VOL. 128

2012

NO. 1

3-WEAK AMENABILITY OF (2n)TH DUALS OF BANACH ALGEBRAS

ВY

MINA ETTEFAGH (Tabriz)

Abstract. We show that under some conditions, 3-weak amenability of the (2n)th dual of a Banach algebra A for some $n \ge 1$ implies 3-weak amenability of A.

1. Introduction and preliminaries. Throughout this paper, A is a Banach algebra, and $A', A'', \ldots, A^{(n)}$ denote the iterated duals of A. We always use the first Arens product on $A^{(2n)}$ $(n \ge 1)$, denoted by \Box . We regard A as a subalgebra of A'' by the canonical embedding $i : A \to A''$ $(a \mapsto \hat{a})$ where $\langle \hat{a}, f \rangle = \langle f, a \rangle$ for $f \in A'$. We recall that A' is a Banach A-bimodule under the actions

 $\langle a.f,b\rangle = \langle f,ba\rangle, \quad \langle f.a,b\rangle = \langle f,ab\rangle \quad (a,b\in A, f\in A').$

Also let E be a Banach $A\mbox{-bimodule}.$ Then E'' is a Banach $A''\mbox{-bimodule}$ under the actions

(1.1)
$$F.\Lambda = w^*-\lim_i w^*-\lim_j \widehat{a_i x_j}, \quad \Lambda.F = w^*-\lim_j w^*-\lim_i \widehat{x_j a_i}$$

where $F = w^*$ -lim_i $\hat{a_i}$ and $\Lambda = w^*$ -lim_j $\hat{x_j}$ are such that $(a_i) \subset A$ and $(x_j) \subset E$ are bounded nets, and the limits are in the weak^{*} topology.

In Section 2 we investigate two A''-bimodule structures on $A^{(5)}$ given by $A^{(5)} = (((A')')')''$ and $A^{(5)} = (((A'')')')'$, and also two $A^{(4)}$ -bimodule structures on $A^{(7)} = ((((A')')')'')''$ and $A^{(7)} = ((((A'')'')')')'$. In a similar work [6] we investigated two A''-bimodule structures on $A^{(3)} = (A')''$ and $A^{(3)} = (A'')'$.

For a Banach A-bimodule E, a continuous linear map $D: A \to E$ is called a *derivation* if

$$D(ab) = a.D(b) + D(a).b \quad (a, b \in A).$$

For $x \in E$ the derivation $\delta_x : A \to E$ defined by $\delta_x(a) = a.x - x.a$ is called an *inner derivation*. The Banach algebra A is called *amenable* if every derivation $D : A \to E'$ is inner, for each Banach A-bimodule E (see [8]). If

2010 Mathematics Subject Classification: Primary 46H25.

Key words and phrases: Banach algebra, Banach bimodule, Arens regularity, *n*-weak amenability.

every derivation $D: A \to A'$ $[D: A \to A^{(n)}, n \in \mathbb{N}]$ is inner, then A is called weakly amenable [n-weakly amenable]; see also [1, 4] for details.

THEOREM 1.1 ([3, Theorem 2.7.17]). Let A be a Banach algebra, E a Banach A-bimodule and $D: A \to E$ a continuous derivation. Then $D'': A'' \to E''$ is a continuous derivation.

REMARK 1.2. In the above theorem, the A''-bimodule structure on E'' is as in (1.1).

It is known that every (n + 2)-weakly amenable Banach algebra is *n*-weakly amenable for $n \ge 1$ (see [4]). Also it was shown in [7] that if A'' is *n*-weakly amenable and A is a dual Banach algebra, then A is *n*-weakly amenable. In [9] it was shown that if A is complete Arens regular and every derivation $D: A \to A'$ is weakly compact, then weak amenability of $A^{(2n)}$ for some $n \ge 1$ implies weak amenability of A. Recently in [2] the authors determined conditions guaranteeing that 3-weak amenability of A'' implies 3-weak amenability of A.

