̃
(iN,N) = 0 for all i = 1, . . . , r − 1.

Proof. We start by noticing that the proof of the first assertion is simply a
case-by-case direct verification using only the definition ofΠ((Q(n), I

(n)
0 ), a0).

To prove the main assertion we show that the functors F ′(n) defined in [8, 4.2]
satisfy the assumptions of Theorem 3.2. This clearly implies that they have
the asserted properties.

In fact, the whole necessary information is contained in the table below:

n s κ(1) κ(2) m1 m2 j νj,1 fj,1 νj,2 fj,2 bα(1),n bα(2),n c

1 1 ε2 ε1 1 1 1 ν3 1 α(2)να(1) t −tbn+ 1/3c tbn/3c t

2 1 ε2 ε1 2 1 1 ν2 1 γ2 u −tbn/2c tb(n+ 1)/2c t

2 ν3 −t – –
3 1 ε2 γ 1 1 1 νγν 1 α(2)γνγα(1) t −tbn/2c tbn/2c t

4 1 ε2 ε1 1 1 1 ν2 1 α(2)να(1) t −tbn/2c tb(n− 1)/2c t

5 1 ε2 ε1 1 1 1 (γδ)2 1 α(2)γδα(1) t −tbn/2c tbn/2c t

6 1 ε2 ε1 1 1 1 ν2 1 α(2)να(1) t −tbn/2c tbn/2c t

7 1 ε2 ε1 1 1 1 ν2 1 α(2)να(1) t −tbn/2c tbn/2c t

The proof is very technical and therefore we only give an outline, providing
a short hint how to use the data from the table. For the benefit of the reader
we briefly recall the construction of the functors F ′(n).

We first define functors F(n) : R(Q̃(n)) → R′(n). We apply the notation
established in 3.1, which refers to the choice of generators [ω] and the sets
{wa}a∈Q(n)

0

fixed above. For any arrow β in Q(n) different from α(1) and α(2),

we set F(n)(β̃i) = β+I
(n)
1 for all i ∈ Z. The values F(n)(α̃(1)

i) and F(n)(α̃(2)
i)

for i ∈ Z are given by the formulas

(∗) F(n)(α̃(1)
i) := α(1) + bα(1),iωα

(1), F(n)(α̃(2)
i) := α(2) + bα(2),iα

(2)ω,

where bα(1),i and bα(1),i are equal, respectively, to the coefficients from the
column with the labels “b

α(1),i
” and “b

α(1),i
” in the table, evaluated at t = 1.

It is not hard to check that for every n, all the assumptions of Theorem
3.1 are satisfied, and that conditions 3.1(a)–(c) hold for F(n). Consequently,
each F(n) induces a functor F ′(n) : R̃(n) → R′(n) which is an almost Galois

G-covering of integral type, where G = Π(Q(n), I
(n)
0 ).

Now, returning to our main goal, observe that by the very construction
the functors F ′(n) satisfy condition 3.2(z). Moreover, we can easily find that
the collection K = K(n) := (ω;α(1), α(2);κ(1), κ(2)), where κ(1), κ(2) are as
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in the table, forms an s-flower in each Q(n), for s = 1. Therefore, there only
remains the most technical task: we have to check that all the conditions from
(i)–(iv) in Theorem 3.2 hold. We again proceed by case-by-case inspection,
applying the table. Note that all the necessary data are contained in the
remaining columns and they can be easily recovered, since the names of
column labels are adjusted precisely to the notation from Theorem 3.2. We
leave all the computations to the reader.

Remark. (a) The algebras R′(n), n = 1, . . . , 7, belong to the ten-element
list consisting of basic (nonstandard) selfinjective algebras socle equivalent
to selfinjective algebras of tubular type, which themselves are are not of
tubular type, given in [2]. One of the remaining three members of this list
admits some other kind of covering, which is close to those discussed above.
The other two seem to behave in a quite different way.

(b) The theorem remains valid if for R′(n) we take the algebras R(n)
t

for t ∈ k \ {0}. More precisely, for any t ∈ k, replacing in the formulas
(∗) the coefficients bα(1),i := b

α(1),i
(1) and bα(2),i := b

α(2),i
(1), respectively,

by b
α(1),i

= b
α(1),i

(t) and b
α(2),i

= b
α(2),i

(t) from the table, we can construct

almost Galois G-covering functors F ′(t)(n) : R̃(n)→R
(n)
t of integral type, with

G=Π(Q(n), I
(n)
0 ). Clearly, F ′(1)

(n) =F ′(n) and F ′(0)
(n) = F̄(n), where F̄(n) : R̃(n)→

R̄(n) is a canonical Galois covering functor with group G. For each n, the
functors F ′(t)(n) , t ∈ k, form a geometric family of functors, which defines a
degeneration of F ′(n) to F̄(n) (see [10, Definitions 2.3 and 2.4, Theorem 2.6]),
and they all have the properties as in Theorem 3.8.

(c) In the last column of the table we provide for illustration the values
of the constants c from Lemma 3.4 for all the functors F ′(t)(n) .
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