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T-RICKART MODULES
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Abstract. We introduce the notions of T-Rickart and strongly T-Rickart modules.
We provide several characterizations and investigate properties of each of these concepts.
It is shown that R is right ¥-t-extending if and only if every R-module is T-Rickart. Also,
every free R-module is T-Rickart if and only if R = Z2(Rg) ® R’, where R’ is a hereditary
right R-module. Examples illustrating the results are presented.

1. Introduction. The notions of Rickart, Baer and quasi-Baer rings
have their roots in functional analysis, with close links to C*-algebras and
von Neumann algebras. In [8], Kaplansky defined abstract W*-algebras, or
AW*-algebras (C*-algebras in which the right annihilator of any subset is
generated by a projection). Alternatively, AW *-algebras are C*-algebras
with the Baer property. The Baer property for rings was first considered
by Kaplansky [9] 10]. He introduced Baer rings to describe abstract various
properties of von Neumann algebras and complete *-regular rings. A number
of interesting properties of Baer rings were shown by Kaplansky and further
investigated by several other mathematicians. In [6], the notion of quasi-
Baer rings was introduced by Clark and used to characterize the case where
a finite-dimensional algebra with unity over an algebraically closed field is
isomorphic to a twisted matrix units semigroup algebra. A ring R is called
Baer (resp. quasi-Baer) if the right annihilator of a left ideal (resp. two-sided
ideal) is generated as a right ideal by an idempotent. Baer and quasi-Baer
property are left-right symmetric for every ring.

Motivated by Kaplansky’s work on Baer rings, the notion of Rickart rings
appeared in Maeda [I5] and was further studied by Hattori [11], Berberian
[2] and other authors. A ring R is said to be right Rickart if the right
annihilator of any single element of R is generated by an idempotent as a
right ideal (equivalently, every principal right ideal of R is projective, i.e.
R is a right p.p. ring). Left Rickart rings are defined similarly. The notion
of Rickart ring is not left-right symmetric.
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Recently, the notions of Baer, quasi-Baer and Rickart rings were ex-
tended and studied in a general module-theoretic setting by Rizvi, Roman
and Lee [16], [17], [13], [14].

An R-module M is called extending if each submodule is essential in a
direct summand of M. In [I], Asgari and Haghany introduced the concept
of t-extending and t-Baer modules by using second singular submodules.
Motivated by the definition of t-Baer modules and Rickart modules, we
define the notion of T-Rickart ring and investigate related results.

In Section 3, we show that a direct summand of a T-Rickart module
is T-Rickart. We provide some equivalent conditions for a module M to
be T-Rickart. We introduce the notion of relative T-Rickart rings to show
that the class of rings R for which every R-module is T-Rickart is precisely
the right X-t-extending rings. It is also shown that every free R-module is
T-Rickart if and only if R = Zs(Rr) ® R’ where R’ is a hereditary right
R-module.

In Section 4, the notion of strongly T-Rickart module is defined and
several characterizations of such modules are given. We show that each direct
summand of a strongly T-Rickart module is strongly T-Rickart, and give
necessary and sufficient conditions for the direct sum of two strongly T-
Rickart modules to be strongly T-Rickart.

2. Preliminaries. Throughout, all rings (not necessarily commutative)
have identities and all modules are unital right modules. For completeness,
we state some definitions and notation used throughout this paper. Let M
be a module over a ring R. For submodules N and K of M, N < K denotes
that N is a submodule of K, and S = End(M) denotes the ring of right
R-module endomorphisms of M. We denote by rps(-) the right annihilator
of a subset of End(M) with elements from M. We let <%, <®% and F(M)
denote, respectively, a module direct summand, an essential submodule and
the injective hull of M. By Z, Z,, and Q we denote the ring of integers, the
ring of residues modulo n and the ring of rational numbers, respectively. We
also define

tmy(I)={me M| Im<Zy(M)} for®+#1ICS=EndM).

Recall that the singular submodule Z(M) of a module M is the set of
m € M with rg(m) <®° Rpg, or equivalently, mI = 0 for some essential right
ideal I of R. The second singular (or Goldie torsion) submodule Za(M) is
the submodule of M which is defined by

Z(M/Z(M)) = Zy(M)/Z(M).