In this paper we introduce conditions implying that 3-weak amenability of $A^{(2n)}$ for some $n \ge 1$ implies 3-weak amenability of A, and hence weak amenability of A. We find these conditions by studying $A^{(2n)}$ -module structures on $A^{(2n+3)}$ in Section 2, and then apply them in Section 3.

2. $A^{(2n)}$ -bimodule structures on $A^{(2n+3)}$. First we consider the A''-bimodule structures on $A^{(5)} = (((A')')')''$ and $A^{(5)} = (((A'')')')'$ and then the $A^{(4)}$ -bimodule structures on $A^{(7)} = ((((A')')')'')''$ and $A^{(7)} = ((((A'')'')')')'$. The results can be extended to $A^{(2n)}$ -bimodule structures on $A^{(2n+3)}$.

Take $a^{(5)} \in A^{(5)}$, $a^{(4)} \in A^{(4)}$, and $a'' \in A''$ with bounded nets $(a''_{\alpha}) \subset A'''$, $(a''_i) \subset A''$, and $(a_{\beta}) \subset A$ such that $a^{(5)} = w^*-\lim_{\alpha} \widehat{a''_{\alpha}}, a^{(4)} = w^*-\lim_{\alpha} \widehat{a''_i}$, and $a'' = w^*-\lim_{\beta} \widehat{a_{\beta}}$.

For the A"-bimodule structure on $A^{(5)} = (((A')')')''$ we have

(2.1)
$$\langle a''.a^{(5)}, a^{(4)} \rangle = \lim_{\beta} \lim_{\alpha} \langle a^{(4)}, a_{\beta}.a_{\alpha}''' \rangle = \lim_{\beta} \lim_{\alpha} \lim_{i} \langle a_{\beta}.a_{\alpha}'', a_{i}'' \rangle$$
$$= \lim_{\beta} \lim_{\alpha} \lim_{i} \langle a_{\alpha}'', a_{i}'' \Box \widehat{a_{\beta}} \rangle$$

and

(2.2)
$$\langle a^{(5)}.a'', a^{(4)} \rangle = \lim_{\alpha} \lim_{\beta} \langle a^{(4)}, a_{\alpha}'''.a_{\beta} \rangle = \lim_{\alpha} \lim_{\beta} \lim_{i} \langle a_{\alpha}'''.a_{\beta}, a_{i}'' \rangle$$
$$= \lim_{\alpha} \lim_{\beta} \lim_{i} \langle a_{\alpha}''', \widehat{a_{\beta}} \Box a_{i}'' \rangle.$$

But the A"-bimodule structure on $A^{(5)} = (((A'')'))'$ is given as follows:

(2.3)
$$\langle a^{\prime\prime}.a^{(0)}, a^{(4)} \rangle = \langle a^{(0)}, a^{(4)}.a^{\prime\prime} \rangle = \lim_{\alpha} \langle a^{(4)}.a^{\prime\prime}, a^{\prime\prime\prime}_{\alpha} \rangle$$
$$= \lim_{\alpha} \langle a^{(4)}, a^{\prime\prime}.a^{\prime\prime\prime}_{\alpha} \rangle = \lim_{\alpha} \lim_{i} \langle a^{\prime\prime}.a^{\prime\prime\prime}_{\alpha}, a^{\prime\prime}_{i} \rangle$$
$$= \lim_{\alpha} \lim_{i} \langle a^{\prime\prime\prime}_{\alpha}, a^{\prime\prime}_{i} \Box a^{\prime\prime} \rangle$$

and

$$(2.4) \qquad \langle a^{(5)}.a'',a^{(4)}\rangle = \langle a^{(5)},a''.a^{(4)}\rangle = \lim_{\alpha} \langle a''.a^{(4)},a'''_{\alpha}\rangle = \lim_{\alpha} \langle a^{(4)},a'''_{\alpha}.a''\rangle = \lim_{\alpha} \lim_{i} \langle a''_{\alpha}.a'',a''_{i}\rangle = \lim_{\alpha} \lim_{i} \langle a'''_{\alpha},a'' \Box a''_{i}\rangle.$$

So the two A''-bimodule structures are not equal.

