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A SHARP BOUND FOR THE SCHWARZIAN DERIVATIVE
OF CONCAVE FUNCTIONS

BY

BAPPADITYA BHOWMIK (Rourkela) and KARL-JOACHIM WIRTHS (Braunschweig)

Abstract. We derive a sharp bound for the modulus of the Schwarzian derivative
of concave univalent functions with opening angle at infinity less than or equal to πα,
α ∈ [1, 2].

1. Introduction. Let C be the complex plane, D = {z ∈ C : |z| < 1} be
the unit disc and C = C∪{∞} be the Riemann sphere. Let f be an analytic
and locally univalent function in D. For such functions f , the Schwarzian
derivative and its norm are defined by

Sf (z) :=

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

and
‖Sf‖ := sup

z∈D
(1− |z|2)2|Sf (z)|.

These quantities are of importance in the theory of Teichmüller spaces. The
fundamental results on the Schwarzian derivative can be found in the works
of Z. Nehari (see [N1] and [N2]), R. Kühnau (see [K]), and L. V. Ahlfors and
G. Weill (see [AW-1]). We also refer to the articles [CDO, CDMMBO, KS]
for recent developments in this area of research. We summarize the work of
Nehari, Kühnau and Ahlfors–Weill below:

Theorem A. Let f be analytic and locally univalent in D. If f is uni-
valent in D then ‖Sf‖ ≤ 6; conversely, if ‖Sf‖ ≤ 2, then f is univalent.
Let 0 ≤ k < 1. If f extends to a k-quasiconformal mapping of the Riemann
sphere C, then ‖Sf‖ ≤ 6k. Conversely, if ‖Sf‖ ≤ 2k, then f extends to a
k-quasiconformal mapping of C.

We clarify here that a mapping f : C→ C is called k-quasiconformal if f
is a sense preserving homeomorphism of C and has locally integrable partial
derivatives on C \ {f−1(∞)}, with |fz| ≤ k|fz| a.e.
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Now, we define the class of functions which is our main concern in this
article. A function f is said to be concave with opening angle at infinity less
than or equal to πα, α ∈ [1, 2], if it satisfies the following conditions:

(i) f is analytic and univalent in D.
(ii) f maps D conformally onto a set whose complement with respect to

C is convex and satisfies f(0) = 0 = f ′(0)− 1 and f(1) =∞.
(iii) The opening angle of f(D) at infinity is less than or equal to πα,

α ∈ [1, 2].

We denote this class by Co(α). Various results on Co(α) can be found in
[AW-2], [B], [BPW] and [W]. In [AW-2] and [W], the following characteriza-
tion for functions in Co(α) was proved:

Theorem B. A function f belongs to Co(α) if and only if f(0) =
f ′(0) − 1 = 0 and there exists a holomorphic function ϕ : D → D such
that

(1.1)
f ′′(z)

f ′(z)
=
α+ 1

1− z
+

(α− 1)ϕ(z)

1 + zϕ(z)
, z ∈ D.

In this note, our main aim is to find a sharp bound for the modulus of the
Schwarzian derivative for functions in Co(α). This result will yield a sharp
norm estimate for the Schwarzian derivative of concave mappings, which will
help us to comment on quasiconformal extension and get a pair of two-point
distortion conditions of such mappings. These are the contents of Section 2.

2. Results. The main result of this article is the following theorem:

Main Theorem 2.1. Let α ∈ [1, 2], f ∈ Co(α), and z ∈ D. Then

(2.1)
∣∣∣∣(f ′′(z)f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2∣∣∣∣ ≤ 2(α2 − 1)

(1− |z|2)2
.

Equality is attained in (2.1) if and only if

f(ζ) =

ζ�

0

(1 + teiθ0)α−1

(1− t)α+1
dt, ζ ∈ D,

where

eiθ0 =
1− 2z + |z|2

1− 2z + |z|2
.

Proof. A little computation using the representation formula (1.1) in
Theorem B yields
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(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

= (α− 1)

(
ϕ′(z)

(1 + zϕ(z))2
− 1

2
(α+ 1)

(1 + ϕ(z))2

(1− z)2(1 + zϕ(z))2

)
=: (α− 1)M1(z, ϕ).

In the further considerations, we exclude the trivial case α = 1. Since it is
known (see [C]) that for a holomorphic function ϕ : D→ D we have

|ϕ′(z)| ≤ 1− |ϕ(z)|2

1− |z|2
, z ∈ D,

we get an upper bound for |M1(z, ϕ)| if we assume that the first term in the
sum defining M1(z, ϕ) has the same argument as the second one:

|M1(z, ϕ)| ≤
∣∣∣∣(1 + ϕ(z))2

(1− z)2

(
1− |ϕ(z)|2

1− |z|2
|1− z|2

|1 + ϕ(z)|2
+
1

2
(α+1)

)∣∣∣∣ 1

|1 + zϕ(z)|2

=

(
1− |ϕ(z)|2

1− |z|2
+
1

2
(α+1)

|1 + ϕ(z)|2

|1− z|2

)
1

|1 + zϕ(z)|2
=:M2(z, ϕ).

