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3-WEAK AMENABILITY OF (2n)TH DUALS OF
BANACH ALGEBRAS

BY

MINA ETTEFAGH (Tabriz)

Abstract. We show that under some conditions, 3-weak amenability of the (2n)th
dual of a Banach algebra A for some n ≥ 1 implies 3-weak amenability of A.

1. Introduction and preliminaries. Throughout this paper, A is a
Banach algebra, and A′, A′′, . . . , A(n) denote the iterated duals of A. We
always use the first Arens product on A(2n) (n ≥ 1), denoted by �. We
regard A as a subalgebra of A′′ by the canonical embedding i : A → A′′

(a 7→ â) where 〈â, f〉 = 〈f, a〉 for f ∈ A′. We recall that A′ is a Banach
A-bimodule under the actions

〈a.f, b〉 = 〈f, ba〉, 〈f.a, b〉 = 〈f, ab〉 (a, b ∈ A, f ∈ A′).
Also let E be a Banach A-bimodule. Then E′′ is a Banach A′′-bimodule

under the actions

(1.1) F.Λ = w∗-lim
i
w∗-lim

j
âixj , Λ.F = w∗-lim

j
w∗-lim

i
x̂jai

where F = w∗-limi âi and Λ = w∗-limj x̂j are such that (ai) ⊂ A and (xj) ⊂
E are bounded nets, and the limits are in the weak∗ topology.

In Section 2 we investigate two A′′-bimodule structures on A(5) given
by A(5) = (((A′)′)′)′′ and A(5) = (((A′′)′)′)′, and also two A(4)-bimodule
structures on A(7) = ((((A′)′)′)′′)′′ and A(7) = ((((A′′)′′)′)′)′. In a similar
work [6] we investigated two A′′-bimodule structures on A(3) = (A′)′′ and
A(3) = (A′′)′.

For a Banach A-bimodule E, a continuous linear map D : A → E is
called a derivation if

D(ab) = a.D(b) +D(a).b (a, b ∈ A).

For x ∈ E the derivation δx : A → E defined by δx(a) = a.x − x.a is
called an inner derivation. The Banach algebra A is called amenable if every
derivation D : A → E′ is inner, for each Banach A-bimodule E (see [8]). If
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every derivation D : A→ A′ [D : A→ A(n), n ∈ N] is inner, then A is called
weakly amenable [n-weakly amenable]; see also [1, 4] for details.

Theorem 1.1 ([3, Theorem 2.7.17]). Let A be a Banach algebra, E a
Banach A-bimodule and D : A → E a continuous derivation. Then D′′ :
A′′ → E′′ is a continuous derivation.

Remark 1.2. In the above theorem, the A′′-bimodule structure on E′′

is as in (1.1).

It is known that every (n + 2)-weakly amenable Banach algebra is n-
weakly amenable for n ≥ 1 (see [4]). Also it was shown in [7] that if A′′

is n-weakly amenable and A is a dual Banach algebra, then A is n-weakly
amenable. In [9] it was shown that if A is complete Arens regular and every
derivation D : A → A′ is weakly compact, then weak amenability of A(2n)

for some n ≥ 1 implies weak amenability of A. Recently in [2] the authors
determined conditions guaranteeing that 3-weak amenability of A′′ implies
3-weak amenability of A.

In this paper we introduce conditions implying that 3-weak amenabil-
ity of A(2n) for some n ≥ 1 implies 3-weak amenability of A, and hence
weak amenability of A. We find these conditions by studying A(2n)-module
structures on A(2n+3) in Section 2, and then apply them in Section 3.

2. A(2n)-bimodule structures on A(2n+3). First we consider the A′′-
bimodule structures on A(5) = (((A′)′)′)′′ and A(5) = (((A′′)′)′)′ and then the
A(4)-bimodule structures on A(7) = ((((A′)′)′)′′)′′ and A(7) = ((((A′′)′′)′)′)′.
The results can be extended to A(2n)-bimodule structures on A(2n+3).

Take a(5) ∈ A(5), a(4) ∈ A(4), and a′′ ∈ A′′ with bounded nets (a′′′α ) ⊂ A′′′,
(a′′i ) ⊂ A′′, and (aβ) ⊂ A such that a(5) = w∗-limα â′′′α , a(4) = w∗-limi â′′i , and
a′′ = w∗-limβ âβ.