PROPOSITION 2.1. Let A be a Banach algebra such that the following maps and A'' are Arens regular:

(i)
$$\begin{cases} A' \times A \to A', \\ (f,a) \mapsto f.a, \end{cases}$$
 (ii)
$$\begin{cases} A'' \times A''' \to A''', \\ (F,\Lambda) \mapsto F.\Lambda. \end{cases}$$

Then the two A''-bimodule structures on (((A'')'))' and (((A')'))'' coincide.

Proof. First we show $\varphi : \widehat{A} \to A'' \ (\widehat{a} \mapsto \widehat{a} \Box G)$ is w^* -w-continuous for all $G \in A''$. For a net $(\widehat{a_{\alpha}})$ in \widehat{A} and for $a''' = w^*$ -lim_{β} $\widehat{f_{\beta}} \in A'''$ such that (f_{β}) is a net in A' we have

$$\begin{split} \langle a^{\prime\prime\prime}, (w^*\text{-}\lim_{\alpha}\widehat{a_{\alpha}}) \Box G \rangle &= \langle a^{\prime\prime\prime}, w^*\text{-}\lim_{\alpha}(\widehat{a_{\alpha}} \Box G) \rangle = \lim_{\beta} \langle w^*\text{-}\lim_{\alpha}(\widehat{a_{\alpha}} \Box G), f_{\beta} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle G, f_{\beta}.a_{\alpha} \rangle = \lim_{\beta} \lim_{\alpha} \langle \widehat{f_{\beta}.a_{\alpha}}, G \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle \widehat{f_{\beta}.a_{\alpha}}, G \rangle = \lim_{\alpha} \lim_{\beta} \langle G, f_{\beta}.a_{\alpha} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle \widehat{a_{\alpha}} \Box G, f_{\beta} \rangle = \lim_{\alpha} \lim_{\beta} \langle \widehat{f_{\beta}}, \widehat{a_{\alpha}} \Box G \rangle \\ &= \lim_{\alpha} \langle a^{\prime\prime\prime}, \widehat{a_{\alpha}} \Box G \rangle. \end{split}$$

This proves the w^* -w-continuity of φ . On the other hand for the nets (a_{α}) and (f_{β}) in A and A' respectively, by Arens regularity of the map in (ii), for $F \in A''$ we have

$$\begin{split} \langle w^*\text{-}\lim_{\alpha} w^*\text{-}\lim_{\beta} \widehat{a_{\alpha}.f_{\beta}}, F \rangle &= \lim_{\alpha} \lim_{\beta} \langle \widehat{a_{\alpha}.f_{\beta}}, F \rangle = \lim_{\alpha} \lim_{\beta} \langle \widehat{a_{\alpha}.f_{\beta}}, F \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle \widehat{a_{\alpha}.\widehat{f_{\beta}}}, \widehat{F} \rangle = \lim_{\beta} \lim_{\alpha} \langle \widehat{a_{\alpha}.\widehat{f_{\beta}}}, \widehat{F} \rangle \\ &= \langle w^*\text{-}\lim_{\alpha} w^*\text{-}\lim_{\beta} \widehat{a_{\alpha}.f_{\beta}}, F \rangle. \end{split}$$

This proves the Arens regularity of the map $A \times A' \to A'$ $((a, f) \mapsto a.f)$, and similarly we deduce the w^* -w-continuity of the map $\widehat{A} \to A''$ $(\widehat{a} \mapsto G \square \widehat{a})$ for all $G \in A''$.

