3-WEAK AMENABILITY OF (2n)TH DUALS OF BANACH ALGEBRAS

BY

MINA ETTEFAGH (Tabriz)

Abstract

We show that under some conditions, 3 -weak amenability of the ($2 n$)th dual of a Banach algebra A for some $n \geq 1$ implies 3 -weak amenability of A.

1. Introduction and preliminaries. Throughout this paper, A is a Banach algebra, and $A^{\prime}, A^{\prime \prime}, \ldots, A^{(n)}$ denote the iterated duals of A. We always use the first Arens product on $A^{(2 n)}(n \geq 1)$, denoted by \square. We regard A as a subalgebra of $A^{\prime \prime}$ by the canonical embedding $i: A \rightarrow A^{\prime \prime}$ $(a \mapsto \hat{a})$ where $\langle\hat{a}, f\rangle=\langle f, a\rangle$ for $f \in A^{\prime}$. We recall that A^{\prime} is a Banach A-bimodule under the actions

$$
\langle a . f, b\rangle=\langle f, b a\rangle, \quad\langle f \cdot a, b\rangle=\langle f, a b\rangle \quad\left(a, b \in A, f \in A^{\prime}\right)
$$

Also let E be a Banach A-bimodule. Then $E^{\prime \prime}$ is a Banach $A^{\prime \prime}$-bimodule under the actions

$$
\begin{equation*}
F . \Lambda=w^{*}-\lim _{i} w^{*}-\lim _{j} \widehat{a_{i} x_{j}}, \quad \Lambda . F=w^{*}-\lim _{j} w^{*}-\lim _{i} \widehat{x_{j} a_{i}} \tag{1.1}
\end{equation*}
$$

where $F=w^{*}-\lim _{i} \widehat{a_{i}}$ and $\Lambda=w^{*}-\lim _{j} \widehat{x_{j}}$ are such that $\left(a_{i}\right) \subset A$ and $\left(x_{j}\right) \subset$ E are bounded nets, and the limits are in the weak* topology.

In Section 2 we investigate two $A^{\prime \prime}$-bimodule structures on $A^{(5)}$ given by $A^{(5)}=\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}$ and $A^{(5)}=\left(\left(\left(A^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$, and also two $A^{(4)}$-bimodule structures on $A^{(7)}=\left(\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}\right)^{\prime \prime}$ and $A^{(7)}=\left(\left(\left(\left(A^{\prime \prime}\right)^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$. In a similar work [6] we investigated two $A^{\prime \prime}$-bimodule structures on $A^{(3)}=\left(A^{\prime}\right)^{\prime \prime}$ and $A^{(3)}=\left(A^{\prime \prime}\right)^{\prime}$.

For a Banach A-bimodule E, a continuous linear map $D: A \rightarrow E$ is called a derivation if

$$
D(a b)=a \cdot D(b)+D(a) \cdot b \quad(a, b \in A)
$$

For $x \in E$ the derivation $\delta_{x}: A \rightarrow E$ defined by $\delta_{x}(a)=a \cdot x-x \cdot a$ is called an inner derivation. The Banach algebra A is called amenable if every derivation $D: A \rightarrow E^{\prime}$ is inner, for each Banach A-bimodule E (see [8]). If

[^0]every derivation $D: A \rightarrow A^{\prime}\left[D: A \rightarrow A^{(n)}, n \in \mathbb{N}\right]$ is inner, then A is called weakly amenable [n-weakly amenable]; see also [1, 4] for details.

Theorem 1.1 ([3, Theorem 2.7.17]). Let A be a Banach algebra, E a Banach A-bimodule and $D: A \rightarrow E$ a continuous derivation. Then $D^{\prime \prime}$: $A^{\prime \prime} \rightarrow E^{\prime \prime}$ is a continuous derivation.

Remark 1.2. In the above theorem, the $A^{\prime \prime}$-bimodule structure on $E^{\prime \prime}$ is as in (1.1).

It is known that every $(n+2)$-weakly amenable Banach algebra is n weakly amenable for $n \geq 1$ (see [4]). Also it was shown in [7] that if $A^{\prime \prime}$ is n-weakly amenable and A is a dual Banach algebra, then A is n-weakly amenable. In 9$]$ it was shown that if A is complete Arens regular and every derivation $D: A \rightarrow A^{\prime}$ is weakly compact, then weak amenability of $A^{(2 n)}$ for some $n \geq 1$ implies weak amenability of A. Recently in [2] the authors determined conditions guaranteeing that 3 -weak amenability of $A^{\prime \prime}$ implies 3 -weak amenability of A.