For the A′′-bimodule structure on A(5) = (((A′)′)′)′′ we have

〈a′′.a(5), a(4)〉 = lim
β

lim
α
〈a(4), aβ.a′′′α 〉 = lim

β
lim
α

lim
i
〈aβ.a′′′α , a′′i 〉(2.1)

= lim
β

lim
α

lim
i
〈a′′′α , a′′i � âβ〉

and

〈a(5).a′′, a(4)〉 = lim
α

lim
β
〈a(4), a′′′α .aβ〉 = lim

α
lim
β

lim
i
〈a′′′α .aβ, a′′i 〉(2.2)

= lim
α

lim
β

lim
i
〈a′′′α , âβ � a′′i 〉.
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But the A′′-bimodule structure on A(5) = (((A′′)′)′)′ is given as follows:

〈a′′.a(5), a(4)〉 = 〈a(5), a(4).a′′〉 = lim
α
〈a(4).a′′, a′′′α 〉(2.3)

= lim
α
〈a(4), a′′.a′′′α 〉 = lim

α
lim
i
〈a′′.a′′′α , a′′i 〉

= lim
α

lim
i
〈a′′′α , a′′i � a′′〉

and

〈a(5).a′′, a(4)〉 = 〈a(5), a′′.a(4)〉 = lim
α
〈a′′.a(4), a′′′α 〉(2.4)

= lim
α
〈a(4), a′′′α .a′′〉 = lim

α
lim
i
〈a′′′α .a′′, a′′i 〉

= lim
α

lim
i
〈a′′′α , a′′ � a′′i 〉.

So the two A′′-bimodule structures are not equal.

Proposition 2.1. Let A be a Banach algebra such that the following
maps and A′′ are Arens regular:

(i)

{
A′ ×A→ A′,

(f, a) 7→ f.a,
(ii)

{
A′′ ×A′′′ → A′′′,

(F,Λ) 7→ F.Λ.

Then the two A′′-bimodule structures on (((A′′)′)′)′ and (((A′)′)′)′′ coincide.

Proof. First we show ϕ : Â→ A′′ (â 7→ â �G) is w∗-w-continuous for all

G ∈ A′′. For a net (âα) in Â and for a′′′ = w∗-limβ f̂β ∈ A′′′ such that (fβ)
is a net in A′ we have

〈a′′′, (w∗-lim
α
âα) �G〉 = 〈a′′′, w∗-lim

α
(âα �G)〉 = lim

β
〈w∗-lim

α
(âα �G), fβ〉

= lim
β

lim
α
〈G, fβ.aα〉 = lim

β
lim
α
〈f̂β.aα, G〉

= lim
α

lim
β
〈f̂β.aα, G〉 = lim

α
lim
β
〈G, fβ.aα〉

= lim
α

lim
β
〈âα �G, fβ〉 = lim

α
lim
β
〈f̂β, âα �G〉

= lim
α
〈a′′′, âα �G〉.

This proves the w∗-w-continuity of ϕ. On the other hand for the nets (aα)
and (fβ) in A and A′ respectively, by Arens regularity of the map in (ii), for
F ∈ A′′ we have

〈w∗-lim
α
w∗-lim

β
âα.fβ, F 〉 = lim

α
lim
β
〈âα.fβ, F 〉 = lim

α
lim
β
〈âα.f̂β, F 〉

= lim
α

lim
β
〈̂̂aα.f̂β, F̂ 〉 = lim

β
lim
α
〈̂̂aα.f̂β, F̂ 〉

= 〈w∗-lim
α
w∗-lim

β
âα.fβ, F 〉.
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This proves the Arens regularity of the map A×A′ → A′ ((a, f) 7→ a.f), and

similarly we deduce the w∗-w-continuity of the map Â → A′′ (â 7→ G � â)
for all G ∈ A′′.