For the rest of proof we continue equality (2.3):

$$\langle a^{\prime\prime}.a^{(5)}, a^{(4)} \rangle = \lim_{\alpha} \lim_{i} \langle a^{\prime\prime\prime}_{\alpha}, a^{\prime\prime}_{i} \Box a^{\prime\prime} \rangle = \lim_{\alpha} \lim_{i} \lim_{\beta} \langle a^{\prime\prime\prime}_{\alpha}, a^{\prime\prime}_{i} \Box \widehat{a_{\beta}} \rangle$$

$$= \lim_{\alpha} \lim_{\beta} \lim_{i} \langle a^{\prime\prime\prime}_{\alpha}, a^{\prime\prime}_{i} \Box \widehat{a_{\beta}} \rangle = \lim_{\alpha} \lim_{\beta} \lim_{i} \langle a_{\beta}.a^{\prime\prime\prime}_{\alpha}, a^{\prime\prime}_{i} \rangle$$

$$= \lim_{\alpha} \lim_{\beta} \langle \widehat{a_{\beta}}.a^{\prime\prime\prime}_{\alpha}, a^{(4)} \rangle = \lim_{\beta} \lim_{\alpha} \langle \widehat{a_{\beta}}.a^{\prime\prime\prime}_{\alpha}, a^{(4)} \rangle$$

$$= \lim_{\beta} \lim_{\alpha} \lim_{i} \langle a^{\prime\prime\prime}_{\alpha}, a^{\prime\prime}_{i} \Box \widehat{a_{\beta}} \rangle;$$

this proves the equality of (2.1) and (2.3). Similarly we continue equality (2.4):

$$\langle a^{(5)}.a'', a^{(4)} \rangle = \lim_{\alpha} \lim_{i} \langle a'''_{\alpha}, a'' \Box a''_{i} \rangle = \lim_{\alpha} \lim_{i} \lim_{\beta} \langle a'''_{\alpha}, \widehat{a_{\beta}} \Box a''_{i} \rangle$$
$$= \lim_{\alpha} \lim_{\beta} \lim_{i} \langle a'''_{\alpha}, \widehat{a_{\beta}} \Box a''_{i} \rangle,$$

which proves the equality of (2.2) and (2.4).

We need the following lemma to extend our results to $A^{(7)}$.

LEMMA 2.2. Let A be a Banach algebra such that the following maps and $A^{(4)}$ are Arens regular:

(i)
$$\begin{cases} A''' \times A'' \to A''', \\ (\Lambda, F) \mapsto \Lambda.F, \end{cases}$$
 (ii)
$$\begin{cases} A^{(4)} \times A^{(5)} \to A^{(5)}, \\ (\Lambda, F) \mapsto \Lambda.F. \end{cases}$$

Then the following maps and A'' are Arens regular:

(a)
$$\begin{cases} A' \times A \to A', \\ (f,a) \mapsto f.a, \end{cases}$$
 (b)
$$\begin{cases} A'' \times A''' \to A''', \\ (F,\Lambda) \mapsto F.\Lambda. \end{cases}$$

Proof. For Arens regularity of A'' take nets (F_{α}) and (G_{β}) in A'' and $a''' \in A'''$, so $(\widehat{F_{\alpha}})$ and $(\widehat{G_{\beta}})$ are nets in $A^{(4)}$ and $\widehat{a'''} \in A^{(5)}$. By Arens regularity of $A^{(4)}$ we have

$$\begin{split} \lim_{\alpha} \lim_{\beta} \langle a^{\prime\prime\prime}, F_{\alpha} \Box G_{\beta} \rangle &= \lim_{\alpha} \lim_{\beta} \langle \widehat{a^{\prime\prime\prime}}, \widehat{F_{\alpha}} \Box \widehat{G_{\beta}} \rangle = \lim_{\beta} \lim_{\alpha} \langle \widehat{a^{\prime\prime\prime}}, \widehat{F_{\alpha}} \Box \widehat{G_{\beta}} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle a^{\prime\prime\prime}, F_{\alpha} \Box G_{\beta} \rangle. \end{split}$$

This proves the Arens regularity of A''. Now suppose that (f_{α}) and (a_{β}) are nets in A' and A respectively, and let $F \in A''$, so $(\widehat{f_{\alpha}})$ and $(\widehat{a_{\beta}})$ are nets in

