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A SHARP BOUND FOR THE SCHWARZIAN DERIVATIVE
OF CONCAVE FUNCTIONS

BY
BAPPADITYA BHOWMIK (Rourkela) and KARL-JOACHIM WIRTHS (Braunschweig)
Abstract. We derive a sharp bound for the modulus of the Schwarzian derivative

of concave univalent functions with opening angle at infinity less than or equal to wa,
a€(l,2].

1. Introduction. Let C be the complex plane, D = {z € C: |z| < 1} be
the unit disc and C = CU{oo} be the Riemann sphere. Let f be an analytic
and locally univalent function in D. For such functions f, the Schwarzian
derivative and its norm are defined by

S5(2) = (fc(()) ) - ;@é)) >2

157 == sup (1 = |2[*)?|Sf(2)]
zeD

and

These quantities are of importance in the theory of Teichmiiller spaces. The
fundamental results on the Schwarzian derivative can be found in the works
of Z. Nehari (see [N1] and [N2]), R. Kiihnau (see [K]), and L. V. Ahlfors and
G. Weill (see [AW-1]). We also refer to the articles [CDO., [CDMMBO) KS|
for recent developments in this area of research. We summarize the work of
Nehari, Kithnau and Ahlfors—Weill below:

THEOREM A. Let f be analytic and locally univalent in D. If f is uni-
valent in D then ||S¢|| < 6; conversely, if ||Sy|| < 2, then f is univalent.
Let 0 < k < 1. If f extends to a k-quasiconformal mapping of the Riemann
sphere C, then ||Sf|| < 6k. Conversely, if ||S¢|| < 2k, then f extends to a
k-quasiconformal mapping of C.

We clarify here that a mapping f : C = C is called k-quasiconformal if f
is a sense preserving homeomorphism of C and has locally integrable partial
derivatives on C\ {f~1(c0)}, with |f5]| < k|f.| a-e.
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Now, we define the class of functions which is our main concern in this
article. A function f is said to be concave with opening angle at infinity less
than or equal to ma, v € [1,2], if it satisfies the following conditions:

(i) f is analytic and univalent in D.
(ii) f maps D conformally onto a set whose complement with respect to
C is convex and satisfies f(0) =0 = f/(0) — 1 and f(1) = cc.
(iii) The opening angle of f(ID) at infinity is less than or equal to ma,
€ [1,2].

We denote this class by Co(«). Various results on Co(a) can be found in
[AW-2], [B], BPW]| and [W]. In [AW-2] and [W], the following characteriza-

tion for functions in Co(«) was proved:

THEOREM B. A function f belongs to Co(a) if and only if f(0) =
f'(0) — 1 = 0 and there exists a holomorphic function ¢ : D — D such
that

" () _a+1 (o= Del2)

filz) 1=z l4zp(z)’

In this note, our main aim is to find a sharp bound for the modulus of the
Schwarzian derivative for functions in Co(c). This result will yield a sharp
norm estimate for the Schwarzian derivative of concave mappings, which will
help us to comment on quasiconformal extension and get a pair of two-point
distortion conditions of such mappings. These are the contents of Section 2.

z € D.

2. Results. The main result of this article is the following theorem:
MAIN THEOREM 2.1. Let a € [1,2], f € Co(a), and z € D. Then
" / 1 "
o) (5 <f}@)
f'(z) 2\ f'(z)
Equality is attained in (2.1)) if and only if

1+t6100 a—1
(=)t

2(a® — 1)
T (=12

dt, (€D,

Oe_’—.tf\

where
oo _ 1= 22+ |2
1—2z+ |22

Proof. A little computation using the representation formula (|1.1]) in
Theorem B yields
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(7) -3(75)

:(a—1)((‘PI(Z)—1(a+1)

(1+¢(2)) >
1+2¢0(2))* 2 (1= 2)2(1 + 2¢0(2))?

= (a—1)Mi(z,p).
In the further considerations, we exclude the trivial case a = 1. Since it is
known (see [C]) that for a holomorphic function ¢ : D — D we have

V)< —" 0 2D

we get an upper bound for |M(z, )| if we assume that the first term in the
sum defining M;(z, ¢) has the same argument as the second one:

(1+90(Z))2< —le(2)]* |1 -2 >‘
e <] .
Ml T e oo 2
1 — Jp(2)? !1+<P
— z 5 = M .
(T st 25 e = e
Our aim is to prove that, for fixed z € D and [p(2)| < 1,
2(a+1)
(2.2) My(z,0) < 5.
(1—!2\2)2

Further we will show that equality occurs in if and only if
= 2
1—2z+ |7 _ it

(2.3) w(z) = T2t 2

)

where 0y € [0,27). This will imply ¢(z) = € for all z € D, due to the
maximum principle for analytic functions. We divide the proof of these claims
into two parts.