For the rest of proof we continue equality (2.3):

〈a′′.a(5), a(4)〉 = lim
α

lim
i
〈a′′′α , a′′i � a′′〉 = lim

α
lim
i

lim
β
〈a′′′α , a′′i � âβ〉

= lim
α

lim
β

lim
i
〈a′′′α , a′′i � âβ〉 = lim

α
lim
β

lim
i
〈aβ.a′′′α , a′′i 〉

= lim
α

lim
β
〈̂̂aβ.a′′′α , a(4)〉 = lim

β
lim
α
〈̂̂aβ.a′′′α , a(4)〉

= lim
β

lim
α

lim
i
〈a′′′α , a′′i � âβ〉;

this proves the equality of (2.1) and (2.3). Similarly we continue equality
(2.4):

〈a(5).a′′, a(4)〉 = lim
α

lim
i
〈a′′′α , a′′ � a′′i 〉 = lim

α
lim
i

lim
β
〈a′′′α , âβ � a′′i 〉

= lim
α

lim
β

lim
i
〈a′′′α , âβ � a′′i 〉,

which proves the equality of (2.2) and (2.4).

We need the following lemma to extend our results to A(7).

Lemma 2.2. Let A be a Banach algebra such that the following maps
and A(4) are Arens regular:

(i)

{
A′′′ ×A′′ → A′′′,

(Λ,F ) 7→ Λ.F,
(ii)

{
A(4) ×A(5) → A(5),

(Λ,F ) 7→ Λ.F.

Then the following maps and A′′ are Arens regular:

(a)

{
A′ ×A→ A′,

(f, a) 7→ f.a,
(b)

{
A′′ ×A′′′ → A′′′,

(F,Λ) 7→ F.Λ.

Proof. For Arens regularity of A′′ take nets (Fα) and (Gβ) in A′′ and

a′′′ ∈ A′′′, so (F̂α) and (Ĝβ) are nets in A(4) and â′′′ ∈ A(5). By Arens

regularity of A(4) we have

lim
α

lim
β
〈a′′′, Fα �Gβ〉 = lim

α
lim
β
〈â′′′, F̂α � Ĝβ〉 = lim

β
lim
α
〈â′′′, F̂α � Ĝβ〉

= lim
β

lim
α
〈a′′′, Fα �Gβ〉.

This proves the Arens regularity of A′′. Now suppose that (fα) and (aβ) are

nets in A′ and A respectively, and let F ∈ A′′, so (f̂α) and (âβ) are nets in
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A′′′ and A′′ respectively and F̂ ∈ A(4). By Arens regularity of (i) we have

〈w∗-lim
α
w∗-lim

β
f̂α.aβ, F 〉 = lim

α
lim
β
〈f̂α.âβ, F 〉 = lim

α
lim
β
〈̂̂fα.âβ, F̂ 〉

= lim
β

lim
α
〈̂̂fα.âβ, F̂ 〉

= 〈w∗-lim
β
w∗-lim

α
f̂α.aβ, F 〉,

which proves the Arens regularity of (a). Similarly the Arens regularity of
(ii) implies the Arens regularity of (b).

Now we are ready to consider two A(4)-bimodule structures on A(7). Take

a(7) ∈ A(7), a(6) ∈ A(6) and a(4) ∈ A(4) with bounded nets (a
(5)
β ) ⊂ A(5),

(a
(4)
i ) ⊂ A(4) and (a′′α) ⊂ A′′ such that a(7) = w∗-limβ â

(5)
β , a(6) = w∗-limi â

(4)
i

and a(4) = w∗-limα â′′α.

For the A(4)-bimodule structure on A(7) = ((((A′)′)′)′′)′′ we can write

〈a(4).a(7), a(6)〉 = lim
α

lim
β
〈a(6), a′′α.a

(5)
β 〉(2.5)

= lim
α

lim
β

lim
i
〈a′′α.a

(5)
β , a

(4)
i 〉,

〈a(7).a(4), a(6)〉 = lim
β

lim
α
〈a(6), a(5)β .a′′α〉(2.6)

= lim
β

lim
α

lim
i
〈a(5)β .a′′α, a

(4)
i 〉.

But for the A(4)-bimodule structure on A(7) = ((((A′′)′′)′)′)′ we have

〈a(4).a(7), a(6)〉 = 〈a(7), a(6).a(4)〉 = lim
β
〈a(6).a(4), a(5)β 〉(2.7)

= lim
β
〈a(6), a(4).a(5)β 〉 = lim

β
lim
i
〈a(4).a(5)β , a

(4)
i 〉

= lim
β

lim
i
〈a(5)β , a

(4)
i � a(4)〉,

〈a(7).a(4), a(6)〉 = 〈a(7), a(4).a(6)〉 = lim
β
〈a(4).a(6), a(5)β 〉(2.8)

= lim
β
〈a(6), a(5)β .a(4)〉 = lim

β
lim
i
〈a(5)β .a(4), a

(4)
i 〉

= lim
β

lim
i
〈a(5)β , a(4) � a

(4)
i 〉.