 $A^{\prime\prime\prime}$ and $A^{\prime\prime}$ respectively and $\widehat{F}\in A^{(4)}.$ By Arens regularity of (i) we have

$$\begin{split} \langle w^*\text{-}\lim_{\alpha} w^*\text{-}\lim_{\beta} \widehat{f_{\alpha}.a_{\beta}}, F \rangle &= \lim_{\alpha} \lim_{\beta} \langle \widehat{f_{\alpha}.\widehat{a_{\beta}}}, F \rangle = \lim_{\alpha} \lim_{\beta} \langle \widehat{\widehat{f_{\alpha}}.\widehat{a_{\beta}}}, \widehat{F} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle \widehat{\widehat{f_{\alpha}}.\widehat{a_{\beta}}}, \widehat{F} \rangle \\ &= \langle w^*\text{-}\lim_{\beta} w^*\text{-}\lim_{\alpha} \widehat{f_{\alpha}.a_{\beta}}, F \rangle, \end{split}$$

which proves the Arens regularity of (a). Similarly the Arens regularity of (ii) implies the Arens regularity of (b). \blacksquare

Now we are ready to consider two $A^{(4)}$ -bimodule structures on $A^{(7)}$. Take $a^{(7)} \in A^{(7)}, a^{(6)} \in A^{(6)}$ and $a^{(4)} \in A^{(4)}$ with bounded nets $(a_{\beta}^{(5)}) \subset A^{(5)}, (a_i^{(4)}) \subset A^{(4)}$ and $(a_{\alpha}'') \subset A''$ such that $a^{(7)} = w^*$ -lim_{β} $\widehat{a_{\beta}^{(5)}}, a^{(6)} = w^*$ -lim_i $\widehat{a_i'^{(4)}}$ and $a^{(4)} = w^*$ -lim_{α} $\widehat{a_{\alpha}''}$.

For the $A^{(4)}$ -bimodule structure on $A^{(7)} = ((((A')')')'')''$ we can write

(2.5)
$$\langle a^{(4)}.a^{(7)},a^{(6)}\rangle = \lim_{\alpha} \lim_{\beta} \langle a^{(6)},a_{\alpha}''.a_{\beta}^{(5)}\rangle$$
$$= \lim_{\alpha} \lim_{\beta} \lim_{i} \langle a_{\alpha}''.a_{\beta}^{(5)},a_{i}^{(4)}\rangle,$$

(2.6)
$$\langle a^{(7)}.a^{(4)},a^{(6)}\rangle = \lim_{\beta} \lim_{\alpha} \langle a^{(6)},a^{(5)}_{\beta}.a^{\prime\prime}_{\alpha}\rangle$$
$$= \lim_{\beta} \lim_{\alpha} \lim_{i} \langle a^{(5)}_{\beta}.a^{\prime\prime}_{\alpha},a^{(4)}_{i}\rangle.$$

But for the $A^{(4)}$ -bimodule structure on $A^{(7)} = ((((A'')''))'))'$ we have

$$(2.7) \quad \langle a^{(4)}.a^{(7)}, a^{(6)} \rangle = \langle a^{(7)}, a^{(6)}.a^{(4)} \rangle = \lim_{\beta} \langle a^{(6)}.a^{(4)}, a^{(5)}_{\beta} \rangle$$
$$= \lim_{\beta} \langle a^{(6)}, a^{(4)}.a^{(5)}_{\beta} \rangle = \lim_{\beta} \lim_{i} \langle a^{(4)}.a^{(5)}_{\beta}, a^{(4)}_{i} \rangle$$
$$= \lim_{\beta} \lim_{i} \langle a^{(5)}_{\beta}, a^{(4)}_{i} \Box a^{(4)} \rangle,$$
$$(2.8) \quad \langle a^{(7)}.a^{(4)}, a^{(6)} \rangle = \langle a^{(7)}, a^{(4)}.a^{(6)} \rangle = \lim_{\beta} \langle a^{(4)}.a^{(6)}, a^{(5)}_{\beta} \rangle$$
$$= \lim_{\beta} \langle a^{(6)}, a^{(5)}_{\beta}.a^{(4)} \Box a^{(4)}_{i} \rangle = \lim_{\beta} \lim_{i} \langle a^{(5)}_{\beta}.a^{(4)}, a^{(4)}_{i} \rangle$$
$$= \lim_{\beta} \lim_{i} \langle a^{(5)}_{\beta}, a^{(4)} \Box a^{(4)}_{i} \rangle.$$