If N is a submodule of M, then Z(N) = Z(M) N N and so Z3(N) =
Zy(M)N N. A module M is called singular if Z(M) = M and nonsingular
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it Z(M

) = 0. A module M is called Zs-torsion if Zo(M) = M. If M; are

R-modules (i € I), then Z(@,.; M;) = @,c; Z(M;) and so Zy(P,c; M;) =
DP,cr Z2(M;). Let f : M — N be an R-module homomorphism. Clearly,
F{Z(M)) < Z(N) and so f(Za(M)) < Zs(N).

DEFINITION 2.1.

(a)

(b)
()
(d)

(e)

A submodule N of M is called t-essential in M, written N <% M|
if for every submodule N’ of M, N N N’ < Zy(M) implies that
N' < Zy(M) (see [1]).

A submodule C' of M is called t-closed if C' has no t-essential exten-
sion in M (see [1]).

A module M is called t-extending if every t-closed submodule of M
is a direct summand of M (see [I]).

An R-module M is said to be Baer (resp. Rickart) if for any left
ideal I of End(M) (resp. ¢ € End(M)), rar(I) (resp. rar(¢)) is a
direct summand of M (see [14], [16]).

An R-module M is called strongly Rickart if rps(¢) is a fully invari-
ant direct summand of M for each ¢ € End(M) (equivalently, M
is Rickart and each idempotent of the endomorphism ring of M is
central) (see [7]).

An R-module M is said to be t-Baer if tp/(I) is a direct summand
of M for each left ideal I of S (see [1]).

A ring R is right X-t-extending if every free R-module is t-extending
(see [I).

An idempotent e € R is called left semicentral if re = ere for each
r € R. Equivalently, eR is an ideal of R. The set of left semicentral
idempotents of R will be denoted by S;(R). It is known that eM
(where €2 = e € End(M)) is a fully invariant direct summand of
module M if and only if e € S;(End(M)) (see [5], [3]).

An R-module M is said to have SIP (summand intersection prop-
erty) if the intersection of any two direct summands is a direct sum-
mand of M; and M has SSIP (strong summand intersection prop-
erty) if the intersection of any family of direct summands is a direct
summand of M (see [14]).

We need the following propositions, proved in [I, Proposition 2.2, Propo-
sition 2.6 and Theorem 3.12], respectively.

PROPOSITION 2.2.

(a)

The following statements are equivalent for a submodule N of M :
(1) N Stess M,'

(i) N+ Za(M) <*° M;

(iii) M/N is Za-torsion.
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(b) Let C be a submodule of M. The following statements are equivalent:

(i) C is t-closed in M;
(ii) C contains Zy(M) and C' is closed in M;
(iii) M/C is nonsingular.

(¢) The following statements are equivalent for a ring R:

(i) R is right X-t-extending;
(ii) every R-module is t-Baer;
(iii) every R-module is t-extending.

3. T-Rickart modules. Motivated by the definitions of Rickart mod-
ules and t-Baer modules, we introduce the key definition of this paper.

DEFINITION 3.1. A module M is called T-Rickart if tpr(¢) is a direct
summand of M for every ¢ € End(M).

Clearly, Z>-torsion modules and t-Baer modules are T-Rickart. One can
easily show that the notions of Rickart module and T-Rickart module co-
incide for every nonsingular module. In particular, every Rickart ring is a
T-Rickart ring. In the next proposition, for a module M, equivalent condi-
tions for tas(¢), with ¢ € End(M), to be a t-essential submodule in M are
given.

PROPOSITION 3.2. Let M be a module and ¢ € S = End(M). The
following are equivalent:

(1) tar(6) <t M;

(2) tm(9) = M;

(3) Ker(g) <t M.

Proof. (1)=(2). Let tas(¢) <'*5 M. Since Zo(M) C tp(¢), by Propo-
sition 2.2(a) we have tps(¢) <° M. If x € Im(¢), then there exists m € M
such that ¢(m) = z. Since tp(¢) <*° M, it follows that mI C tp (o)
for some I <®° Rp. Hence I = ¢(ml) C Zy(M) and this implies that
x+ Zo(M) € Z(M/Zy(M)) = 0; so x € Za(M). Therefore Im(¢p) C Zs(M),
and so tps(¢) = M.

(2)=(3). If tar(¢p) = M, then ¢(M) C Zy(M). Thus ¢(M) is Ze-torsion,
and so M/Ker(¢) = ¢(M) is Zs-torsion. By using Proposition 2.2(a), we
obtain Ker(¢) <'* M.