In this paper we introduce conditions implying that 3 -weak amenability of $A^{(2 n)}$ for some $n \geq 1$ implies 3 -weak amenability of A, and hence weak amenability of A. We find these conditions by studying $A^{(2 n)}$-module structures on $A^{(2 n+3)}$ in Section 2, and then apply them in Section 3.
2. $A^{(2 n)}$-bimodule structures on $A^{(2 n+3)}$. First we consider the $A^{\prime \prime}$ bimodule structures on $A^{(5)}=\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}$ and $A^{(5)}=\left(\left(\left(A^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ and then the $A^{(4)}$-bimodule structures on $A^{(7)}=\left(\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}\right)^{\prime \prime}$ and $A^{(7)}=\left(\left(\left(\left(A^{\prime \prime}\right)^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$. The results can be extended to $A^{(2 n)}$-bimodule structures on $A^{(2 n+3)}$.

Take $a^{(5)} \in A^{(5)}, a^{(4)} \in A^{(4)}$, and $a^{\prime \prime} \in A^{\prime \prime}$ with bounded nets $\left(a_{\alpha}^{\prime \prime \prime}\right) \subset A^{\prime \prime \prime}$, $\left(a_{i}^{\prime \prime}\right) \subset A^{\prime \prime}$, and $\left(a_{\beta}\right) \subset A$ such that $a^{(5)}=w^{*}-\lim _{\alpha} \widehat{a_{\alpha}^{\prime \prime \prime}}, a^{(4)}=w^{*}-\lim _{i} \widehat{a_{i}^{\prime \prime}}$, and $a^{\prime \prime}=w^{*}-\lim _{\beta} \widehat{a_{\beta}}$.

For the $A^{\prime \prime}$-bimodule structure on $A^{(5)}=\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}$ we have

$$
\begin{align*}
\left\langle a^{\prime \prime} \cdot a^{(5)}, a^{(4)}\right\rangle & =\lim _{\beta} \lim _{\alpha}\left\langle a^{(4)}, a_{\beta} \cdot a_{\alpha}^{\prime \prime \prime}\right\rangle=\lim _{\beta} \lim _{\alpha} \lim _{i}\left\langle a_{\beta} \cdot a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime}\right\rangle \tag{2.1}\\
& =\lim _{\beta} \lim _{\alpha} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime} \square \widehat{a_{\beta}}\right\rangle
\end{align*}
$$

and

$$
\begin{align*}
\left\langle a^{(5)} \cdot a^{\prime \prime}, a^{(4)}\right\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle a^{(4)}, a_{\alpha}^{\prime \prime \prime} \cdot a_{\beta}\right\rangle=\lim _{\alpha} \lim _{\beta} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime} \cdot a_{\beta}, a_{i}^{\prime \prime}\right\rangle \tag{2.2}\\
& =\lim _{\alpha} \lim _{\beta} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, \widehat{a_{\beta}} \square a_{i}^{\prime \prime}\right\rangle .
\end{align*}
$$

But the $A^{\prime \prime}$-bimodule structure on $A^{(5)}=\left(\left(\left(A^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ is given as follows:

$$
\begin{align*}
\left\langle a^{\prime \prime} \cdot a^{(5)}, a^{(4)}\right\rangle & =\left\langle a^{(5)}, a^{(4)} \cdot a^{\prime \prime}\right\rangle=\lim _{\alpha}\left\langle a^{(4)} \cdot a^{\prime \prime}, a_{\alpha}^{\prime \prime \prime}\right\rangle \tag{2.3}\\
& =\lim _{\alpha}\left\langle a^{(4)}, a^{\prime \prime} \cdot a_{\alpha}^{\prime \prime \prime}\right\rangle=\lim _{\alpha} \lim _{i}\left\langle a^{\prime \prime} \cdot a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime}\right\rangle \\
& =\lim _{\alpha} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime} \square a^{\prime \prime}\right\rangle
\end{align*}
$$

and

$$
\begin{align*}
\left\langle a^{(5)} \cdot a^{\prime \prime}, a^{(4)}\right\rangle & =\left\langle a^{(5)}, a^{\prime \prime} \cdot a^{(4)}\right\rangle=\lim _{\alpha}\left\langle a^{\prime \prime} \cdot a^{(4)}, a_{\alpha}^{\prime \prime \prime}\right\rangle \tag{2.4}\\
& =\lim _{\alpha}\left\langle a^{(4)}, a_{\alpha}^{\prime \prime \prime} \cdot a^{\prime \prime}\right\rangle=\lim _{\alpha} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime} \cdot a^{\prime \prime}, a_{i}^{\prime \prime}\right\rangle \\
& =\lim _{\alpha} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, a^{\prime \prime} \square a_{i}^{\prime \prime}\right\rangle .
\end{align*}
$$

