VOL. 128

2012

NO. 2

A SHARP BOUND FOR THE SCHWARZIAN DERIVATIVE OF CONCAVE FUNCTIONS

ΒY

BAPPADITYA BHOWMIK (Rourkela) and KARL-JOACHIM WIRTHS (Braunschweig)

Abstract. We derive a sharp bound for the modulus of the Schwarzian derivative of concave univalent functions with opening angle at infinity less than or equal to $\pi\alpha$, $\alpha \in [1, 2]$.

1. Introduction. Let \mathbb{C} be the complex plane, $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc and $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the Riemann sphere. Let f be an analytic and locally univalent function in \mathbb{D} . For such functions f, the Schwarzian derivative and its norm are defined by

$$S_f(z) := \left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2$$

and

$$||S_f|| := \sup_{z \in \mathbb{D}} (1 - |z|^2)^2 |S_f(z)|.$$

These quantities are of importance in the theory of Teichmüller spaces. The fundamental results on the Schwarzian derivative can be found in the works of Z. Nehari (see [N1] and [N2]), R. Kühnau (see [K]), and L. V. Ahlfors and G. Weill (see [AW-1]). We also refer to the articles [CDO, CDMMBO, KS] for recent developments in this area of research. We summarize the work of Nehari, Kühnau and Ahlfors–Weill below:

THEOREM A. Let f be analytic and locally univalent in \mathbb{D} . If f is univalent in \mathbb{D} then $||S_f|| \leq 6$; conversely, if $||S_f|| \leq 2$, then f is univalent. Let $0 \leq k < 1$. If f extends to a k-quasiconformal mapping of the Riemann sphere $\overline{\mathbb{C}}$, then $||S_f|| \leq 6k$. Conversely, if $||S_f|| \leq 2k$, then f extends to a k-quasiconformal mapping of $\overline{\mathbb{C}}$.

We clarify here that a mapping $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ is called *k*-quasiconformal if f is a sense preserving homeomorphism of $\overline{\mathbb{C}}$ and has locally integrable partial derivatives on $\mathbb{C} \setminus \{f^{-1}(\infty)\}$, with $|f_{\overline{z}}| \leq k|f_z|$ a.e.

²⁰¹⁰ Mathematics Subject Classification: Primary 30C45; Secondary 30C55, 30C62. Key words and phrases: Schwarzian derivative, concave functions, opening angle at infinity.

Now, we define the class of functions which is our main concern in this article. A function f is said to be *concave with opening angle at infinity less than or equal to* $\pi\alpha$, $\alpha \in [1, 2]$, if it satisfies the following conditions:

- (i) f is analytic and univalent in \mathbb{D} .
- (ii) f maps \mathbb{D} conformally onto a set whose complement with respect to \mathbb{C} is convex and satisfies f(0) = 0 = f'(0) 1 and $f(1) = \infty$.
- (iii) The opening angle of $f(\mathbb{D})$ at infinity is less than or equal to $\pi\alpha$, $\alpha \in [1, 2]$.

We denote this class by $Co(\alpha)$. Various results on $Co(\alpha)$ can be found in [AW-2], [B], [BPW] and [W]. In [AW-2] and [W], the following characterization for functions in $Co(\alpha)$ was proved:

THEOREM B. A function f belongs to $\operatorname{Co}(\alpha)$ if and only if f(0) = f'(0) - 1 = 0 and there exists a holomorphic function $\varphi : \mathbb{D} \to \overline{\mathbb{D}}$ such that

(1.1)
$$\frac{f''(z)}{f'(z)} = \frac{\alpha+1}{1-z} + \frac{(\alpha-1)\varphi(z)}{1+z\varphi(z)}, \quad z \in \mathbb{D}.$$

In this note, our main aim is to find a sharp bound for the modulus of the Schwarzian derivative for functions in $Co(\alpha)$. This result will yield a sharp norm estimate for the Schwarzian derivative of concave mappings, which will help us to comment on quasiconformal extension and get a pair of two-point distortion conditions of such mappings. These are the contents of Section 2.