PROPOSITION 2.3. Let A be a Banach algebra as in the hypothesis of Lemma 2.2. Then the two $A^{(4)}$ -bimodule structures on ((((A')'))')')'' and ((((A'')''))'))' coincide.

Proof. By Lemma 2.2 the hypothesis of Proposition 2.1 holds, and so we can use the equality of the two A''-bimodule structures on $A^{(5)} = (((A'')'))'$ and $A^{(5)} = (((A')')')''$. Our proof is similar to the proof of Proposition 2.1. First we continue equality (2.5):

$$\langle a^{(4)}.a^{(7)}, a^{(6)} \rangle = \lim_{\alpha} \lim_{\beta} \lim_{i} \langle a^{\prime\prime}_{\alpha}.a^{(5)}_{\beta}, a^{(4)}_{i} \rangle$$

$$= \lim_{\alpha} \lim_{\beta} \lim_{i} \langle a^{(5)}_{\beta}, a^{(4)}_{i} \Box \widehat{a^{\prime\prime}_{\alpha}} \rangle$$

$$= \lim_{\beta} \lim_{\alpha} \lim_{i} \langle a^{(5)}_{\beta}, a^{(4)}_{i} \Box \widehat{a^{\prime\prime}_{\alpha}} \rangle$$

$$= \lim_{\beta} \lim_{i} \lim_{\alpha} \langle a^{(5)}_{\beta}, a^{(4)}_{i} \Box \widehat{a^{\prime\prime}_{\alpha}} \rangle$$

$$= \lim_{\beta} \lim_{i} \lim_{\alpha} \langle a^{(5)}_{\beta}, a^{(4)}_{i} \Box a^{(4)}_{\alpha} \rangle.$$

This proves the equality of (2.5) and (2.7). The proof of the equality of (2.6) and (2.8) is similar.

REMARK 2.4. There are many other A''-bimodule $[A^{(4)}$ -bimodule] structures on $A^{(5)}$ $[A^{(7)}]$ that we do not need to mention.

The following corollary is about a similar work in [6] for two A''-bimodule structures on A'''.

COROLLARY 2.5. Let A be a Banach algebra as in the hypothesis of Proposition 2.1. Then the two A"-bimodule structures on A''' = (A')'' and A''' = (A'')' coincide.

Proof. The Arens regularity of A'' implies the Arens regularity of A, and also the Arens regularity of the map in (ii) of Proposition 2.1 implies the Arens regularity of $\varphi : A \times A' \to A'$ $((a, f) \mapsto a.f)$. Thus the assertion holds by Theorem 2.1 of [6].

3. 3-weak amenability of $A^{(2n)}$. We recall that by Theorem 1.1, for a continuous derivation $D: A \to E$, the second transpose $D'': A'' \to E''$ and hence the fourth transpose $D^{(4)}: A^{(4)} \to E^{(4)}$ are continuous derivations. In this section we consider a continuous derivation $D: A \to A^{(3)} = ((A')')'$ and its second and fourth transposes.

LEMMA 3.1. Let A be a Banach algebra as in the hypothesis of Proposition 2.1. If the second transpose of a continuous derivation $D: A \to A''' = ((A')')'$ is inner, then D is inner.