So the two $A^{\prime \prime}$-bimodule structures are not equal.
Proposition 2.1. Let A be a Banach algebra such that the following maps and $A^{\prime \prime}$ are Arens regular:

$$
\text { (i) }\left\{\begin{array} { l }
{ A ^ { \prime } \times A \rightarrow A ^ { \prime } , } \\
{ (f , a) \mapsto f . a , }
\end{array} \quad \text { (ii) } \left\{\begin{array}{l}
A^{\prime \prime} \times A^{\prime \prime \prime} \rightarrow A^{\prime \prime \prime}, \\
(F, \Lambda) \mapsto F . \Lambda .
\end{array}\right.\right.
$$

Then the two $A^{\prime \prime}$-bimodule structures on $\left(\left(\left(A^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ and $\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}$ coincide.
Proof. First we show $\varphi: \widehat{A} \rightarrow A^{\prime \prime}(\widehat{a} \mapsto \widehat{a} \square G)$ is w^{*}-w-continuous for all $G \in A^{\prime \prime}$. For a net $\left(\widehat{a_{\alpha}}\right)$ in \widehat{A} and for $a^{\prime \prime \prime}=w^{*}-\lim _{\beta} \widehat{f_{\beta}} \in A^{\prime \prime \prime}$ such that $\left(f_{\beta}\right)$ is a net in A^{\prime} we have

$$
\begin{aligned}
\left\langle a^{\prime \prime \prime},\left(w^{*}-\lim _{\alpha} \widehat{a_{\alpha}}\right) \square G\right\rangle & =\left\langle a^{\prime \prime \prime}, w^{*}-\lim _{\alpha}\left(\widehat{a_{\alpha}} \square G\right)\right\rangle=\lim _{\beta}\left\langle w^{*}-\lim _{\alpha}\left(\widehat{a_{\alpha}} \square G\right), f_{\beta}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha}\left\langle G, f_{\beta} \cdot a_{\alpha}\right\rangle=\lim _{\beta} \lim _{\alpha}\left\langle\widehat{f_{\beta} \cdot a_{\alpha}}, G\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{f_{\beta} \cdot a_{\alpha}}, G\right\rangle=\lim _{\alpha} \lim _{\beta}\left\langle G, f_{\beta} \cdot a_{\alpha}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{a_{\alpha}} \square G, f_{\beta}\right\rangle=\lim _{\alpha} \lim _{\beta}\left\langle\widehat{f_{\beta}}, \widehat{a_{\alpha}} \square G\right\rangle \\
& =\lim _{\alpha}\left\langle a^{\prime \prime \prime}, \widehat{a_{\alpha}} \square G\right\rangle .
\end{aligned}
$$

This proves the w^{*}-w-continuity of φ. On the other hand for the nets $\left(a_{\alpha}\right)$ and $\left(f_{\beta}\right)$ in A and A^{\prime} respectively, by Arens regularity of the map in (ii), for $F \in A^{\prime \prime}$ we have

$$
\begin{aligned}
\left\langle w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} \widehat{a_{\alpha} \cdot f_{\beta}}, F\right\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{\left\langle a_{\alpha} \cdot f_{\beta}\right.}, F\right\rangle=\lim _{\alpha} \lim _{\beta}\left\langle\widehat{a_{\alpha}} \cdot \widehat{f_{\beta}}, F\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{\widehat{a_{\alpha}} \cdot \widehat{f_{\beta}}}, \widehat{F}\right\rangle=\lim _{\beta} \lim _{\alpha}\left\langle\widehat{\widehat{a_{\alpha}} \cdot \widehat{f_{\beta}}}, \widehat{F}\right\rangle \\
& =\left\langle w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} \widehat{a_{\alpha} \cdot f_{\beta}}, F\right\rangle .
\end{aligned}
$$

This proves the Arens regularity of the map $A \times A^{\prime} \rightarrow A^{\prime}((a, f) \mapsto a . f)$, and similarly we deduce the w^{*}-w-continuity of the map $\widehat{A} \rightarrow A^{\prime \prime}(\widehat{a} \mapsto G \square \widehat{a})$ for all $G \in A^{\prime \prime}$.