2. Results. The main result of this article is the following theorem:

MAIN THEOREM 2.1. Let $\alpha \in [1,2]$, $f \in Co(\alpha)$, and $z \in \mathbb{D}$. Then

(2.1)
$$\left| \left(\frac{f''(z)}{f'(z)} \right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)} \right)^2 \right| \le \frac{2(\alpha^2 - 1)}{(1 - |z|^2)^2}$$

Equality is attained in (2.1) if and only if

$$f(\zeta) = \int_{0}^{\zeta} \frac{(1+te^{i\theta_0})^{\alpha-1}}{(1-t)^{\alpha+1}} dt, \quad \zeta \in \mathbb{D},$$

where

$$e^{i\theta_0} = \frac{1 - 2\overline{z} + |z|^2}{1 - 2z + |z|^2}.$$

Proof. A little computation using the representation formula (1.1) in Theorem B yields

$$\left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2$$

$$= (\alpha - 1) \left(\frac{\varphi'(z)}{(1 + z\varphi(z))^2} - \frac{1}{2}(\alpha + 1) \frac{(1 + \varphi(z))^2}{(1 - z)^2(1 + z\varphi(z))^2}\right)$$

$$=: (\alpha - 1) M_1(z, \varphi).$$

In the further considerations, we exclude the trivial case $\alpha = 1$. Since it is known (see [C]) that for a holomorphic function $\varphi : \mathbb{D} \to \overline{\mathbb{D}}$ we have

$$|\varphi'(z)| \le \frac{1-|\varphi(z)|^2}{1-|z|^2}, \quad z \in \mathbb{D},$$

we get an upper bound for $|M_1(z, \varphi)|$ if we assume that the first term in the sum defining $M_1(z, \varphi)$ has the same argument as the second one:

$$|M_1(z,\varphi)| \le \left| \frac{(1+\varphi(z))^2}{(1-z)^2} \left(\frac{1-|\varphi(z)|^2}{1-|z|^2} \frac{|1-z|^2}{|1+\varphi(z)|^2} + \frac{1}{2}(\alpha+1) \right) \right| \frac{1}{|1+z\varphi(z)|^2} \\ = \left(\frac{1-|\varphi(z)|^2}{1-|z|^2} + \frac{1}{2}(\alpha+1) \frac{|1+\varphi(z)|^2}{|1-z|^2} \right) \frac{1}{|1+z\varphi(z)|^2} =: M_2(z,\varphi).$$

Our aim is to prove that, for fixed $z \in \mathbb{D}$ and $|\varphi(z)| \leq 1$,

(2.2)
$$M_2(z,\varphi) \le \frac{2(\alpha+1)}{(1-|z|^2)^2}$$

Further we will show that equality occurs in (2.2) if and only if

(2.3)
$$\varphi(z) = \frac{1 - 2\overline{z} + |z|^2}{1 - 2z + |z|^2} = e^{i\theta_0}$$

where $\theta_0 \in [0, 2\pi)$. This will imply $\varphi(z) = e^{i\theta_0}$ for all $z \in \mathbb{D}$, due to the maximum principle for analytic functions. We divide the proof of these claims into two parts.

PART A. First, for fixed $z \in \mathbb{D}$, we consider the image under $M_2(z, \varphi)$ of the circle $\{\varphi : |\varphi| = 1\}$. To this end, let

$$w = \frac{1+\varphi}{1+z\varphi}$$

It is easily seen that $|\varphi| = 1$ is equivalent to

$$\left|w - \frac{1 - \overline{z}}{1 - |z|^2}\right| = \frac{|1 - z|}{1 - |z|^2}.$$

This implies that

(2.4)
$$\left|\frac{w}{1-z}\right| \le \frac{2}{1-|z|^2},$$

where equality occurs if and only if

$$w = \frac{2(1-\overline{z})}{1-|z|^2},$$

or

$$\varphi = \frac{1-2\overline{z}+|z|^2}{1-2z+|z|^2}.$$

Hence, for fixed $z \in \mathbb{D}$ and $|\varphi| = 1$, the inequality (2.4) will imply the validity of (2.2), and equality is attained in (2.2) if and only if $\varphi = e^{i\theta_0}$, where θ_0 is given by the equation (2.3).

