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T-RICKART MODULES

BY

S. EBRAHIMI ATANI, M. KHORAMDEL and
S. DOLATI PISH HESARI (Rasht)

Abstract. We introduce the notions of T-Rickart and strongly T-Rickart modules.
We provide several characterizations and investigate properties of each of these concepts.
It is shown that R is right Σ-t-extending if and only if every R-module is T-Rickart. Also,
every free R-module is T-Rickart if and only if R = Z2(RR)⊕R′, where R′ is a hereditary
right R-module. Examples illustrating the results are presented.

1. Introduction. The notions of Rickart, Baer and quasi-Baer rings
have their roots in functional analysis, with close links to C∗-algebras and
von Neumann algebras. In [8], Kaplansky defined abstract W ∗-algebras, or
AW ∗-algebras (C∗-algebras in which the right annihilator of any subset is
generated by a projection). Alternatively, AW ∗-algebras are C∗-algebras
with the Baer property. The Baer property for rings was first considered
by Kaplansky [9, 10]. He introduced Baer rings to describe abstract various
properties of von Neumann algebras and complete *-regular rings. A number
of interesting properties of Baer rings were shown by Kaplansky and further
investigated by several other mathematicians. In [6], the notion of quasi-
Baer rings was introduced by Clark and used to characterize the case where
a finite-dimensional algebra with unity over an algebraically closed field is
isomorphic to a twisted matrix units semigroup algebra. A ring R is called
Baer (resp. quasi-Baer) if the right annihilator of a left ideal (resp. two-sided
ideal) is generated as a right ideal by an idempotent. Baer and quasi-Baer
property are left-right symmetric for every ring.

Motivated by Kaplansky’s work on Baer rings, the notion of Rickart rings
appeared in Maeda [15] and was further studied by Hattori [11], Berberian
[2] and other authors. A ring R is said to be right Rickart if the right
annihilator of any single element of R is generated by an idempotent as a
right ideal (equivalently, every principal right ideal of R is projective, i.e.
R is a right p.p. ring). Left Rickart rings are defined similarly. The notion
of Rickart ring is not left-right symmetric.
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Recently, the notions of Baer, quasi-Baer and Rickart rings were ex-
tended and studied in a general module-theoretic setting by Rizvi, Roman
and Lee [16], [17], [13], [14].

An R-module M is called extending if each submodule is essential in a
direct summand of M . In [1], Asgari and Haghany introduced the concept
of t-extending and t-Baer modules by using second singular submodules.
Motivated by the definition of t-Baer modules and Rickart modules, we
define the notion of T-Rickart ring and investigate related results.

In Section 3, we show that a direct summand of a T-Rickart module
is T-Rickart. We provide some equivalent conditions for a module M to
be T-Rickart. We introduce the notion of relative T-Rickart rings to show
that the class of rings R for which every R-module is T-Rickart is precisely
the right Σ-t-extending rings. It is also shown that every free R-module is
T-Rickart if and only if R = Z2(RR) ⊕ R′ where R′ is a hereditary right
R-module.

In Section 4, the notion of strongly T-Rickart module is defined and
several characterizations of such modules are given. We show that each direct
summand of a strongly T-Rickart module is strongly T-Rickart, and give
necessary and sufficient conditions for the direct sum of two strongly T-
Rickart modules to be strongly T-Rickart.

2. Preliminaries. Throughout, all rings (not necessarily commutative)
have identities and all modules are unital right modules. For completeness,
we state some definitions and notation used throughout this paper. Let M
be a module over a ring R. For submodules N and K of M , N ≤ K denotes
that N is a submodule of K, and S = End(M) denotes the ring of right
R-module endomorphisms of M . We denote by rM (·) the right annihilator
of a subset of End(M) with elements from M . We let ≤⊕, ≤ess and E(M)
denote, respectively, a module direct summand, an essential submodule and
the injective hull of M . By Z, Zn and Q we denote the ring of integers, the
ring of residues modulo n and the ring of rational numbers, respectively. We
also define

tM (I) = {m ∈M | Im ≤ Z2(M)} for ∅ 6= I ⊆ S = End(M).

Recall that the singular submodule Z(M) of a module M is the set of
m ∈M with rR(m) ≤ess RR, or equivalently, mI = 0 for some essential right
ideal I of R. The second singular (or Goldie torsion) submodule Z2(M) is
the submodule of M which is defined by

Z(M/Z(M)) = Z2(M)/Z(M).