For the rest of proof we continue equality (2.3):

$$
\begin{aligned}
\left\langle a^{\prime \prime} \cdot a^{(5)}, a^{(4)}\right\rangle & =\lim _{\alpha} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime} \square a^{\prime \prime}\right\rangle=\lim _{\alpha} \lim _{i} \lim _{\beta}\left\langle a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime} \square \widehat{a_{\beta}}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime} \square \widehat{a_{\beta}}\right\rangle=\lim _{\alpha} \lim _{\beta} \lim _{i}\left\langle a_{\beta} \cdot a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{a_{\beta} \cdot} \cdot a_{\alpha}^{\prime \prime \prime}, a^{(4)}\right\rangle=\lim _{\beta} \lim _{\alpha}\left\langle\widehat{a_{\beta}} \cdot a_{\alpha}^{\prime \prime \prime}, a^{(4)}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, a_{i}^{\prime \prime} \square \widehat{a_{\beta}}\right\rangle ;
\end{aligned}
$$

this proves the equality of (2.1) and (2.3). Similarly we continue equality (2.4):

$$
\begin{aligned}
\left\langle a^{(5)} \cdot a^{\prime \prime}, a^{(4)}\right\rangle & =\lim _{\alpha} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, a^{\prime \prime} \square a_{i}^{\prime \prime}\right\rangle=\lim _{\alpha} \lim _{i} \lim _{\beta}\left\langle a_{\alpha}^{\prime \prime \prime}, \widehat{a_{\beta}} \square a_{i}^{\prime \prime}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{i}\left\langle a_{\alpha}^{\prime \prime \prime}, \widehat{a_{\beta}} \square a_{i}^{\prime \prime}\right\rangle,
\end{aligned}
$$

which proves the equality of (2.2) and (2.4).
We need the following lemma to extend our results to $A^{(7)}$.
Lemma 2.2. Let A be a Banach algebra such that the following maps and $A^{(4)}$ are Arens regular:

$$
\text { (i) }\left\{\begin{array} { l }
{ A ^ { \prime \prime \prime } \times A ^ { \prime \prime } \rightarrow A ^ { \prime \prime \prime } , } \\
{ (\Lambda , F) \mapsto \Lambda . F , }
\end{array} \quad \text { (ii) } \left\{\begin{array}{l}
A^{(4)} \times A^{(5)} \rightarrow A^{(5)}, \\
(\Lambda, F) \mapsto \Lambda . F .
\end{array}\right.\right.
$$

Then the following maps and $A^{\prime \prime}$ are Arens regular:

$$
\text { (a) }\left\{\begin{array} { l }
{ A ^ { \prime } \times A \rightarrow A ^ { \prime } , } \\
{ (f , a) \mapsto f . a , }
\end{array} \quad \text { (b) } \left\{\begin{array}{l}
A^{\prime \prime} \times A^{\prime \prime \prime} \rightarrow A^{\prime \prime \prime}, \\
(F, \Lambda) \mapsto F . \Lambda .
\end{array}\right.\right.
$$

Proof. For Arens regularity of $A^{\prime \prime}$ take nets $\left(F_{\alpha}\right)$ and $\left(G_{\beta}\right)$ in $A^{\prime \prime}$ and $a^{\prime \prime \prime} \in A^{\prime \prime \prime}$, so $\left(\widehat{F_{\alpha}}\right)$ and $\left(\widehat{G_{\beta}}\right)$ are nets in $A^{(4)}$ and $\widehat{a^{\prime \prime \prime}} \in A^{(5)}$. By Arens regularity of $A^{(4)}$ we have

$$
\begin{aligned}
\lim _{\alpha} \lim _{\beta}\left\langle a^{\prime \prime \prime}, F_{\alpha} \square G_{\beta}\right\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle\widehat{a^{\prime \prime \prime}}, \widehat{F_{\alpha}} \square \widehat{G_{\beta}}\right\rangle=\lim _{\beta} \lim _{\alpha}\left\langle\widehat{a^{\prime \prime \prime}}, \widehat{F_{\alpha}} \square \widehat{G_{\beta}}\right\rangle \\
& =\lim _{\beta} \lim _{\alpha}\left\langle a^{\prime \prime \prime}, F_{\alpha} \square G_{\beta}\right\rangle .
\end{aligned}
$$

This proves the Arens regularity of $A^{\prime \prime}$. Now suppose that $\left(f_{\alpha}\right)$ and $\left(a_{\beta}\right)$ are nets in A^{\prime} and A respectively, and let $F \in A^{\prime \prime}$, so $\left(\widehat{f_{\alpha}}\right)$ and $\left(\widehat{a_{\beta}}\right)$ are nets in
$A^{\prime \prime \prime}$ and $A^{\prime \prime}$ respectively and $\widehat{F} \in A^{(4)}$. By Arens regularity of (i) we have