PART B. Now, for fixed $z \in \mathbb{D}$, we consider the curve in the φ -plane which is defined by

(2.5)
$$M_2(z,\varphi) = \frac{2(\alpha+1)}{(1-|z|^2)^2}$$

Hereafter, we use the abbreviation $a = \frac{1}{2}(\alpha+1) \in (1, \frac{3}{2}]$. A little computation reveals that (2.5) is equivalent to

$$B\varphi\overline{\varphi} + C\varphi + \overline{C}\overline{\varphi} + D = 0,$$

where

$$B = a(1 - |z|^2)^2 - 4a|z|^2|1 - z|^2 - |1 - z|^2(1 - |z|^2),$$

$$C = a(1 - |z|^2)^2 - 4az|1 - z|^2,$$

$$D = |1 - z|^2(1 - |z|^2) + a(1 - |z|^2)^2 - 4a|1 - z|^2.$$

We wish to analyze the set in the φ -plane described by (2.5). To this end, first we claim that $C \neq 0$; indeed, if C = 0, then either

$$z = r$$
 and $a(1-r^2)^2 - 4ar(1-r)^2 = a(1-r)^4 = 0$,

or

$$z = -r$$
 and $a(1-r^2)^2 + 4ar(1+r)^2 = a(1+r)^4 = 0.$

We see that both are impossible. This proves $C \neq 0$. Next, we consider the following two cases:

CASE (i): B = 0, which is equivalent to

(2.6)
$$|1-z|^2 = \frac{a(1-|z|^2)^2}{4a|z|^2+1-|z|^2} =: R^2.$$

Since this equation describes the circle with center 1 and radius R, we have to decide whether it is possible that for fixed $|z| = r \in [0, 1)$, the inequalities $-r \leq 1 - R \leq r$ are satisfied. They imply $(1 - r)^2 \leq R^2 \leq (1 + r)^2$ and we see that the left inequality is always true for $r \in [0, 1)$, whereas the right one is satisfied for $r \in [\frac{a-1}{3a-1}, 1)$. Hence, the equation B = 0 is valid for the intersection points of the circle $\{z : |z| = r\}$ with the circle given by (2.6). So for B = 0, the equation (2.5) represents a straight line that divides the plane into two open half-planes. According to Part A, the closed disc $\{\varphi : |\varphi| \le 1\}$ lies in the closed half-plane

$$M_2(z,\varphi) \le \frac{2(\alpha+1)}{(1-|z|^2)^2}$$

and the straight line defined by formula (2.5) has only the point $\varphi = e^{i\theta_0}$ in common with the unit circle $\{\varphi : |\varphi| = 1\}$. This proves the assertion of the theorem for B = 0.

CASE (ii): $B \neq 0$. Here the equation (2.5) represents a circle if and only if $C\overline{C} - BD > 0$. A straightforward computation yields

$$C\overline{C} - BD = (2a - 1)^2 (1 - |z|^2)^2 |1 - z|^4,$$

which is always > 0. Hence, whenever $B \neq 0$, (2.5) is the equation of a circle, which divides the φ -plane into the corresponding inner and outer domains. Again, according to Part A, the closed disc $\{\varphi : |\varphi| \leq 1\}$ lies in the region defined by

$$M_2(z,\varphi) \le \frac{2(\alpha+1)}{(1-|z|^2)^2},$$

and the only intersection point of the circle (2.5) with the unit circle $\{\varphi : |\varphi| = 1\}$ is the point $\varphi = e^{i\theta_0}$. This proves the assertion of the theorem for $B \neq 0$.

To get the extremal function as given in the theorem, we only have to integrate the differential equation (1.1). \blacksquare

REMARK. We note that $||S_f|| \leq 2(\alpha^2 - 1)$ for $f \in \operatorname{Co}(\alpha)$. In the case of $\alpha = 2$, $||S_f|| \leq 6$, which is the bound obtained by Nehari for the norm of the Schwarzian derivative for univalent functions. This is a natural consequence of the fact that the Koebe function, which is extremal in that problem, belongs to the class $\operatorname{Co}(2)$.

COROLLARY 2.2. Let $\alpha \in [1, \sqrt{2})$, and $f \in Co(\alpha)$. Then f extends to an $(\alpha^2 - 1)$ -quasiconformal mapping.

Proof. As $\alpha \in [1, \sqrt{2})$, for $f \in \operatorname{Co}(\alpha)$ we have $||S_f|| \leq 2(\alpha^2 - 1) =: 2k$, $k \in [0, 1)$. Now an application of Theorem A proves the corollary.