If N is a submodule of M , then Z(N) = Z(M) ∩ N and so Z2(N) =
Z2(M) ∩N . A module M is called singular if Z(M) = M and nonsingular
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if Z(M) = 0. A module M is called Z2-torsion if Z2(M) = M . If Mi are
R-modules (i ∈ I), then Z(

⊕
i∈IMi) =

⊕
i∈I Z(Mi) and so Z2(

⊕
i∈IMi) =⊕

i∈I Z2(Mi). Let f : M → N be an R-module homomorphism. Clearly,
f(Z(M)) ≤ Z(N) and so f(Z2(M)) ≤ Z2(N).

Definition 2.1.

(a) A submodule N of M is called t-essential in M , written N ≤tess M ,
if for every submodule N ′ of M , N ∩ N ′ ≤ Z2(M) implies that
N ′ ≤ Z2(M) (see [1]).

(b) A submodule C of M is called t-closed if C has no t-essential exten-
sion in M (see [1]).

(c) A module M is called t-extending if every t-closed submodule of M
is a direct summand of M (see [1]).

(d) An R-module M is said to be Baer (resp. Rickart) if for any left
ideal I of End(M) (resp. φ ∈ End(M)), rM (I) (resp. rM (φ)) is a
direct summand of M (see [14], [16]).

(e) An R-module M is called strongly Rickart if rM (φ) is a fully invari-
ant direct summand of M for each φ ∈ End(M) (equivalently, M
is Rickart and each idempotent of the endomorphism ring of M is
central) (see [7]).

(f) An R-module M is said to be t-Baer if tM (I) is a direct summand
of M for each left ideal I of S (see [1]).

(g) A ring R is right Σ-t-extending if every free R-module is t-extending
(see [1]).

(h) An idempotent e ∈ R is called left semicentral if re = ere for each
r ∈ R. Equivalently, eR is an ideal of R. The set of left semicentral
idempotents of R will be denoted by Sl(R). It is known that eM
(where e2 = e ∈ End(M)) is a fully invariant direct summand of
module M if and only if e ∈ Sl(End(M)) (see [5], [3]).

(i) An R-module M is said to have SIP (summand intersection prop-
erty) if the intersection of any two direct summands is a direct sum-
mand of M ; and M has SSIP (strong summand intersection prop-
erty) if the intersection of any family of direct summands is a direct
summand of M (see [14]).

We need the following propositions, proved in [1, Proposition 2.2, Propo-
sition 2.6 and Theorem 3.12], respectively.

Proposition 2.2.

(a) The following statements are equivalent for a submodule N of M :

(i) N ≤tess M ;
(ii) N + Z2(M) ≤ess M ;
(iii) M/N is Z2-torsion.
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(b) Let C be a submodule of M . The following statements are equivalent:

(i) C is t-closed in M ;
(ii) C contains Z2(M) and C is closed in M ;
(iii) M/C is nonsingular.

(c) The following statements are equivalent for a ring R:

(i) R is right Σ-t-extending;
(ii) every R-module is t-Baer;
(iii) every R-module is t-extending.

3. T-Rickart modules. Motivated by the definitions of Rickart mod-
ules and t-Baer modules, we introduce the key definition of this paper.

Definition 3.1. A module M is called T-Rickart if tM (φ) is a direct
summand of M for every φ ∈ End(M).

Clearly, Z2-torsion modules and t-Baer modules are T-Rickart. One can
easily show that the notions of Rickart module and T-Rickart module co-
incide for every nonsingular module. In particular, every Rickart ring is a
T-Rickart ring. In the next proposition, for a module M , equivalent condi-
tions for tM (φ), with φ ∈ End(M), to be a t-essential submodule in M are
given.

Proposition 3.2. Let M be a module and φ ∈ S = End(M). The
following are equivalent:

(1) tM (φ) ≤tess M ;
(2) tM (φ) = M ;
(3) Ker(φ) ≤tess M .