$$
\begin{aligned}
\left\langle w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} \widehat{f_{\alpha} \cdot a_{\beta}}, F\right\rangle & \left.=\lim _{\alpha} \lim _{\beta}\left\langle\widehat{f_{\alpha}} \cdot \widehat{a_{\beta}}, F\right\rangle=\lim _{\alpha} \lim _{\beta} \widehat{\left\langle\widehat{f_{\alpha}} \cdot \widehat{a_{\beta}}\right.}, \widehat{F}\right\rangle \\
& \left.=\lim _{\beta} \lim _{\alpha} \widehat{\widehat{f_{\alpha}} \cdot \widehat{a_{\beta}}}, \widehat{F}\right\rangle \\
& =\left\langle w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha} \widehat{f_{\alpha} \cdot a_{\beta}}, F\right\rangle
\end{aligned}
$$

which proves the Arens regularity of (a). Similarly the Arens regularity of (ii) implies the Arens regularity of (b).

Now we are ready to consider two $A^{(4)}$-bimodule structures on $A^{(7)}$. Take $a^{(7)} \in A^{(7)}, a^{(6)} \in A^{(6)}$ and $a^{(4)} \in A^{(4)}$ with bounded nets $\left(a_{\beta}^{(5)}\right) \subset A^{(5)}$, $\left(a_{i}^{(4)}\right) \subset A^{(4)}$ and $\left(a_{\alpha}^{\prime \prime}\right) \subset A^{\prime \prime}$ such that $a^{(7)}=w^{*}-\lim _{\beta} \widehat{a_{\beta}^{(5)}}, a^{(6)}=w^{*}-\lim _{i} \widehat{a_{i}^{(4)}}$ and $a^{(4)}=w^{*}-\lim _{\alpha} \widehat{a_{\alpha}^{\prime \prime}}$.

For the $A^{(4)}$-bimodule structure on $A^{(7)}=\left(\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}\right)^{\prime \prime}$ we can write

$$
\begin{align*}
\left\langle a^{(4)} \cdot a^{(7)}, a^{(6)}\right\rangle & =\lim _{\alpha} \lim _{\beta}\left\langle a^{(6)}, a_{\alpha}^{\prime \prime} \cdot a_{\beta}^{(5)}\right\rangle \tag{2.5}\\
& =\lim _{\alpha} \lim _{\beta} \lim _{i}\left\langle a_{\alpha}^{\prime \prime} \cdot a_{\beta}^{(5)}, a_{i}^{(4)}\right\rangle \\
\left\langle a^{(7)} \cdot a^{(4)}, a^{(6)}\right\rangle & =\lim _{\beta} \lim _{\alpha}\left\langle a^{(6)}, a_{\beta}^{(5)} \cdot a_{\alpha}^{\prime \prime}\right\rangle \tag{2.6}\\
& =\lim _{\beta} \lim _{\alpha} \lim _{i}\left\langle a_{\beta}^{(5)} \cdot a_{\alpha}^{\prime \prime}, a_{i}^{(4)}\right\rangle
\end{align*}
$$

But for the $A^{(4)}$-bimodule structure on $A^{(7)}=\left(\left(\left(\left(A^{\prime \prime}\right)^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ we have

$$
\begin{align*}
\left\langle a^{(4)} \cdot a^{(7)}, a^{(6)}\right\rangle & =\left\langle a^{(7)}, a^{(6)} \cdot a^{(4)}\right\rangle=\lim _{\beta}\left\langle a^{(6)} \cdot a^{(4)}, a_{\beta}^{(5)}\right\rangle \tag{2.7}\\
& =\lim _{\beta}\left\langle a^{(6)}, a^{(4)} \cdot a_{\beta}^{(5)}\right\rangle=\lim _{\beta} \lim _{i}\left\langle a^{(4)} \cdot a_{\beta}^{(5)}, a_{i}^{(4)}\right\rangle \\
& =\lim _{\beta} \lim _{i}\left\langle a_{\beta}^{(5)}, a_{i}^{(4)} \square a^{(4)}\right\rangle \\
\left\langle a^{(7)} \cdot a^{(4)}, a^{(6)}\right\rangle & =\left\langle a^{(7)}, a^{(4)} \cdot a^{(6)}\right\rangle=\lim _{\beta}\left\langle a^{(4)} \cdot a^{(6)}, a_{\beta}^{(5)}\right\rangle \tag{2.8}\\
& =\lim _{\beta}\left\langle a^{(6)}, a_{\beta}^{(5)} \cdot a^{(4)}\right\rangle=\lim _{\beta} \lim _{i}\left\langle a_{\beta}^{(5)} \cdot a^{(4)}, a_{i}^{(4)}\right\rangle \\
& =\lim _{\beta} \lim _{i}\left\langle a_{\beta}^{(5)}, a^{(4)} \square a_{i}^{(4)}\right\rangle .
\end{align*}
$$

Proposition 2.3. Let A be a Banach algebra as in the hypothesis of Lemma 2.2. Then the two $A^{(4)}$-bimodule structures on $\left(\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}\right)^{\prime \prime}$ and $\left(\left(\left(\left(A^{\prime \prime}\right)^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ coincide.