For, $z_1, z_2 \in \mathbb{D}$, let the hyperbolic metric $d(z_1, z_2)$ be defined by

$$d(z_1, z_2) = \frac{1}{2} \log \frac{1 + \rho(z_1, z_2)}{1 - \rho(z_1, z_2)}, \quad \text{where } \rho(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|.$$

We also define the following quantity for an analytic and locally univalent function f in \mathbb{D} :

$$\Delta_f(z_1, z_2) := \frac{|f(z_1) - f(z_2)|}{\{(1 - |z_1|^2)|f'(z_1)|\}^{1/2}\{(1 - |z_2|^2)|f'(z_2)|\}^{1/2}}, \quad z_1, z_2 \in \mathbb{D}.$$

Now, in view of the above theorem and [CDMMBO, Theorem 1], we obtain a pair of two-point distortion conditions for functions in $Co(\alpha)$ for a certain range of α :

COROLLARY 2.3. Let $\alpha \in (\sqrt{2}, 2]$ and $f \in Co(\alpha)$. Then

(2.7)
$$\Delta_f(z_1, z_2) \ge \frac{1}{\sqrt{\alpha^2 - 2}} \sin(\sqrt{\alpha^2 - 2} \, d(z_1, z_2))$$

for all $z_1, z_2 \in \mathbb{D}$ with $d(z_1, z_2) \leq \pi/\sqrt{\alpha^2 - 2}$, and

(2.8)
$$\Delta_f(z_1, z_2) \le \frac{1}{\alpha} \sinh(\alpha \, d(z_1, z_2))$$

for all $z_1, z_2 \in \mathbb{D}$. Both inequalities are sharp.

Proof. Since $f \in Co(\alpha)$, $\alpha \in (\sqrt{2}, 2]$, by Theorem 2.1 we have

$$||S_f|| \le 2(1+\delta^2)$$
, where $\delta^2 = \alpha^2 - 2 > 0$.

Now, the corollary follows as an application of [CDMMBO, Theorem 1], with $\delta^2=\alpha^2-2.$ \blacksquare

REFERENCES

L. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations		
Proc. Amer. Math. Soc. 13 (1962), 975–978.		
F. G. Avkhadiev and KJ. Wirths, Concave schlicht functions with bounded		
opening angle at infinity, Lobachevskii J. Math. 17 (2005), 3–10.		
B. Bhowmik, On concave univalent functions, Math. Nachr. 285 (2012),		
606-612.		
B. Bhowmik, S. Ponnusamy, and KJ. Wirths, <i>Characterization and the pre-Schwarzian norm estimate for concave univalent functions</i> , Monatsh.		
Math. 161 (2010), 59–75.		
C. Carathéodory, Theory of Functions of a Complex variable, Chelsea, New		
York, 1954.		
M. Chuaqui, P. Duren, and B. Osgood, On a theorem of Haimo regarding concave mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011),		
no. 2, 17–28.		
M. Chuaqui, P. Duren, W. Ma, D. Mejía, D. Minda, and B. Osgood,		
Schwarzian norms and two-point distortion, Pacific J. Math. 254 (2011),		
101–116.		
S. Kanas and T. Sugawa, Sharp norm estimate of Schwarzian derivative		
for a class of convex functions, Ann. Polon. Math. 101 (2011), 75–86.		
R. Kühnau, Verzerrungssätze und Koeffizientenbedingungen vom Grunsky-		
schen Typ für quasikonforme Abbildungen, Math. Nachr. 48 (1971), 77-105.		
Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer.		
Math. Soc. 55 (1949), 545–551.		

[N2]	Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954),
	700–704.
[W]	KJ. Wirths, Julia's lemma and concave schlicht functions, Quaest. Math. 28 (2005), 95–103.

Bappaditya Bhowmik	Karl-Joachim Wirths
Department of Mathematics	Institut für Analysis and Algebra
National Institute of Technology	TU Braunschweig
Rourkela 769008, India	38106 Braunschweig, Germany
E-mail: bappaditya.bhowmik@gmail.com	E-mail: kjwirths@tu-bs.de

Received 27 September 2012 (5772)