Proof. (1)⇒(2). Let tM (φ) ≤tess M . Since Z2(M) ⊆ tM (φ), by Propo-
sition 2.2(a) we have tM (φ) ≤ess M . If x ∈ Im(φ), then there exists m ∈M
such that φ(m) = x. Since tM (φ) ≤ess M , it follows that mI ⊆ tM (φ)
for some I ≤ess RR. Hence xI = φ(mI) ⊆ Z2(M) and this implies that
x+ Z2(M) ∈ Z(M/Z2(M)) = 0; so x ∈ Z2(M). Therefore Im(φ) ⊆ Z2(M),
and so tM (φ) = M .

(2)⇒(3). If tM (φ) = M , then φ(M) ⊆ Z2(M). Thus φ(M) is Z2-torsion,
and so M/Ker(φ) ∼= φ(M) is Z2-torsion. By using Proposition 2.2(a), we
obtain Ker(φ) ≤tess M .

(3)⇒(1) is clear.

Theorem 3.3. Let M be a T-Rickart module. Then every direct sum-
mand of M is T-Rickart.

Proof. Let N be a direct summand of M . Suppose that M = N ⊕N ′ for
some submodule N ′ of M . If φ ∈ End(N), then φ⊕1End(N ′) ∈ End(M). Since



T-RICKART MODULES 91

M is T-Rickart, tM (φ⊕ 1End(N ′)) is a direct summand of M . An inspection
shows that tM (φ⊕ 1End(N ′)) = tN (φ)⊕ Z2(N

′). Let

M = tM (φ⊕ 1End(N ′))⊕K = tN (φ)⊕ Z2(N
′)⊕K

for some K ≤ M . Then by the modular law, tN (φ) is a direct summand
of N .

We next give four characterizations of T-Rickart modules.

Theorem 3.4. Let M be a module. Then the following are equivalent:

(1) M is T-Rickart;

(2) M = Z2(M)⊕K, where K is a Rickart module;

(3) φ−1(Z2(M)) is a direct summand of M for all φ ∈ S;

(4) for each φ ∈ S, there exists N ≤⊕ M such that tM (φ) ≤tess N ;

(5) for each φ ∈ S, there exists N ≤⊕ M such that tM (φ) ≤ess N .

Proof. (1)⇒(2). Clearly, tM (1S)=Z2(M). Since M is T-Rickart, tM (1S)
= Z2(M) is a direct summand of M ; thus M = Z2(M) ⊕ K for some
submodule K of M . By Theorem 3.3, K is T-Rickart. Since K is nonsingular,
it is Rickart.

(2)⇒(1). Assume that M = Z2(M)⊕K, where K is a Rickart module.
Since K is a direct summand of M , we have K = eM for some e2 = e ∈ S.
Let φ ∈ S. We claim that

tM (φ) = Z2(M)⊕ rK(eφe).

Indeed, let m = m1 +m2 ∈ tM (φ), where m1 ∈ Z2(M) and m2 ∈ K. Then
φ(m) = φ(m1)+φ(m2) ∈ Z2(M). As m1 ∈ Z2(M), we have φ(m1) ∈ Z2(M).
Hence φ(m2) = φ(m)− φ(m1) ∈ Z2(M). Thus 0 = eφ(m2) = eφe(m2), and
so m2 ∈ rK(eφe). Therefore tM (φ) ⊆ Z2(M) ⊕ rK(eφe). For the reverse
inclusion, let m = m1 + m2 ∈ Z2(M) ⊕ rK(eφe), where m1 ∈ Z2(M) and
m2 ∈ K. Since m2 ∈ K, we have em2 = m2. Also φ(m1) ∈ Z2(M) because
m1 ∈ Z2(M), and so eφ(m1) = 0. Hence eφ(m) = eφ(m1) + eφe(m2) = 0.
Thus φ(m) ∈ Ker(e) = Z2(M), proving the claim.

As K is Rickart and eφe ∈ End(K), rK(eφe) is a direct summand of K;
so tM (φ) is a direct summand of M and hence M is T-Rickart.

(1)⇔(3) is clear from tM (φ) = φ−1(Z2(M)).

(1)⇒(4) is clear.

(4)⇒(5). Let tM (φ) ≤tess N for some N ≤⊕ M . Since Z2(M) ⊆ tM (φ),
Proposition 2.2(a) implies that tM (φ) ≤ess N .

(5)⇒(1) is similar to the proof of Proposition 3.2.