Proof. By Lemma 2.2 the hypothesis of Proposition 2.1 holds, and so we can use the equality of the two $A^{\prime \prime}$-bimodule structures on $A^{(5)}=\left(\left(\left(A^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ and $A^{(5)}=\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}$. Our proof is similar to the proof of Proposition 2.1. First we continue equality (2.5):

$$
\begin{aligned}
\left\langle a^{(4)} \cdot a^{(7)}, a^{(6)}\right\rangle & =\lim _{\alpha} \lim _{\beta} \lim _{i}\left\langle a_{\alpha}^{\prime \prime} \cdot a_{\beta}^{(5)}, a_{i}^{(4)}\right\rangle \\
& =\lim _{\alpha} \lim _{\beta} \lim _{i}\left\langle a_{\beta}^{(5)}, a_{i}^{(4)} \square \widehat{a_{\alpha}^{\prime \prime}}\right\rangle \quad \text { (by Proposition 2.1) } \\
& =\lim _{\beta} \lim _{\alpha} \lim _{i}\left\langle a_{\beta}^{(5)}, a_{i}^{(4)} \square \widehat{a_{\alpha}^{\prime \prime}}\right\rangle \\
& =\lim _{\beta} \lim _{i} \lim _{\alpha}\left\langle a_{\beta}^{(5)}, a_{i}^{(4)} \square \widehat{a_{\alpha}^{\prime \prime}}\right\rangle \\
& =\lim _{\beta} \lim _{i}\left\langle a_{\beta}^{(5)}, a_{i}^{(4)} \square a^{(4)}\right\rangle .
\end{aligned}
$$

This proves the equality of (2.5) and (2.7). The proof of the equality of (2.6) and (2.8) is similar.

REmARK 2.4. There are many other $A^{\prime \prime}$-bimodule $\left[A^{(4)}\right.$-bimodule $]$ structures on $A^{(5)}\left[A^{(7)}\right]$ that we do not need to mention.

The following corollary is about a similar work in [6] for two $A^{\prime \prime}$-bimodule structures on $A^{\prime \prime \prime}$.

Corollary 2.5. Let A be a Banach algebra as in the hypothesis of Proposition 2.1. Then the two $A^{\prime \prime}$-bimodule structures on $A^{\prime \prime \prime}=\left(A^{\prime}\right)^{\prime \prime}$ and $A^{\prime \prime \prime}=\left(A^{\prime \prime}\right)^{\prime}$ coincide .

Proof. The Arens regularity of $A^{\prime \prime}$ implies the Arens regularity of A, and also the Arens regularity of the map in (ii) of Proposition 2.1 implies the Arens regularity of $\varphi: A \times A^{\prime} \rightarrow A^{\prime}((a, f) \mapsto a . f)$. Thus the assertion holds by Theorem 2.1 of [6].
3. 3-weak amenability of $A^{(2 n)}$. We recall that by Theorem 1.1, for a continuous derivation $D: A \rightarrow E$, the second transpose $D^{\prime \prime}: A^{\prime \prime} \rightarrow E^{\prime \prime}$ and hence the fourth transpose $D^{(4)}: A^{(4)} \rightarrow E^{(4)}$ are continuous derivations. In this section we consider a continuous derivation $D: A \rightarrow A^{(3)}=\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}$ and its second and fourth transposes.

Lemma 3.1. Let A be a Banach algebra as in the hypothesis of Proposition 2.1. If the second transpose of a continuous derivation $D: A \rightarrow A^{\prime \prime \prime}=$ $\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}$ is inner, then D is inner.

Proof. Since $D^{\prime \prime}: A^{\prime \prime} \rightarrow\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}=A^{(5)}$ is inner, there is an $a^{(5)} \in A^{(5)}$ such that $D^{\prime \prime}\left(a^{\prime \prime}\right)=a^{\prime \prime} \cdot a^{(5)}-a^{(5)} \cdot a^{\prime \prime}\left(a^{\prime \prime} \in A^{\prime \prime}\right)$, where the $A^{\prime \prime}$-bimodule structure is as in (2.1) and (2.2). Let $a^{(3)}=i^{*}\left(a^{(5)}\right)$ where $i: A^{\prime \prime} \rightarrow\left(A^{\prime \prime}\right)^{\prime \prime}=$
$A^{(4)}$ is the natural map and so $i^{*}:\left(\left(A^{\prime \prime}\right)^{\prime \prime}\right)^{\prime}=A^{(5)} \rightarrow A^{(3)}=\left(A^{\prime \prime}\right)^{\prime}$. Then for $a^{\prime \prime} \in A^{\prime \prime}$ we have