Proposition 2.3. Let A be a Banach algebra as in the hypothesis of
Lemma 2.2. Then the two A(4)-bimodule structures on ((((A′)′)′)′′)′′ and
((((A′′)′′)′)′)′ coincide.
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Proof. By Lemma 2.2 the hypothesis of Proposition 2.1 holds, and so we
can use the equality of the two A′′-bimodule structures on A(5) = (((A′′)′)′)′

and A(5) = (((A′)′)′)′′. Our proof is similar to the proof of Proposition 2.1.
First we continue equality (2.5):

〈a(4).a(7), a(6)〉 = lim
α

lim
β

lim
i
〈a′′α.a

(5)
β , a

(4)
i 〉

= lim
α

lim
β

lim
i
〈a(5)β , a

(4)
i � â′′α〉 (by Proposition 2.1)

= lim
β

lim
α

lim
i
〈a(5)β , a

(4)
i � â′′α〉

= lim
β

lim
i

lim
α
〈a(5)β , a

(4)
i � â′′α〉

= lim
β

lim
i
〈a(5)β , a

(4)
i � a(4)〉.

This proves the equality of (2.5) and (2.7). The proof of the equality of (2.6)
and (2.8) is similar.

Remark 2.4. There are many other A′′-bimodule [A(4)-bimodule] struc-
tures on A(5) [A(7)] that we do not need to mention.

The following corollary is about a similar work in [6] for two A′′-bimodule
structures on A′′′.

Corollary 2.5. Let A be a Banach algebra as in the hypothesis of
Proposition 2.1. Then the two A′′-bimodule structures on A′′′ = (A′)′′ and
A′′′ = (A′′)′ coincide.

Proof. The Arens regularity of A′′ implies the Arens regularity of A, and
also the Arens regularity of the map in (ii) of Proposition 2.1 implies the
Arens regularity of ϕ : A×A′ → A′ ((a, f) 7→ a.f). Thus the assertion holds
by Theorem 2.1 of [6].

3. 3-weak amenability of A(2n). We recall that by Theorem 1.1, for a
continuous derivation D : A→ E, the second transpose D′′ : A′′ → E′′ and
hence the fourth transpose D(4) : A(4) → E(4) are continuous derivations.
In this section we consider a continuous derivation D : A→ A(3) = ((A′)′)′

and its second and fourth transposes.

Lemma 3.1. Let A be a Banach algebra as in the hypothesis of Proposi-
tion 2.1. If the second transpose of a continuous derivation D : A → A′′′ =
((A′)′)′ is inner, then D is inner.

Proof. Since D′′ : A′′ → (((A′)′)′)′′ = A(5) is inner, there is an a(5) ∈ A(5)

such that D′′(a′′) = a′′.a(5) − a(5).a′′ (a′′ ∈ A′′), where the A′′-bimodule
structure is as in (2.1) and (2.2). Let a(3) = i∗(a(5)) where i : A′′ → (A′′)′′ =
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A(4) is the natural map and so i∗ : ((A′′)′′)′ = A(5) → A(3) = (A′′)′. Then
for a′′ ∈ A′′ we have

〈D(a), a′′〉 = 〈D̂(a), â′′〉 = 〈D′′(â), â′′〉 = 〈â.a(5) − a(5).â, â′′〉
= 〈a(5), â′′.â− â.â′′〉 = 〈a(5), ̂a′′.a− a.a′′〉
= 〈i∗(a(5)), a′′.a− a.a′′〉 = 〈a.a(3) − a(3).a, a′′〉.

Thus D(a) = a.a(3) − a(3).a.

By using Lemma 2.2 we can similarly prove the following lemma:

Lemma 3.2. LetA be a Banach algebra as in the hypothesis of Lemma 2.2.
If the fourth transpose of a continuous derivation D : A→ A′′′ = ((A′)′)′ is
inner then D′′ and D are inner.