PART A. First, for fixed z € D, we consider the image under Ms(z, ) of
the circle {¢ : |¢| = 1}. To this end, let

14
Cl+ze
It is easily seen that |p| = 1 is equivalent to
1-2 |1 — z|
w — = .
1—z2] 1—]z[?
This implies that
w 2
2.4 <
24) ’1—2 —1—z%




248 B. BHOWMIK AND K.-J. WIRTHS

where equality occurs if and only if
2(1-2)
CTISER
or
_1—2z+]z]?
1 =2z 4|2
Hence, for fixed z € D and |¢| = 1, the inequality (2.4]) will imply the validity
of (2.2), and equality is attained in (2.2)) if and only if ¢ = €0, where 6 is
given by the equation (12.3).
PArT B. Now, for fixed z € D, we consider the curve in the (-plane
which is defined by

)

(2.5) My(z,p) = 22 ﬁip

(1-

Hereafter, we use the abbreviation a = (oz+1) € ( ] . A little computation
reveals that (2.5)) is equivalent to

Bog+Co+Cp+ D=0,
where
B = a(l— |#[2)? — dal 221 — 2 — |1 — 22(1 — |#[2),
C =a(l —|2*)? - 4az|1 — z|?,
=1 —22(1 = 2]%) + a(1 — |2|*)? — 4a|1 — 2|2

We wish to analyze the set in the p-plane described by (2.5)). To this end,
first we claim that C # 0; indeed, if C' = 0, then either

z=r and a(l-— 7'2)2 —4dar(1 — 7")2 =a(l-— r)4 =0,
or

z=—-r and a(l—7r*)?+dar(1+7)*=a(l+7)*=0.
We see that both are impossible. This proves C' # 0. Next, we consider the
following two cases:

CASE (i): B = 0, which is equivalent to

2 a(l — |z*)? . P2
(2.6) 1 -z = TPl R*.
Since this equation describes the circle with center 1 and radius R, we have
to decide whether it is possible that for fixed |z| = r € [0, 1), the inequalities
—r < 1— R < r are satisfied. They imply (1 —7)? < R? < (1 +r)? and we
see that the left inequality is always true for r € [0,1), whereas the right
one is satisfied for r € [Sa T ) Hence, the equation B = 0 is valid for the
intersection points of the circle {z : |z| = r} with the circle given by (2.6). So
for B = 0, the equation (2.5)) represents a straight line that divides the plane
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into two open half-planes. According to Part A, the closed disc {p : |p| < 1}
lies in the closed half-plane

2(+1)
(12
and the straight line defined by formula (2.5 has only the point ¢ = €% in

common with the unit circle {¢ : |p| = 1}. This proves the assertion of the
theorem for B = 0.

My(z, ) <

CASE (ii): B # 0. Here the equation (2.5) represents a circle if and only
if CC' — BD > 0. A straightforward computation yields

CC — BD = (2a — 1)*(1 — |2*)?]1 — 2|*,

which is always > 0. Hence, whenever B # 0, is the equation of a circle,
which divides the (p-plane into the corresponding inner and outer domains.
Again, according to Part A, the closed disc {¢ : |p| < 1} lies in the region
defined by
2(a+1)
(1 —[2*)*’
and the only intersection point of the circle with the unit circle {¢ :
lo| = 1} is the point ¢ = ¢, This proves the assertion of the theorem for
B #0.

To get the extremal function as given in the theorem, we only have to
integrate the differential equation . n

MQ(Za 90) S

REMARK. We note that ||S¢|| < 2(a? — 1) for f € Co(a). In the case of
a =2, ||S¢|| <6, which is the bound obtained by Nehari for the norm of the
Schwarzian derivative for univalent functions. This is a natural consequence
of the fact that the Koebe function, which is extremal in that problem,
belongs to the class Co(2).

COROLLARY 2.2. Let o € [1,4/2), and f € Co(c). Then f extends to an
(a? — 1)-quasiconformal mapping.

Proof. As a € [1,V/2), for f € Co(a) we have ||Sf| < 2(a? — 1) =: 2k,
k € [0,1). Now an application of Theorem A proves the corollary. m

For, z1, 29 € D, let the hyperbolic metric d(z1, z2) be defined by

1 1
d(z1,2) = log 1+ p(21,22)
2 71— p(z1,29)

,  where p(z1,29) = e

1 —7Z129

We also define the following quantity for an analytic and locally univalent
function f in D:
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|f(z1) — f(22)]
{@ =z GO = 2 f ()}
Now, in view of the above theorem and [CDMMBO) Theorem 1|, we obtain
a pair of two-point distortion conditions for functions in Co(«) for a certain
range of a:

COROLLARY 2.3. Let a € (v/2,2] and f € Co(a). Then

(2.7) Ag(z1,22) > ;Sin(\/ a? —2d(z1, 22))

a?—2

for all z1, 2z € D with d(21,22) < 7/vVa? —2, and

Af(zl,ZQ) = 21,20 € D.

(2.8) Ap(er,22) < - sinh(d(z1, 22)
for all z1, z0 € D. Both inequalities are sharp.
Proof. Since f € Co(a), a € (v/2,2], by Theoremwe have
1S4l <2(1+446%), where 6*=a®—2>0.

Now, the corollary follows as an application of [CDMMBO] Theorem 1|, with
2=a’>-2u
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