$$
\begin{aligned}
\left\langle D(a), a^{\prime \prime}\right\rangle=\left\langle\widehat{D(a)}, \widehat{a^{\prime \prime}}\right\rangle & =\left\langle D^{\prime \prime}(\widehat{a}), \widehat{a^{\prime \prime}}\right\rangle=\left\langle\hat{a} \cdot a^{(5)}-a^{(5)} \cdot \hat{a}, \widehat{a^{\prime \prime}}\right\rangle \\
& =\left\langle a^{(5)}, \widehat{a^{\prime \prime}} \cdot \hat{a}-\hat{a} \cdot \widehat{a^{\prime \prime}}\right\rangle=\left\langle a^{(5)}, a^{\prime \prime} \cdot \widehat{a-a} \cdot a^{\prime \prime}\right\rangle \\
& =\left\langle i^{*}\left(a^{(5)}\right), a^{\prime \prime} \cdot a-a \cdot a^{\prime \prime}\right\rangle=\left\langle a \cdot a^{(3)}-a^{(3)} \cdot a, a^{\prime \prime}\right\rangle
\end{aligned}
$$

Thus $D(a)=a . a^{(3)}-a^{(3)} . a$.
By using Lemma 2.2 we can similarly prove the following lemma:
Lemma 3.2. Let A be a Banach algebra as in the hypothesis of Lemma 2.2. If the fourth transpose of a continuous derivation $D: A \rightarrow A^{\prime \prime \prime}=\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}$ is inner then $D^{\prime \prime}$ and D are inner.

Proposition 3.3. Let A be a Banach algebra as in the hypothesis of Proposition 2.1. If $A^{\prime \prime}$ is 3-weakly amenable then so is A.

Proof. Suppose that $D: A \rightarrow A^{(3)}=\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}$ is a continuous derivation. Then $D^{\prime \prime}: A^{\prime \prime} \rightarrow A^{(5)}=\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}$ is again a derivation by Theorem 1.1. We know that the two $A^{\prime \prime}$-bimodule structures on $A^{(5)}=\left(\left(\left(A^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime \prime}$ and $A^{(5)}=$ $\left(\left(\left(A^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ are equal by Proposition 2.1 , so $D^{\prime \prime}: A^{\prime \prime} \rightarrow A^{(5)}=\left(\left(\left(A^{\prime \prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}$ is also a derivation. Thus $D^{\prime \prime}$ is inner because $A^{\prime \prime}$ is 3-weakly amenable. Finally D is inner by Lemma 3.1, and this proves the 3 -weak amenability of A.

Proposition 3.4. Let A be a Banach algebra as in the hypothesis of Lemma 2.2. If $A^{(4)}$ is 3 -weakly amenable then so is A.

Proof. This is a consequence of Proposition 2.3 and Lemma 3.2.
Now we can extend Propositions 3.3 and 3.4 as follows:
Theorem 3.5. Let $n \geq 1$ and A be a Banach algebra such that the following maps and $A^{(2 n)}$ are Arens regular:
(i) $\left\{\begin{array}{l}A^{(2 n-1)} \times A^{(2 n-2)} \rightarrow A^{(2 n-1)}, \\ (\Lambda, F) \mapsto \Lambda . F,\end{array} \quad\right.$ (ii) $\left\{\begin{array}{l}A^{(2 n)} \times A^{(2 n+1)} \rightarrow A^{(2 n+1)}, \\ (F, \Lambda) \mapsto F . \Lambda .\end{array}\right.$

If $A^{(2 n)}$ is 3-weakly amenable then A is 3-weakly amenable and hence it is weakly amenable.

Example 3.6. C^{*}-algebras are standard examples of Banach algebras that are Arens regular and have a bounded approximate identity. The second dual $A^{\prime \prime}$ of a C^{*}-algebra A is itself a C^{*}-algebra and a von Neumann algebra [3, Corollary 3.2.37]. Every C^{*}-algebra is n-weakly amenable for each n (see [4]), so the conclusions of Theorem 3.5 hold for any C^{*}-algebras, but the assumptions only hold for finite-dimensional ones [5, Corollary 4.6].

According to Corollary 2.5 and Proposition 4.5 in [5], it seems that an example of the conditions in Proposition 2.1, with a non-reflexive Banach
algebra, can only be obtained when the algebra has no two sided bounded approximate identity.