Proof. Since $D'': A'' \to (((A')')')'' = A^{(5)}$ is inner, there is an $a^{(5)} \in A^{(5)}$ such that $D''(a'') = a''.a^{(5)} - a^{(5)}.a'' (a'' \in A'')$, where the A''-bimodule structure is as in (2.1) and (2.2). Let $a^{(3)} = i^*(a^{(5)})$ where $i: A'' \to (A'')'' =$

 $A^{(4)}$ is the natural map and so $i^*: ((A'')'')' = A^{(5)} \to A^{(3)} = (A'')'$. Then for $a'' \in A''$ we have

$$\langle D(a), a'' \rangle = \langle \widehat{D}(a), \widehat{a''} \rangle = \langle D''(\hat{a}), \widehat{a''} \rangle = \langle \hat{a}.a^{(5)} - a^{(5)}.\hat{a}, \widehat{a''} \rangle \\ = \langle a^{(5)}, \widehat{a''}.\hat{a} - \hat{a}.\widehat{a''} \rangle = \langle a^{(5)}, a''.\widehat{a - a}.a'' \rangle \\ = \langle i^*(a^{(5)}), a''.a - a.a'' \rangle = \langle a.a^{(3)} - a^{(3)}.a, a'' \rangle.$$

Thus $D(a) = a \cdot a^{(3)} - a^{(3)} \cdot a \cdot \blacksquare$

By using Lemma 2.2 we can similarly prove the following lemma:

LEMMA 3.2. Let A be a Banach algebra as in the hypothesis of Lemma 2.2. If the fourth transpose of a continuous derivation $D: A \to A''' = ((A')')'$ is inner then D'' and D are inner.

PROPOSITION 3.3. Let A be a Banach algebra as in the hypothesis of Proposition 2.1. If A'' is 3-weakly amenable then so is A.

Proof. Suppose that $D: A \to A^{(3)} = ((A')')'$ is a continuous derivation. Then $D'': A'' \to A^{(5)} = (((A')')')''$ is again a derivation by Theorem 1.1. We know that the two A''-bimodule structures on $A^{(5)} = (((A')')')''$ and $A^{(5)} = (((A'')')')'$ are equal by Proposition 2.1, so $D'': A'' \to A^{(5)} = (((A'')')')'$ is also a derivation. Thus D'' is inner because A'' is 3-weakly amenable. Finally D is inner by Lemma 3.1, and this proves the 3-weak amenability of A.

PROPOSITION 3.4. Let A be a Banach algebra as in the hypothesis of Lemma 2.2. If $A^{(4)}$ is 3-weakly amenable then so is A.

Proof. This is a consequence of Proposition 2.3 and Lemma 3.2.

Now we can extend Propositions 3.3 and 3.4 as follows:

THEOREM 3.5. Let $n \geq 1$ and A be a Banach algebra such that the following maps and $A^{(2n)}$ are Arens regular:

(i)
$$\begin{cases} A^{(2n-1)} \times A^{(2n-2)} \to A^{(2n-1)}, \\ (\Lambda, F) \mapsto \Lambda.F, \end{cases}$$
 (ii)
$$\begin{cases} A^{(2n)} \times A^{(2n+1)} \to A^{(2n+1)}, \\ (F, \Lambda) \mapsto F.\Lambda. \end{cases}$$

If $A^{(2n)}$ is 3-weakly amenable then A is 3-weakly amenable and hence it is weakly amenable.

EXAMPLE 3.6. C^* -algebras are standard examples of Banach algebras that are Arens regular and have a bounded approximate identity. The second dual A'' of a C^* -algebra A is itself a C^* -algebra and a von Neumann algebra [3, Corollary 3.2.37]. Every C^* -algebra is *n*-weakly amenable for each n (see [4]), so the conclusions of Theorem 3.5 hold for any C^* -algebras, but the assumptions only hold for finite-dimensional ones [5, Corollary 4.6].

According to Corollary 2.5 and Proposition 4.5 in [5], it seems that an example of the conditions in Proposition 2.1, with a non-reflexive Banach

algebra, can only be obtained when the algebra has no two sided bounded approximate identity.