Proposition 3.3. Let A be a Banach algebra as in the hypothesis of
Proposition 2.1. If A′′ is 3-weakly amenable then so is A.

Proof. Suppose that D : A→ A(3) = ((A′)′)′ is a continuous derivation.
Then D′′ : A′′ → A(5) = (((A′)′)′)′′ is again a derivation by Theorem 1.1. We
know that the two A′′-bimodule structures on A(5) = (((A′)′)′)′′ and A(5) =
(((A′′)′)′)′ are equal by Proposition 2.1, so D′′ : A′′ → A(5) = (((A′′)′)′)′ is
also a derivation. Thus D′′ is inner because A′′ is 3-weakly amenable. Finally
D is inner by Lemma 3.1, and this proves the 3-weak amenability of A.

Proposition 3.4. Let A be a Banach algebra as in the hypothesis of
Lemma 2.2. If A(4) is 3-weakly amenable then so is A.

Proof. This is a consequence of Proposition 2.3 and Lemma 3.2.

Now we can extend Propositions 3.3 and 3.4 as follows:

Theorem 3.5. Let n ≥ 1 and A be a Banach algebra such that the
following maps and A(2n) are Arens regular:

(i)

{
A(2n−1) ×A(2n−2) → A(2n−1),

(Λ,F ) 7→ Λ.F,
(ii)

{
A(2n) ×A(2n+1) → A(2n+1),

(F,Λ) 7→ F.Λ.

If A(2n) is 3-weakly amenable then A is 3-weakly amenable and hence it is
weakly amenable.

Example 3.6. C∗-algebras are standard examples of Banach algebras
that are Arens regular and have a bounded approximate identity. The second
dual A′′ of a C∗-algebra A is itself a C∗-algebra and a von Neumann algebra
[3, Corollary 3.2.37]. Every C∗-algebra is n-weakly amenable for each n (see
[4]), so the conclusions of Theorem 3.5 hold for any C∗-algebras, but the
assumptions only hold for finite-dimensional ones [5, Corollary 4.6].

According to Corollary 2.5 and Proposition 4.5 in [5], it seems that an
example of the conditions in Proposition 2.1, with a non-reflexive Banach
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algebra, can only be obtained when the algebra has no two sided bounded
approximate identity.

Example 3.7. Assume that A is a non-reflexive complex Banach space
and ϕ : A → C is a bounded linear functional. Define a multiplication on
A by ab = 〈ϕ, a〉b. This makes A into a Banach algebra which is called
the ideally factored algebra associated to ϕ. It is easy to check that ϕ is
multiplicative and also

a.f = 〈f, a〉ϕ, f.a = 〈ϕ, a〉f, f.F = 〈F,ϕ〉f, F.f = 〈F, f〉ϕ,
F �G = F ♦G = 〈F,ϕ〉G, F.Λ = 〈Λ,F 〉ϕ̂, Λ.F = 〈F,ϕ〉Λ,

for a ∈ A, f ∈ A′, ϕ ∈ A′′′ and F,G ∈ A′′. Now for bounded nets (ai) and
(fj) in A and A′ respectively, we have

w∗-lim
i
w∗-lim

j
f̂jai = w∗-lim

i
w∗-lim

j
〈ϕ, ai〉f̂j

= w∗-lim
i
〈ϕ, ai〉w∗-lim

j
f̂j .

This proves the Arens regularity of the map A′ × A → A′ ((f, a) 7→ f.a).
Since A is not reflexive, the map A × A′ → A′ ((a, f) 7→ a.f) is not Arens
regular, because

w∗-lim
i
w∗-lim

j
âifj = w∗-lim

i
w∗-lim

j
〈fj , ai〉ϕ

6= w∗-lim
j
w∗-lim

i
〈fj , ai〉ϕ.

Similarly we can check that A and A′′ and the map A′′′×A′′ → A′′′ ((Λ,F ) 7→
Λ.F ) are Arens regular, but the map A′′ ×A′′′ → A′′′ ((F,Λ) 7→ F.Λ) is not
Arens regular. Now for a, b ∈ A we have

ϕ(ab) = ϕ(〈ϕ, a〉b) = 〈ϕ, a〉〈ϕ, b〉 = ϕ(ba),

so if ϕ is one-to-one then ab = ba, that is, A is commutative. In this situation
the assumptions of Proposition 2.1 hold.
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