(3)=(1) is clear. =

THEOREM 3.3. Let M be a T-Rickart module. Then every direct sum-
mand of M is T-Rickart.

Proof. Let N be a direct summand of M. Suppose that M = N @ N’ for
some submodule N’ of M. If ¢ € End(V), then ¢@®1gaq(ny € End(M). Since
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M is T-Rickart, tys(¢ @ 1gnq(nv)) is a direct summand of M. An inspection
shows that tas(¢ @ lgnany)) = tn (@) © Z2(N'). Let

M =ty (¢ @ lpnavry) ® K = tn(9) @ Zo(N') @ K

for some K < M. Then by the modular law, ty(¢) is a direct summand
of N. m

We next give four characterizations of T-Rickart modules.
THEOREM 3.4. Let M be a module. Then the following are equivalent:

(1) M is T-Rickart;

(2) M = Zy(M) & K, where K is a Rickart module;

(3) ¢~ H(Z2(M)) is a direct summand of M for all ¢ € S;

(4) for each ¢ € S, there exists N <% M such that tp(p) <' N;
(5) for each ¢ € S, there exists N <® M such that tp(¢) <=5 N.

Proof. (1)=(2). Clearly, tar(1s)=Z2(M). Since M is T-Rickart, tas(1s)
= Z9(M) is a direct summand of M; thus M = Zy(M) @ K for some
submodule K of M. By Theorem 3.3, K is T-Rickart. Since K is nonsingular,
it is Rickart.

(2)=-(1). Assume that M = Z3(M) & K, where K is a Rickart module.
Since K is a direct summand of M, we have K = eM for some e? =e € S.
Let ¢ € S. We claim that

tar(¢) = Z2(M) @ v (ede).

Indeed, let m = mi + ma € tpr(¢), where my € Za(M) and my € K. Then
p(m) = ¢(m1)+d(mz2) € Za(M). As my € Zy(M), we have ¢p(m1) € Zo(M).
Hence ¢(mz) = ¢(m) — ¢(my) € Zo(M). Thus 0 = ep(mg) = epe(ms), and
so mg € ri(ege). Therefore ty(¢) C Za(M) & rx(egpe). For the reverse
inclusion, let m = my + mg € Zo(M) @ ri(epe), where m; € Zy(M) and
mg € K. Since mg € K, we have ema = mgy. Also ¢p(my) € Zy(M) because
my € Za(M), and so e¢p(m1) = 0. Hence ep(m) = ep(m1) + epe(msz) = 0.
Thus ¢(m) € Ker(e) = Zo(M), proving the claim.

As K is Rickart and ege € End(K), rx(e¢e) is a direct summand of K;

s0 tar(¢) is a direct summand of M and hence M is T-Rickart.
(1)< (3) is clear from ty(¢) = ¢~ 1 (Za(M)).
(1)=-(4) is clear.

(4)=>(5). Let tps(¢) <'*s* N for some N <% M. Since Zo(M) C tp(o),
Proposition 2.2(a) implies that tps(¢) < N.
(5)=-(1) is similar to the proof of Proposition 3.2. m

The next example shows that the class of T-Rickart modules properly
contains the class of t-Baer modules.
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EXAMPLE 3.5. (1) Let R be a ring and M be a nonsingular Rickart
module which is not a Baer module (see [14, Examples 2.18 and 2.19]) and
N be another R-module. Then by Theorem 3.4, M @ Z(N) is a T-Rickart
module which is not t-Baer.

(2) Consider Z and Zsy as Z-modules. By [14, Example 2.5], Z @ Zs is not
a Rickart Z-module; however, it is T-Rickart by Theorem 3.4.

The following example shows that the direct sum of two T-Rickart mod-
ules need not be T-Rickart.

EXAMPLE 3.6. [14] Example 2.9] Let
7 Z
R = and M = Rp.
0 Z
Then

Since

are nonsingular and Rickart, M; and M5 are T-Rickart. But it can be seen
that Mp is not Rickart. Indeed, consider (g (1]) € End(M) = R. Then

wu((50)) = (o 2 )2

which is not a direct summand of M. Since M is nonsingular, M is not
T-Rickart.

The following reformulated proposition characterizes t-Baer modules in
terms of SSIP and T-Rickart modules.

PROPOSITION 3.7. An R-module M is t-Baer if and only if M is a T-
Rickart module and M has the strong summand intersection property for
direct summands which contain Za(M).