EXAMPLE 3.7. Assume that A is a non-reflexive complex Banach space and $\varphi : A \to \mathbb{C}$ is a bounded linear functional. Define a multiplication on A by $ab = \langle \varphi, a \rangle b$. This makes A into a Banach algebra which is called the ideally factored algebra associated to φ . It is easy to check that φ is multiplicative and also

$$\begin{split} a.f &= \langle f, a \rangle \varphi, \quad f.a = \langle \varphi, a \rangle f, \quad f.F = \langle F, \varphi \rangle f, \quad F.f = \langle F, f \rangle \varphi, \\ F &\square \, G = F \, \Diamond \, G = \langle F, \varphi \rangle G, \quad F.\Lambda = \langle \Lambda, F \rangle \widehat{\varphi}, \quad \Lambda.F = \langle F, \varphi \rangle \Lambda, \end{split}$$

for $a \in A$, $f \in A'$, $\varphi \in A'''$ and $F, G \in A''$. Now for bounded nets (a_i) and (f_i) in A and A' respectively, we have

$$\begin{split} w^*\text{-}\lim_i w^*\text{-}\lim_j \widehat{f_j a_i} &= w^*\text{-}\lim_i w^*\text{-}\lim_j \langle \varphi, a_i \rangle \widehat{f_j} \\ &= w^*\text{-}\lim_i \langle \varphi, a_i \rangle \, w^*\text{-}\lim_j \widehat{f_j} \end{split}$$

This proves the Arens regularity of the map $A' \times A \to A'$ $((f, a) \mapsto f.a)$. Since A is not reflexive, the map $A \times A' \to A'$ $((a, f) \mapsto a.f)$ is not Arens regular, because

$$w^{*}-\lim_{i} w^{*}-\lim_{j} \widehat{a_{i}f_{j}} = w^{*}-\lim_{i} w^{*}-\lim_{j} \langle f_{j}, a_{i} \rangle \varphi$$
$$\neq w^{*}-\lim_{i} w^{*}-\lim_{i} \langle f_{j}, a_{i} \rangle \varphi.$$

Similarly we can check that A and A'' and the map $A''' \times A'' \to A'''$ $((\Lambda, F) \mapsto \Lambda.F)$ are Arens regular, but the map $A'' \times A''' \to A'''$ $((F, \Lambda) \mapsto F.\Lambda)$ is not Arens regular. Now for $a, b \in A$ we have

$$\varphi(ab) = \varphi(\langle \varphi, a \rangle b) = \langle \varphi, a \rangle \langle \varphi, b \rangle = \varphi(ba),$$

so if φ is one-to-one then ab = ba, that is, A is commutative. In this situation the assumptions of Proposition 2.1 hold.

Acknowledgements. I would like to thank the referee for carefully reading the manuscript and giving some fruitful suggestions.

REFERENCES

- W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebra, Proc. London Math. Soc. 55 (1987), 359–377.
- [2] A. Bodaghi, M. Ettefagh, M. E. Gordji and A. Medghalchi, Module structures on iterated duals of Banach algebras, An. Ştiinţ. Univ. Ovidius Constanţa 18 (2010), 63–80.
- [3] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Univ. Press, 2000.

- [4] H. G. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54.
- [5] H. D. Dales, A. Rodríguez-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. (2) 64 (2001), 707–721.
- [6] M. Ettefagh, The third dual of a Banach algebra, Studia Sci. Math. Hungar. 45 (2008), 1–11.
- [7] A. Jabbari, M. S. Moslehian, and H. R. E. Vishki, *Constructions preserving n-weak amenability of Banach algebras*, to appear.
- [8] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [9] A. Medghalchi and T.Yazdanpanah, Problems concerning n-weak amenability of a Banach algebra, Czechoslovak Math. J. 55 (130) (2005), 863–876.

Mina Ettefagh Department of Mathematics Tabriz Branch Islamic Azad University Tabriz, Iran E-mail: etefagh@iaut.ac.ir minaettefagh@gmail.com

> Received 1 March 2012; revised 2 July 2012

(5640)