The next example shows that the class of T-Rickart modules properly
contains the class of t-Baer modules.
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Example 3.5. (1) Let R be a ring and M be a nonsingular Rickart
module which is not a Baer module (see [14, Examples 2.18 and 2.19]) and
N be another R-module. Then by Theorem 3.4, M ⊕ Z2(N) is a T-Rickart
module which is not t-Baer.

(2) Consider Z and Z2 as Z-modules. By [14, Example 2.5], Z⊕Z2 is not
a Rickart Z-module; however, it is T-Rickart by Theorem 3.4.

The following example shows that the direct sum of two T-Rickart mod-
ules need not be T-Rickart.

Example 3.6. [14, Example 2.9] Let

R =

(
Z Z
0 Z

)
and M = RR.

Then

M =

(
Z Z
0 0

)
⊕
(

0 0

0 Z

)
.

Since

M1 =

(
Z Z
0 0

)
and M2 =

(
0 0

0 Z

)
are nonsingular and Rickart, M1 and M2 are T-Rickart. But it can be seen
that MR is not Rickart. Indeed, consider

(
2 1
0 0

)
∈ End(M) ∼= R. Then

rM

((
2 1

0 0

))
=

(
0 −1

0 2

)
Z,

which is not a direct summand of M . Since M is nonsingular, M is not
T-Rickart.

The following reformulated proposition characterizes t-Baer modules in
terms of SSIP and T-Rickart modules.

Proposition 3.7. An R-module M is t-Baer if and only if M is a T-
Rickart module and M has the strong summand intersection property for
direct summands which contain Z2(M).

Proof. See [1, Theorem 3.2].

In the following proposition, we prove that the notions of T-Rickart mod-
ule and t-Baer module coincide for the modules whose endomorphism ring
has no infinite set of nonzero orthogonal idempotents (cf. [12, Theorem 4.5]).

Proposition 3.8. Let M be a module, and suppose S = End(M) has
no infinite set of nonzero orthogonal idempotents. Then M is a T-Rickart
module if and only if M is a t-Baer module.
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Proof. If M is a T-Rickart module, then by Theorem 3.4, M =
Z2(M)⊕M ′ for some Rickart module M ′. Since M ′ is nonsingular, we have
Hom(Z2(M),M ′) = 0. Hence

End(M) =

(
End(Z2(M)) Hom(M ′, Z2(M))

0 End(M ′)

)
.

Since S has no infinite set of nonzero orthogonal idempotents, End(M ′) has
no infinite set of nonzero orthogonal idempotents, so by [14, Theorem 4.5],
M ′ is Baer. Hence M is t-Baer by [1, Theorem 3.2].

The following proposition gives a relation between Rickart and T-Rickart
modules.

Proposition 3.9. Let M be a module. Then M is Rickart such that
Z2(M) is a direct summand of M if and only if M is a T-Rickart module
such that rM (φ) is a direct summand of tM (φ) for all φ ∈ S.

Proof. Let M be a Rickart module such that M = Z2(M)⊕K for some
K ≤ M . Since each direct summand of a Rickart module is Rickart (see
[14, Theorem 2.7]), K is Rickart. Hence Theorem 3.4 shows that M is a
T-Rickart module. Since M is a Rickart module, for each φ ∈ S, rM (φ) is
a direct summand of M . As rM (φ) ≤ tM (φ), the modular law shows that
rM (φ) is a direct summand of tM (φ).

Conversely, suppose M is a T-Rickart module such that rM (φ) is a direct
summand of tM (φ) for each φ ∈ S. Then, first, Z2(M) is a direct summand
of M by Theorem 3.4. Next, as M is T-Rickart, tM (φ) is a direct summand
of M . Hence rM (φ) is a direct summand of M , as desired.

Definition 3.10. An R-module M is called T-Rickart relative to N (or
N -T-Rickart) if tM (φ) ≤⊕ M for every homomorphism φ : M → N , where
tM (φ) = {m ∈M | φ(m) ∈ Z2(N)}.

In view of the above definition, a right R-module M is T-Rickart if and
only if M is T-Rickart relative to M . Clearly, If N or M is Z2-torsion, then
M is T-Rickart relative to N . Similarly to [14, Proposition 2.24], we have
the following proposition that will be used to prove our main theorems.