Our aim is to prove that, for fixed z ∈ D and |ϕ(z)| ≤ 1,

(2.2) M2(z, ϕ) ≤
2(α+ 1)

(1− |z|2)2
.

Further we will show that equality occurs in (2.2) if and only if

(2.3) ϕ(z) =
1− 2z + |z|2

1− 2z + |z|2
= eiθ0 ,

where θ0 ∈ [0, 2π). This will imply ϕ(z) = eiθ0 for all z ∈ D, due to the
maximum principle for analytic functions. We divide the proof of these claims
into two parts.

Part A. First, for fixed z ∈ D, we consider the image under M2(z, ϕ) of
the circle {ϕ : |ϕ| = 1}. To this end, let

w =
1 + ϕ

1 + zϕ
.

It is easily seen that |ϕ| = 1 is equivalent to∣∣∣∣w − 1− z
1− |z|2

∣∣∣∣ = |1− z|
1− |z|2

.

This implies that

(2.4)
∣∣∣∣ w

1− z

∣∣∣∣ ≤ 2

1− |z|2
,
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where equality occurs if and only if

w =
2(1− z)
1− |z|2

,

or

ϕ =
1− 2z + |z|2

1− 2z + |z|2
.

Hence, for fixed z ∈ D and |ϕ| = 1, the inequality (2.4) will imply the validity
of (2.2), and equality is attained in (2.2) if and only if ϕ = eiθ0 , where θ0 is
given by the equation (2.3).

Part B. Now, for fixed z ∈ D, we consider the curve in the ϕ-plane
which is defined by

(2.5) M2(z, ϕ) =
2(α+ 1)

(1− |z|2)2
.

Hereafter, we use the abbreviation a = 1
2(α+1) ∈

(
1, 32
]
. A little computation

reveals that (2.5) is equivalent to
Bϕϕ+ Cϕ+ Cϕ+D = 0,

where
B = a(1− |z|2)2 − 4a|z|2|1− z|2 − |1− z|2(1− |z|2),
C = a(1− |z|2)2 − 4az|1− z|2,
D = |1− z|2(1− |z|2) + a(1− |z|2)2 − 4a|1− z|2.

We wish to analyze the set in the ϕ-plane described by (2.5). To this end,
first we claim that C 6= 0; indeed, if C = 0, then either

z = r and a(1− r2)2 − 4ar(1− r)2 = a(1− r)4 = 0,

or
z = −r and a(1− r2)2 + 4ar(1 + r)2 = a(1 + r)4 = 0.

We see that both are impossible. This proves C 6= 0. Next, we consider the
following two cases:

Case (i): B = 0, which is equivalent to

(2.6) |1− z|2 = a(1− |z|2)2

4a|z|2 + 1− |z|2
=: R2.

Since this equation describes the circle with center 1 and radius R, we have
to decide whether it is possible that for fixed |z| = r ∈ [0, 1), the inequalities
−r ≤ 1− R ≤ r are satisfied. They imply (1− r)2 ≤ R2 ≤ (1 + r)2 and we
see that the left inequality is always true for r ∈ [0, 1), whereas the right
one is satisfied for r ∈

[
a−1
3a−1 , 1

)
. Hence, the equation B = 0 is valid for the

intersection points of the circle {z : |z| = r} with the circle given by (2.6). So
for B = 0, the equation (2.5) represents a straight line that divides the plane
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into two open half-planes. According to Part A, the closed disc {ϕ : |ϕ| ≤ 1}
lies in the closed half-plane

M2(z, ϕ) ≤
2(α+ 1)

(1− |z|2)2

and the straight line defined by formula (2.5) has only the point ϕ = eiθ0 in
common with the unit circle {ϕ : |ϕ| = 1}. This proves the assertion of the
theorem for B = 0.

Case (ii): B 6= 0. Here the equation (2.5) represents a circle if and only
if CC −BD > 0. A straightforward computation yields

CC −BD = (2a− 1)2(1− |z|2)2|1− z|4,

which is always > 0. Hence, whenever B 6= 0, (2.5) is the equation of a circle,
which divides the ϕ-plane into the corresponding inner and outer domains.
Again, according to Part A, the closed disc {ϕ : |ϕ| ≤ 1} lies in the region
defined by

M2(z, ϕ) ≤
2(α+ 1)

(1− |z|2)2
,

and the only intersection point of the circle (2.5) with the unit circle {ϕ :
|ϕ| = 1} is the point ϕ = eiθ0 . This proves the assertion of the theorem for
B 6= 0.

To get the extremal function as given in the theorem, we only have to
integrate the differential equation (1.1).