Proof. See [I, Theorem 3.2]. =

In the following proposition, we prove that the notions of T-Rickart mod-
ule and t-Baer module coincide for the modules whose endomorphism ring
has no infinite set of nonzero orthogonal idempotents (cf. [I2, Theorem 4.5]).

PROPOSITION 3.8. Let M be a module, and suppose S = End(M) has
no infinite set of nonzero orthogonal idempotents. Then M is a T-Rickart
module if and only if M is a t-Baer module.
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Proof. If M is a T-Rickart module, then by Theorem 3.4, M =
Z(M) @ M’ for some Rickart module M’. Since M’ is nonsingular, we have
Hom(Zy(M), M') = 0. Hence

End(Z»(M)) Hom(M', Zs(M)) )

End(M) = < 0 End(M’)

Since S has no infinite set of nonzero orthogonal idempotents, End(M’) has
no infinite set of nonzero orthogonal idempotents, so by [14, Theorem 4.5],
M’ is Baer. Hence M is t-Baer by [I, Theorem 3.2]. m

The following proposition gives a relation between Rickart and T-Rickart
modules.

ProrosITION 3.9. Let M be a module. Then M s Rickart such that
Zs(M) is a direct summand of M if and only if M is a T-Rickart module
such that vpr(@) is a direct summand of tpr(¢) for all ¢ € S.

Proof. Let M be a Rickart module such that M = Z5(M) @ K for some
K < M. Since each direct summand of a Rickart module is Rickart (see
[14, Theorem 2.7]), K is Rickart. Hence Theorem 3.4 shows that M is a
T-Rickart module. Since M is a Rickart module, for each ¢ € S, rj/(¢) is
a direct summand of M. As ryr(¢) < tar(¢), the modular law shows that
ra(¢) is a direct summand of tps (o).

Conversely, suppose M is a T-Rickart module such that rj/(¢) is a direct
summand of tps(¢) for each ¢ € S. Then, first, Za(M) is a direct summand
of M by Theorem 3.4. Next, as M is T-Rickart, tas(¢) is a direct summand
of M. Hence rp/(¢) is a direct summand of M, as desired. m

DEFINITION 3.10. An R-module M is called T-Rickart relative to N (or
N-T-Rickart) if tpr(¢) <® M for every homomorphism ¢ : M — N, where
ta(9) = {m & M | d(m) € Z2(N)}.

In view of the above definition, a right R-module M is T-Rickart if and
only if M is T-Rickart relative to M. Clearly, If N or M is Zs-torsion, then
M is T-Rickart relative to N. Similarly to [14, Proposition 2.24], we have
the following proposition that will be used to prove our main theorems.

ProposiTION 3.11. Let M be an R-module. The following are equi-
valent:

(1) M is T-Rickart;

(2) every direct summand L of M is T-Rickart relative to N for each
submodule N of M ;

(3) if L and N are direct summands of M, then for each ¢ € Hom(M, N),
tr(o|L) is a direct summand of L.
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Proof. (1)=(2). Let N be a submodule of M and L be a direct sum-
mand of M, where L = eM for some €2 = e € S. Let ¢ : L — N be a
homomorphism. Since e € S, tpr(e) is a direct summand of M. We assert
that

tr(v) = tar(ve) Nebl.
If m € tr(¢), then ¥(m) € Zoy(N) C Zo(M), and so ¥(m) € Zy(M).
Since m € L = eM, m = em. Hence ¢)(m) = ¢(em) € Zy(M). Therefore
m € tar(1pe) NeM. For the reverse inclusion, let m € tps(1pe) NeM. Then
m € eM and e(m) = p(m) € Zo(M) NN = Zy(M). Hence m € tr(¢),
proving the assertion.

Since M is T-Rickart, tas(1oe) = ¢’ M for some ¢’? = ¢/ € S. We will show
that tz,(v) = ¢ M NeM is a direct summand of L. Since Za(M) C tar(ve)
= ¢'M, we have tpr((1 —€')) = /M. As M is T-Rickart, tas((1 —€')e) is a
direct summand of M. We claim that

tu((1—ee)=eMnNeM @ (1 —e)M.