Proposition 3.11. Let M be an R-module. The following are equi-
valent:

(1) M is T-Rickart;
(2) every direct summand L of M is T-Rickart relative to N for each

submodule N of M ;
(3) if L and N are direct summands of M , then for each φ∈Hom(M,N),

tL(φ|L) is a direct summand of L.
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Proof. (1)⇒(2). Let N be a submodule of M and L be a direct sum-
mand of M , where L = eM for some e2 = e ∈ S. Let ψ : L → N be a
homomorphism. Since ψe ∈ S, tM (ψe) is a direct summand of M . We assert
that

tL(ψ) = tM (ψe) ∩ eM.

If m ∈ tL(ψ), then ψ(m) ∈ Z2(N) ⊆ Z2(M), and so ψ(m) ∈ Z2(M).
Since m ∈ L = eM , m = em. Hence ψ(m) = ψ(em) ∈ Z2(M). Therefore
m ∈ tM (ψe) ∩ eM . For the reverse inclusion, let m ∈ tM (ψe) ∩ eM . Then
m ∈ eM and ψe(m) = ψ(m) ∈ Z2(M) ∩ N = Z2(M). Hence m ∈ tL(ψ),
proving the assertion.

Since M is T-Rickart, tM (ψe) = e′M for some e′2 = e′ ∈ S. We will show
that tL(ψ) = e′M ∩ eM is a direct summand of L. Since Z2(M) ⊆ tM (ψe)
= e′M , we have tM ((1− e′)) = e′M . As M is T-Rickart, tM ((1− e′)e) is a
direct summand of M . We claim that

tM ((1− e′)e) = eM ∩ e′M ⊕ (1− e)M.

If m ∈ tM ((1 − e′)e), then ((1 − e′)e)(m) ∈ Z2(M). Consequently, m =
em+ (1− e)m ∈ eM ∩ e′M ⊕ (1− e)M because em ∈ tM ((1− e′)) = e′M .
Hence tM ((1 − e′)e) ⊆ eM ∩ e′M ⊕ (1 − e)M . The other inclusion is clear.
Since tM ((1 − e′)e) is direct summand of M , the modular law shows that
eM ∩ e′M is a direct summand of L.

(2)⇒(3). The statement is clear by taking N a direct summand of M .
(3)⇒(1). Take L = N = M .

In view of Proposition 3.7, it can be seen that t-Baer modules have SSIP
for direct summands which contain the second singular submodule. In the
following proposition we prove that T-Rickart modules have SIP for direct
summands that contain the second singular submodule.

Proposition 3.12. Let M be a T-Rickart module.

(1) If L and N are direct summands of M with Z2(M) ⊆ L, then L∩N
is a direct summand of M .

(2) M has SIP for direct summands that contain Z2(M).

Proof. (1) Let L = eM and N = e′M , where e and e′ are idempotent
elements of S. Consider the projection 1− e : M → (1− e)M . By Proposi-
tion 3.11, tN ((1− e)|N ) = tN ((1− e)e′) is a direct summand of N . It can be
seen that tN ((1 − e)e′) = tM ((1 − e)) ∩ e′M . Since Z2(M) ⊆ L = eM , we
have tM (1 − e) = eM . As tN ((1 − e)e′) ≤⊕ N and N ≤⊕ M , tN ((1 − e)e′)
is a direct summand of M , as desired.

(2) Apply (1).

The next theorem gives a condition equivalent to being T-Rickart in
terms of tM (I), where I is a finitely generated left ideal of S = End(M).
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Theorem 3.13. An R-module M is T-Rickart if and only if tM (I)
≤⊕ M for every finitely generated left ideal I of S.

Proof. Let M be a T-Rickart module and I = Sφ1 + · · · + Sφn
(n ∈ N) be a finitely generated left ideal of S, where φi ∈ S. An inspec-
tion shows that tM (I) =

⋂n
i=1 tM (φi). Since M is T-Rickart, tM (φi) ≤⊕ M

for each 1 ≤ i ≤ n. As Z2(M) ⊆ tM (φi) for each 1 ≤ i ≤ n, and M has
SIP for direct summands which contain Z2(M) by Proposition 3.12(2), it
follows that tM (I) =

⋂n
i=1 tM (φi) is a direct summand of M . The converse

implication is clear since tM (Sφ) = tM (φ) ≤⊕ M for each φ ∈ S .

Now, we characterize right Σ-t-extending rings in terms of T-Rickart
modules. Note the contrast with [14, Theorem 2.25] which shows that the
rings R for which every R-module is Rickart are exactly the semisimple
rings.