Remark. We note that ‖Sf‖ ≤ 2(α2 − 1) for f ∈ Co(α). In the case of
α = 2, ‖Sf‖ ≤ 6, which is the bound obtained by Nehari for the norm of the
Schwarzian derivative for univalent functions. This is a natural consequence
of the fact that the Koebe function, which is extremal in that problem,
belongs to the class Co(2).

Corollary 2.2. Let α ∈ [1,
√
2), and f ∈ Co(α). Then f extends to an

(α2 − 1)-quasiconformal mapping.

Proof. As α ∈ [1,
√
2), for f ∈ Co(α) we have ‖Sf‖ ≤ 2(α2 − 1) =: 2k,

k ∈ [0, 1). Now an application of Theorem A proves the corollary.

For, z1, z2 ∈ D, let the hyperbolic metric d(z1, z2) be defined by

d(z1, z2) =
1

2
log

1 + ρ(z1, z2)

1− ρ(z1, z2)
, where ρ(z1, z2) =

∣∣∣∣ z1 − z21− z1z2

∣∣∣∣.
We also define the following quantity for an analytic and locally univalent
function f in D:
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∆f (z1, z2) :=
|f(z1)− f(z2)|

{(1− |z1|2)|f ′(z1)|}1/2{(1− |z2|2)|f ′(z2)|}1/2
, z1, z2 ∈ D.

Now, in view of the above theorem and [CDMMBO, Theorem 1], we obtain
a pair of two-point distortion conditions for functions in Co(α) for a certain
range of α:

Corollary 2.3. Let α ∈ (
√
2, 2] and f ∈ Co(α). Then

(2.7) ∆f (z1, z2) ≥
1√

α2 − 2
sin(

√
α2 − 2 d(z1, z2))

for all z1, z2 ∈ D with d(z1, z2) ≤ π/
√
α2 − 2, and

(2.8) ∆f (z1, z2) ≤
1

α
sinh(αd(z1, z2))

for all z1, z2 ∈ D. Both inequalities are sharp.

Proof. Since f ∈ Co(α), α ∈ (
√
2, 2], by Theorem 2.1 we have

‖Sf‖ ≤ 2(1 + δ2), where δ2 = α2 − 2 > 0.

Now, the corollary follows as an application of [CDMMBO, Theorem 1], with
δ2 = α2 − 2.

REFERENCES

[AW-1] L. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations,
Proc. Amer. Math. Soc. 13 (1962), 975–978.

[AW-2] F. G. Avkhadiev and K.-J. Wirths, Concave schlicht functions with bounded
opening angle at infinity, Lobachevskii J. Math. 17 (2005), 3–10.

[B] B. Bhowmik, On concave univalent functions, Math. Nachr. 285 (2012),
606–612.

[BPW] B. Bhowmik, S. Ponnusamy, and K.-J. Wirths, Characterization and the
pre-Schwarzian norm estimate for concave univalent functions, Monatsh.
Math. 161 (2010), 59–75.

[C] C. Carathéodory, Theory of Functions of a Complex variable, Chelsea, New
York, 1954.

[CDO] M. Chuaqui, P. Duren, and B. Osgood, On a theorem of Haimo regarding
concave mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011),
no. 2, 17–28.

[CDMMBO] M. Chuaqui, P. Duren, W. Ma, D. Mejía, D. Minda, and B. Osgood,
Schwarzian norms and two-point distortion, Pacific J. Math. 254 (2011),
101–116.

[KS] S. Kanas and T. Sugawa, Sharp norm estimate of Schwarzian derivative
for a class of convex functions, Ann. Polon. Math. 101 (2011), 75–86.

[K] R. Kühnau, Verzerrungssätze und Koeffizientenbedingungen vom Grunsky-
schen Typ für quasikonforme Abbildungen, Math. Nachr. 48 (1971), 77–105.

[N1] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer.
Math. Soc. 55 (1949), 545–551.

http://dx.doi.org/10.1090/S0002-9939-1962-0148896-1
http://dx.doi.org/10.1002/mana.201000063
http://dx.doi.org/10.1007/s00605-009-0146-7
http://dx.doi.org/10.2140/pjm.2011.254.101
http://dx.doi.org/10.4064/ap101-1-8
http://dx.doi.org/10.1002/mana.19710480107
http://dx.doi.org/10.1090/S0002-9904-1949-09241-8


BOUND FOR SCHWARZIAN DERIVATIVE 251

[N2] Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954),
700–704.

[W] K.-J. Wirths, Julia’s lemma and concave schlicht functions, Quaest. Math.
28 (2005), 95–103.

Bappaditya Bhowmik
Department of Mathematics
National Institute of Technology
Rourkela 769008, India
E-mail: bappaditya.bhowmik@gmail.com

Karl-Joachim Wirths
Institut für Analysis and Algebra

TU Braunschweig
38106 Braunschweig, Germany

E-mail: kjwirths@tu-bs.de

Received 27 September 2012 (5772)

http://dx.doi.org/10.1090/S0002-9939-1954-0064145-2
http://dx.doi.org/10.2989/16073600509486117



	Introduction
	Results