If m € ty((1 —€)e), then ((1 — €')e)(m) € Za(M). Consequently, m =
em+ (1 —eymeeMNeM @ (1 —e)M because em € tp((1 —€')) = €' M.
Hence ty((1 —€')e) CeM Ne'M @ (1 — e)M. The other inclusion is clear.
Since tp((1 — €’)e) is direct summand of M, the modular law shows that
eM Ne'M is a direct summand of L.
(2)=(3). The statement is clear by taking N a direct summand of M.
(3)=(1). Take L=N =M. n

In view of Proposition 3.7, it can be seen that t-Baer modules have SSIP
for direct summands which contain the second singular submodule. In the
following proposition we prove that T-Rickart modules have SIP for direct
summands that contain the second singular submodule.

PROPOSITION 3.12. Let M be a T-Rickart module.

(1) If L and N are direct summands of M with Zo(M) C L, then LN N
is a direct summand of M.

(2) M has SIP for direct summands that contain Zy(M).

Proof. (1) Let L = eM and N = €M, where e and €’ are idempotent
elements of S. Consider the projection 1 —e : M — (1 — e)M. By Proposi-
tion 3.11, tx ((1 —e)|n) = ta((1 —e)e’) is a direct summand of N. It can be
seen that ty((1 —e)e’) = tar((1 —e)) Ne'M. Since Zo(M) C L = eM, we
have ty(1 —e) = eM. As ty((1 —e)e’) <P N and N <% M, ty((1 —e)e’)
is a direct summand of M, as desired.

(2) Apply (1). =

The next theorem gives a condition equivalent to being T-Rickart in
terms of tps([), where I is a finitely generated left ideal of S = End(M).
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THEOREM 3.13. An R-module M is T-Rickart if and only if tpr(I)
<% M for every finitely generated left ideal I of S.

Proof. Let M be a T-Rickart module and I = S¢1 + --- + So,
(n € N) be a finitely generated left ideal of S, where ¢; € S. An inspec-
tion shows that tas(1) = (ie; tar(¢). Since M is T-Rickart, tas(¢;) <® M
for each 1 < i < n. As Zo(M) C tp(¢;) for each 1 < i < n, and M has
SIP for direct summands which contain Zs(M) by Proposition 3.12(2), it
follows that tas(I) = ()i, ta(¢s) is a direct summand of M. The converse
implication is clear since tp;(S¢) =ty () <® M for each p €S . »

Now, we characterize right Y-t-extending rings in terms of T-Rickart
modules. Note the contrast with [I4, Theorem 2.25] which shows that the
rings R for which every R-module is Rickart are exactly the semisimple
rings.

THEOREM 3.14. The following are equivalent for a ring R:

(1) every R-module is t-Baer;

(2) every R-module is T-Rickart;
(3) every R-module is t-extending;
(4) R is X-t-extending.

Proof. (1)=(2) is clear.

(2)=-(3). Let M be a T-Rickart R-module; we will show that M is t-
extending. Let C' be a t-closed submodule of M. Consider the R-module
M & (M/C). Since each R-module is T-Rickart by (2), M & (M/C) is a
T-Rickart R-module. By Proposition 3.11(2), M is (M/C)-T-Rickart. If 7 :
M — M/C is the canonical epimorphism, then ty/(7) = {m € M | 7(m) €
Z5(M/C)} is a direct summand of M. Since C' is a t-closed submodule in M,
by Proposition 2.2(b), M/C' is nonsingular and so Z3(M/C) = 0. Therefore
tam(m) = Ker(m) = C. Thus C is a direct summand of M and so M is
t-extending.

(3)=(4)=-(1) follows from Proposition 2.2(c). =

In the next theorem, we characterize the rings R for which every free
R-module is T-Rickart.

THEOREM 3.15. Let R be a ring. The following are equivalent;

(1) every free R-module is T-Rickart;
(2) every projective R-module is T-Rickart;
(3) R= Z3(R) ® R', where R’ is a hereditary R-module.

Proof. (1)=(2). Let M be a projective R-module. Thus M <% F for
some free R-module F. By (1), F is T-Rickart, and Theorem 3.3 implies
that M is T-Rickart.
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(2)=(3). Since Rp is T-Rickart, we have Zo(R) <% R by Theorem 3.4.
Let R = Z3(R) @ R'. We will show that R’ is hereditary. Let I < R’. There
exists a free R-module F' such that I is a homomorphic image of F', say
under ¢ : F' — I. Then we can take ¢ as an endomorphism of F. As R’
is nonsingular, I is nonsingular. We claim that Ker(¢) = tp(¢). Indeed,
if m € tp(¢), then ¢(m) € Zo(F) NI = 0; hence ¢(m) = 0. Since every
projective R-module is T-Rickart, F' is T-Rickart, and so Ker(¢) is a direct
summand of F. Thus I = Im(¢) is projective and hence R’ is hereditary.