Theorem 3.14. The following are equivalent for a ring R:

(1) every R-module is t-Baer;
(2) every R-module is T-Rickart;
(3) every R-module is t-extending;
(4) R is Σ-t-extending.

Proof. (1)⇒(2) is clear.

(2)⇒(3). Let M be a T-Rickart R-module; we will show that M is t-
extending. Let C be a t-closed submodule of M . Consider the R-module
M ⊕ (M/C). Since each R-module is T-Rickart by (2), M ⊕ (M/C) is a
T-Rickart R-module. By Proposition 3.11(2), M is (M/C)-T-Rickart. If π :
M → M/C is the canonical epimorphism, then tM (π) = {m ∈ M | π(m) ∈
Z2(M/C)} is a direct summand of M . Since C is a t-closed submodule in M ,
by Proposition 2.2(b), M/C is nonsingular and so Z2(M/C) = 0. Therefore
tM (π) = Ker(π) = C. Thus C is a direct summand of M and so M is
t-extending.

(3)⇒(4)⇒(1) follows from Proposition 2.2(c).

In the next theorem, we characterize the rings R for which every free
R-module is T-Rickart.

Theorem 3.15. Let R be a ring. The following are equivalent;

(1) every free R-module is T-Rickart;
(2) every projective R-module is T-Rickart;
(3) R = Z2(R)⊕R′, where R′ is a hereditary R-module.

Proof. (1)⇒(2). Let M be a projective R-module. Thus M ≤⊕ F for
some free R-module F . By (1), F is T-Rickart, and Theorem 3.3 implies
that M is T-Rickart.
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(2)⇒(3). Since RR is T-Rickart, we have Z2(R) ≤⊕ R by Theorem 3.4.
Let R = Z2(R)⊕R′. We will show that R′ is hereditary. Let I ≤ R′. There
exists a free R-module F such that I is a homomorphic image of F , say
under φ : F → I. Then we can take φ as an endomorphism of F . As R′

is nonsingular, I is nonsingular. We claim that Ker(φ) = tF (φ). Indeed,
if m ∈ tF (φ), then φ(m) ∈ Z2(F ) ∩ I = 0; hence φ(m) = 0. Since every
projective R-module is T-Rickart, F is T-Rickart, and so Ker(φ) is a direct
summand of F . Thus I = Im(φ) is projective and hence R′ is hereditary.

(3)⇒(1). Let F = R(Λ) be a free R-module and φ be an endomorphism
of F . By (3), we have F = Z2(R)(Λ) ⊕R′(Λ). Set F ′ = R′(Λ). It is clear that
Z2(F ) = Z2(R)(Λ). Thus F = Z2(F ) ⊕ F ′. Since Z2(F ) ⊆ tF (φ), we have
tF (φ) = Z2(F ) ⊕ F ′ ∩ tF (φ). Let F ′ = eF where e2 = e ∈ End(F ). Clearly
eφe ∈ End(F ′) and Ker(eφe) = F ′ ∩ tF (φ). Since R′ is hereditary, R′(Λ) is
hereditary. So F ′/Ker(eφe) ∼= Im(eφe) ≤ F ′ is projective. Thus F ′ ∩ tF (φ)
is a direct summand of F ′. Therefore tF (φ) is a direct summand of F , and
hence F ′ is T-Rickart.

4. Strongly T-Rickart modules. In this section we introduce the no-
tion of strongly T-Rickart R-modules. Also, we collect some basic properties
of such modules.

Definition 4.1. An R-module M is called strongly T-Rickart if tM (φ)
is a fully invariant direct summand of M for each φ ∈ End(M).

It is clear that each Z2-torsion module is strongly T-Rickart, and the
notion of strongly T-Rickart and strongly Rickart are equivalent for nonsin-
gular modules.

Theorem 4.2. The following statements are equivalent for an R-mo-
dule M :

(1) M is strongly T-Rickart;
(2) M is T-Rickart and each direct summand of M which contains

Z2(M) is fully invariant;
(3) M = Z2(M)⊕M ′ where M ′ is strongly Rickart;
(4) M = Z2(M)⊕M ′ and for each φ ∈ End(M), tM (φ) ∩M ′ is a fully

invariant direct summand of M ′;
(5) for each φ ∈ End(M), φ−1(Z2(M)) is a fully invariant direct sum-

mand of M ′.