Example 3.7. Assume that A is a non-reflexive complex Banach space and $\varphi: A \rightarrow \mathbb{C}$ is a bounded linear functional. Define a multiplication on A by $a b=\langle\varphi, a\rangle b$. This makes A into a Banach algebra which is called the ideally factored algebra associated to φ. It is easy to check that φ is multiplicative and also

$$
\begin{gathered}
a . f=\langle f, a\rangle \varphi, \quad f . a=\langle\varphi, a\rangle f, \quad f . F=\langle F, \varphi\rangle f, \quad F . f=\langle F, f\rangle \varphi, \\
F \square G=F \diamond G=\langle F, \varphi\rangle G, \quad F . \Lambda=\langle\Lambda, F\rangle \widehat{\varphi}, \quad \Lambda . F=\langle F, \varphi\rangle \Lambda,
\end{gathered}
$$

for $a \in A, f \in A^{\prime}, \varphi \in A^{\prime \prime \prime}$ and $F, G \in A^{\prime \prime}$. Now for bounded nets (a_{i}) and $\left(f_{j}\right)$ in A and A^{\prime} respectively, we have

$$
\begin{aligned}
w^{*}-\lim _{i} w^{*}-\lim _{j} \widehat{f_{j} a_{i}} & =w^{*}-\lim _{i} w^{*}-\lim _{j}\left\langle\varphi, a_{i}\right\rangle \widehat{f}_{j} \\
& =w^{*}-\lim _{i}\left\langle\varphi, a_{i}\right\rangle w^{*}-\lim _{j} \widehat{f_{j}} .
\end{aligned}
$$

This proves the Arens regularity of the map $A^{\prime} \times A \rightarrow A^{\prime}((f, a) \mapsto f . a)$. Since A is not reflexive, the map $A \times A^{\prime} \rightarrow A^{\prime}((a, f) \mapsto a . f)$ is not Arens regular, because

$$
\begin{aligned}
w^{*}-\lim _{i} w^{*}-\lim _{j} \widehat{a_{i} f_{j}} & =w^{*}-\lim _{i} w^{*}-\lim _{j}\left\langle f_{j}, a_{i}\right\rangle \varphi \\
& \neq w^{*}-\lim _{j} w^{*}-\lim _{i}\left\langle f_{j}, a_{i}\right\rangle \varphi
\end{aligned}
$$

Similarly we can check that A and $A^{\prime \prime}$ and the map $A^{\prime \prime \prime} \times A^{\prime \prime} \rightarrow A^{\prime \prime \prime}((\Lambda, F) \mapsto$ $\Lambda . F)$ are Arens regular, but the map $A^{\prime \prime} \times A^{\prime \prime \prime} \rightarrow A^{\prime \prime \prime}((F, \Lambda) \mapsto F . \Lambda)$ is not Arens regular. Now for $a, b \in A$ we have

$$
\varphi(a b)=\varphi(\langle\varphi, a\rangle b)=\langle\varphi, a\rangle\langle\varphi, b\rangle=\varphi(b a),
$$

so if φ is one-to-one then $a b=b a$, that is, A is commutative. In this situation the assumptions of Proposition 2.1 hold.

Acknowledgements. I would like to thank the referee for carefully reading the manuscript and giving some fruitful suggestions.

REFERENCES

[1] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebra, Proc. London Math. Soc. 55 (1987), 359-377.
[2] A. Bodaghi, M. Ettefagh, M. E. Gordji and A. Medghalchi, Module structures on iterated duals of Banach algebras, An. Ştiinţ. Univ. Ovidius Constanţa 18 (2010), 63-80.
[3] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Univ. Press, 2000.
[4] H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19-54.
[5] H. D. Dales, A. Rodríguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. (2) 64 (2001), 707-721.
[6] M. Ettefagh, The third dual of a Banach algebra, Studia Sci. Math. Hungar. 45 (2008), 1-11.
[7] A. Jabbari, M. S. Moslehian, and H. R. E. Vishki, Constructions preserving n-weak amenability of Banach algebras, to appear.
[8] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
[9] A. Medghalchi and T.Yazdanpanah, Problems concerning n-weak amenability of a Banach algebra, Czechoslovak Math. J. 55 (130) (2005), 863-876.

Mina Ettefagh
Department of Mathematics
Tabriz Branch
Islamic Azad University
Tabriz, Iran
E-mail: etefagh@iaut.ac.ir
minaettefagh@gmail.com

Received 1 March 2012;
revised 2 July 2012

[^0]: 2010 Mathematics Subject Classification: Primary 46H25.
 Key words and phrases: Banach algebra, Banach bimodule, Arens regularity, n-weak amenability.