(3)=(1). Let F = R be a free R-module and ¢ be an endomorphism
of F. By (3), we have F' = Z3(R) @ R'W. Set F' = R’ Tt is clear that
Zo(F) = Zo(R)W. Thus F = Zy(F) ® F'. Since Zo(F) C tp(¢), we have
tr(¢) = Zo(F) @ F' Ntp(p). Let F' = eF where e = ¢ € End(F). Clearly
epe € End(F’) and Ker(ege) = F' Ntp(p). Since R’ is hereditary, R’V is
hereditary. So F’/Ker(epe) = Im(ege) < F’ is projective. Thus F' Ntp(¢p)
is a direct summand of F’. Therefore tp(¢) is a direct summand of F, and
hence F’ is T-Rickart. m

4. Strongly T-Rickart modules. In this section we introduce the no-
tion of strongly T-Rickart R-modules. Also, we collect some basic properties
of such modules.

DEFINITION 4.1. An R-module M is called strongly T-Rickart if tp;(¢)
is a fully invariant direct summand of M for each ¢ € End(M).

It is clear that each Zs-torsion module is strongly T-Rickart, and the
notion of strongly T-Rickart and strongly Rickart are equivalent for nonsin-
gular modules.

THEOREM 4.2. The following statements are equivalent for an R-mo-
dule M :

(1) M is strongly T-Rickart;

(2) M is T-Rickart and each direct summand of M which contains
Zs(M) is fully invariant;

(3) M = Zy(M) & M’ where M' is strongly Rickart;

(4) M = Zy(M) & M’ and for each ¢ € End(M), tar(¢) N M’ is a fully
wmvariant direct summand of M';

(5) for each ¢ € End(M), ¢~ (Za(M)) is a fully invariant direct sum-
mand of M’.

Proof. (1)=(2). Let M be a strongly T-Rickart. It is clear that M is
T-Rickart. Let N be a direct summand of M which contains Zs(M), hence
there exists e? = e € End(M) such that N = eM. Since Z3(M) C eM, we
have tp/((1 —e)) = eM, and so N is fully invariant.
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(2)=(1). Let ¢ € End(M). Since M is T-Rickart, we obtain tps(¢)
<® M. As Zo(M) C tar(), tar(@) is fully invariant direct summand. Hence
M is strongly T-Rickart.

(1)=(3). Since M is strongly T-Rickart, tys(lg) = Z2(M) is a direct
summand of M. Let M = Zy(M)@® M’'. We show that M’ is strongly Rickart.
If ¢ € End(M’), then 1z,(3s) © ¢ € End(M). Since M is strongly T-Rickart,
tar (12,00 © @) = Z2(M) ®rpp () is a fully invariant direct summand of M.
Since tar(1z,(a) @ ¢) is a direct summand of M, we obtain ryp(¢) <% M’

Now we show 1y (¢) is fully invariant in M’. Let f € End(M’) and
m € rpp(¢). Thus 14,0 © f € End(M). Since tar(1z,m) © ¢) is fully
invariant, (1 ® f)(m) = f(m) € rpp(¢). Thus rpyp(¢) is fully invariant, as
desired.

(3)=(4). Let ¢ € End(M). If M’ = eM, where e = e € End(M), then
tar(¢) N M = rpp(epe) where ege € End(eM) = eSe. Since M’ is strongly
Rickart, tpr(¢) N M’ is a fully invariant direct summand of M’.

(4)=(1). Let ¢ € End(M). As Zo(M) C tp(¢), we have tp(¢) =
Zo(M) @ tar(¢) N M. Since tpr(¢p) N M’ is a direct summand of M’ tyr ()
is direct summand of M. We show that tys(¢) is fully invariant in M. If
f is canonical projection f : M — M’ then 1 — f : M — Zy(M). Since
tar(¢) N M < M', we have f(tar(¢) N M') =tar(¢p) N M'. Let g € S. Then
9= (1—f)g+ fg. So we have g(tnm(¢)) = ((1 — f)g)(tn(¢)) + fa(trr(e)).
It is clear that (1 — £)g)(tar(9) C Zo(M) and fo(tar()) = fo(Za(M)) +
fa(tar(@) N M'). Since g(Z2(M)) C Zao(M), we have fg(Za(M)) = 0. As
tar(¢) N M’ is a fully invariant submodule of M’,

fo(tar(@) N M') = faf(ta(p) N M') C tar(o) N M.
Thus g(tar(¢)) C tar(¢), and so tar(¢) is a fully invariant direct summand.
Hence M is strongly T-Rickart.
(1)<(5) is clear as ty(¢) = ¢~ H(Z2(M)). =
It is clear that strongly T-Rickart modules are T-Rickart, but the fol-
lowing example shows that the converse is not true.