Proof. (1)⇒(2). Let M be a strongly T-Rickart. It is clear that M is
T-Rickart. Let N be a direct summand of M which contains Z2(M), hence
there exists e2 = e ∈ End(M) such that N = eM . Since Z2(M) ⊆ eM , we
have tM ((1− e)) = eM , and so N is fully invariant.
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(2)⇒(1). Let φ ∈ End(M). Since M is T-Rickart, we obtain tM (φ)
≤⊕ M . As Z2(M) ⊆ tM (φ), tM (φ) is fully invariant direct summand. Hence
M is strongly T-Rickart.

(1)⇒(3). Since M is strongly T-Rickart, tM (1S) = Z2(M) is a direct
summand of M . Let M = Z2(M)⊕M ′. We show that M ′ is strongly Rickart.
If φ ∈ End(M ′), then 1Z2(M)⊕φ ∈ End(M). Since M is strongly T-Rickart,
tM (1Z2(M)⊕φ) = Z2(M)⊕rM ′(φ) is a fully invariant direct summand of M .
Since tM (1Z2(M) ⊕ φ) is a direct summand of M , we obtain rM ′(φ) ≤⊕ M ′.

Now we show rM ′(φ) is fully invariant in M ′. Let f ∈ End(M ′) and
m ∈ rM ′(φ). Thus 1Z2(M) ⊕ f ∈ End(M). Since tM (1Z2(M) ⊕ φ) is fully
invariant, (1 ⊕ f)(m) = f(m) ∈ rM ′(φ). Thus rM ′(φ) is fully invariant, as
desired.

(3)⇒(4). Let φ ∈ End(M). If M ′ = eM , where e2 = e ∈ End(M), then
tM (φ) ∩M ′ = rM ′(eφe) where eφe ∈ End(eM) = eSe. Since M ′ is strongly
Rickart, tM (φ) ∩M ′ is a fully invariant direct summand of M ′.

(4)⇒(1). Let φ ∈ End(M). As Z2(M) ⊆ tM (φ), we have tM (φ) =
Z2(M)⊕ tM (φ) ∩M ′. Since tM (φ) ∩M ′ is a direct summand of M ′, tM (φ)
is direct summand of M . We show that tM (φ) is fully invariant in M . If
f is canonical projection f : M → M ′, then 1 − f : M → Z2(M). Since
tM (φ) ∩M ′ ≤M ′, we have f(tM (φ) ∩M ′) = tM (φ) ∩M ′. Let g ∈ S. Then
g = (1− f)g + fg. So we have g(tM (φ)) = ((1− f)g)(tM (φ)) + fg(tM (φ)).
It is clear that ((1− f)g)(tM (φ)) ⊆ Z2(M) and fg(tM (φ)) = fg(Z2(M)) +
fg(tM (φ) ∩M ′). Since g(Z2(M)) ⊆ Z2(M), we have fg(Z2(M)) = 0. As
tM (φ) ∩M ′ is a fully invariant submodule of M ′,

fg(tM (φ) ∩M ′) = fgf(tM (φ) ∩M ′) ⊆ tM (φ) ∩M ′.
Thus g(tM (φ)) ⊆ tM (φ), and so tM (φ) is a fully invariant direct summand.
Hence M is strongly T-Rickart.

(1)⇔(5) is clear as tM (φ) = φ−1(Z2(M)).

It is clear that strongly T-Rickart modules are T-Rickart, but the fol-
lowing example shows that the converse is not true.

Example 4.3. Let F be a field and R =
(
F F
0 F

)
, and let M be an R-

module. Then R⊕Z2(M) is a T-Rickart R-module. Since R is not strongly
Rickart, by Theorem 4.2, R⊕ Z2(M) is not strongly T-Rickart.

Theorem 4.4. If M is strongly T-Rickart, then so is every direct sum-
mand of M .