EXAMPLE 4.3. Let F be a field and R = (f;g), and let M be an R-
module. Then R @ Z»(M) is a T-Rickart R-module. Since R is not strongly
Rickart, by Theorem 4.2, R @ Z5(M) is not strongly T-Rickart.

THEOREM 4.4. If M is strongly T-Rickart, then so is every direct sum-
mand of M.

Proof. Let N be a direct summand of M and M = N @ K for some
K < M. Since M is strongly T-Rickart, it is T-Rickart. By Theorem 3.3,
N and K are T-Rickart. Since K is T-Rickart, Theorem 3.4 implies
K = Z3(K) @ K’ for some K’ < K. Let Ny be a direct summand of N,
say N = Ny @ Ny and Z3(N) C Nj. The module Zo(K) @ N; satisfies
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Zy(K) ® N1 <% M and is fully invariant in M since Zo(M) C Zo(K) & Ny
(as M is strongly T-Rickart by Theorem 4.2, every direct summand which
contains Zo(M) is fully invariant).

Further, if f € End(N), then lg,qx) @ f € End(M). As lgnqk) @
f(ZQ(K) D Nl) - ZQ(K) @ N1, therefore f(Nl) C Ni. Thus N; is fully
invariant.

Since N is T-Rickart and each direct summand of N that contains Za(N)
is fully invariant in N, Theorem 4.2 shows that N is strongly T-Rickart. =

THEOREM 4.5. Let My and Ms be two modules. The following are equi-
valent:
(1) M = M, & M> is strongly T-Rickart;
(2) (1) My is strongly T-Rickart and My = Zao(My) & M| for some
strongly Rickart module Mj;
(ii) My is strongly T-Rickart and My = Zy(Msz) & M, for some
strongly Rickart module MJ;
(iii) Hom(M7, M}) =0 and Hom (M}, M{) = 0.
Proof. (1)=(2). (i) Theorem 4.4 implies that M is strongly T-Rickart,
so My = Zy(M7)@ M for some strongly Rickart module M] by Theorem 4.2.
(ii) is similar to (i).
(iii) Since M is strongly T-Rickart and
M = Zy(My) ® Zo(Ms) & My ® My = Zo(M) & My & My,
by Theorem 4.4, M{® M} is strongly Rickart, and so each direct summand of
M| ® M) is fully invariant. Hence M| and M} are fully invariant in M| & M.

We know
End(M! Hom (M, M!
Elnd(M{EBMé)—< nd( 1) om( » 1)>

Hom(M{, M})  End(Mj)

10 00
M= (o oo and ag= (7 )on o)

and M/ and M} are fully invariant in M| & M}, we have

00

An inspection shows that Hom(M;, M}) = 0 and Hom(M/, M{) = 0.

(2)=(1). By (i) and (ii), M = Zz(M) & M; & M. We will show that
M & M is strongly Rickart. Since Hom(M7, Mj) = 0 and Hom(M3, M7)
= 0, we have

(50) e siEnon o) aa (07)esimmaon e ),

End(M{EBMé):<End(M{) 0 )

0  End(M)
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Let f = f1 @ fo € End(M] ® M)), where f; € End(M]) and fo € End(M}).
Since M{ and Mj are strongly Rickart, we have 1 (f1) = e1M] for some
e1 € Si(End(M7)), and 1)z (f2) = e2 M for some ez € S)(End(M;)). There-
fore

€1 0

I eny(f1 @ f2) = ( 0 )(M{ @ My).

€2

Since e; € S;(End(M7)) and eg € S;(End(MJ)),

0
<€1 ) € Si(End(M] @ M})).
0 €9

Thus rapgay(fi @ f2) is a fully invariant direct summand of M| & M.
Hence M| @ M} is strongly Rickart, and so by Theorem 4.2, M is strongly
T-Rickart. m
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