Proof. Let N be a direct summand of M and M = N ⊕ K for some
K ≤ M . Since M is strongly T-Rickart, it is T-Rickart. By Theorem 3.3,
N and K are T-Rickart. Since K is T-Rickart, Theorem 3.4 implies
K = Z2(K) ⊕ K ′ for some K ′ ≤ K. Let N1 be a direct summand of N ,
say N = N1 ⊕ N2 and Z2(N) ⊆ N1. The module Z2(K) ⊕ N1 satisfies
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Z2(K)⊕N1 ≤⊕ M and is fully invariant in M since Z2(M) ⊆ Z2(K)⊕N1

(as M is strongly T-Rickart by Theorem 4.2, every direct summand which
contains Z2(M) is fully invariant).

Further, if f ∈ End(N), then 1End(K) ⊕ f ∈ End(M). As 1End(K) ⊕
f(Z2(K) ⊕ N1) ⊆ Z2(K) ⊕ N1, therefore f(N1) ⊆ N1. Thus N1 is fully
invariant.

Since N is T-Rickart and each direct summand of N that contains Z2(N)
is fully invariant in N , Theorem 4.2 shows that N is strongly T-Rickart.

Theorem 4.5. Let M1 and M2 be two modules. The following are equi-
valent:

(1) M = M1 ⊕M2 is strongly T-Rickart;

(2) (i) M1 is strongly T-Rickart and M1 = Z2(M1) ⊕ M ′1 for some
strongly Rickart module M ′1;

(ii) M2 is strongly T-Rickart and M2 = Z2(M2) ⊕ M ′2 for some
strongly Rickart module M ′2;

(iii) Hom(M ′1,M
′
2) = 0 and Hom(M ′2,M

′
1) = 0.

Proof. (1)⇒(2). (i) Theorem 4.4 implies that M1 is strongly T-Rickart,
so M1 = Z2(M1)⊕M ′1 for some strongly Rickart module M ′1 by Theorem 4.2.
(ii) is similar to (i).

(iii) Since M is strongly T-Rickart and

M = Z2(M1)⊕ Z2(M2)⊕M ′1 ⊕M ′2 = Z2(M)⊕M ′1 ⊕M ′2,
by Theorem 4.4, M ′1⊕M ′2 is strongly Rickart, and so each direct summand of
M ′1⊕M ′2 is fully invariant. Hence M ′1 and M ′2 are fully invariant in M ′1⊕M ′2.
We know

End(M ′1 ⊕M ′2) =

(
End(M ′1) Hom(M ′2,M

′
1)

Hom(M ′1,M
′
2) End(M ′2)

)
.

As

M ′1 =

(
1 0

0 0

)
(M ′1 ⊕M ′2) and M ′2 =

(
0 0

0 1

)
(M ′1 ⊕M ′2)

and M ′1 and M ′2 are fully invariant in M ′1 ⊕M ′2, we have(
1 0

0 0

)
∈ Sl(End(M ′1 ⊕M ′2)) and

(
0 0

0 1

)
∈ Sl(End(M ′1 ⊕M ′2)).

An inspection shows that Hom(M ′1,M
′
2) = 0 and Hom(M ′2,M

′
1) = 0.

(2)⇒(1). By (i) and (ii), M = Z2(M) ⊕M ′1 ⊕M ′2. We will show that
M ′1 ⊕M ′2 is strongly Rickart. Since Hom(M ′1,M

′
2) = 0 and Hom(M ′2,M

′
1)

= 0, we have

End(M ′1 ⊕M ′2) =

(
End(M ′1) 0

0 End(M ′2)

)
.



T-RICKART MODULES 99

Let f = f1 ⊕ f2 ∈ End(M ′1 ⊕M ′2), where f1 ∈ End(M ′1) and f2 ∈ End(M ′2).
Since M ′1 and M ′2 are strongly Rickart, we have rM ′1(f1) = e1M

′
1 for some

e1 ∈ Sl(End(M ′1)), and rM ′2(f2) = e2M
′
2 for some e2 ∈ Sl(End(M ′2)). There-

fore

rM ′1⊕M ′2(f1 ⊕ f2) =

(
e1 0

0 e2

)
(M ′1 ⊕M ′2).

Since e1 ∈ Sl(End(M ′1)) and e2 ∈ Sl(End(M ′2)),(
e1 0

0 e2

)
∈ Sl(End(M ′1 ⊕M ′2)).

Thus rM ′1⊕M ′2(f1 ⊕ f2) is a fully invariant direct summand of M ′1 ⊕ M ′2.

Hence M ′1 ⊕M ′2 is strongly Rickart, and so by Theorem 4.2, M is strongly
T-Rickart.
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