A SHARP BOUND FOR THE SCHWARZIAN DERIVATIVE of Concave functions

BY
BAPPADITYA BHOWMIK (Rourkela) and KARL-JOACHIM WIRTHS (Braunschweig)

Abstract

We derive a sharp bound for the modulus of the Schwarzian derivative of concave univalent functions with opening angle at infinity less than or equal to $\pi \alpha$, $\alpha \in[1,2]$.

1. Introduction. Let \mathbb{C} be the complex plane, $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc and $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ be the Riemann sphere. Let f be an analytic and locally univalent function in \mathbb{D}. For such functions f, the Schwarzian derivative and its norm are defined by

$$
S_{f}(z):=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

and

$$
\left\|S_{f}\right\|:=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right| .
$$

These quantities are of importance in the theory of Teichmüller spaces. The fundamental results on the Schwarzian derivative can be found in the works of Z. Nehari (see [N1] and [N2]), R. Kühnau (see [K]), and L. V. Ahlfors and G. Weill (see AW-1). We also refer to the articles [CDO, CDMMBO, KS] for recent developments in this area of research. We summarize the work of Nehari, Kühnau and Ahlfors-Weill below:

Theorem A. Let f be analytic and locally univalent in \mathbb{D}. If f is univalent in \mathbb{D} then $\left\|S_{f}\right\| \leq 6$; conversely, if $\left\|S_{f}\right\| \leq 2$, then f is univalent. Let $0 \leq k<1$. If f extends to a k-quasiconformal mapping of the Riemann sphere \mathbb{C}, then $\left\|S_{f}\right\| \leq 6 k$. Conversely, if $\left\|S_{f}\right\| \leq 2 k$, then f extends to a k-quasiconformal mapping of $\overline{\mathbb{C}}$.

We clarify here that a mapping $f: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is called k-quasiconformal if f is a sense preserving homeomorphism of \mathbb{C} and has locally integrable partial derivatives on $\mathbb{C} \backslash\left\{f^{-1}(\infty)\right\}$, with $\left|f_{\bar{z}}\right| \leq k\left|f_{z}\right|$ a.e.

[^0]Now, we define the class of functions which is our main concern in this article. A function f is said to be concave with opening angle at infinity less than or equal to $\pi \alpha, \alpha \in[1,2]$, if it satisfies the following conditions:
(i) f is analytic and univalent in \mathbb{D}.
(ii) f maps \mathbb{D} conformally onto a set whose complement with respect to \mathbb{C} is convex and satisfies $f(0)=0=f^{\prime}(0)-1$ and $f(1)=\infty$.
(iii) The opening angle of $f(\mathbb{D})$ at infinity is less than or equal to $\pi \alpha$, $\alpha \in[1,2]$.

We denote this class by $\operatorname{Co}(\alpha)$. Various results on $\operatorname{Co}(\alpha)$ can be found in AW-2, [B] [BPW] and [W]. In AW-2] and [W], the following characterization for functions in $\operatorname{Co}(\alpha)$ was proved:

Theorem B. A function f belongs to $\operatorname{Co}(\alpha)$ if and only if $f(0)=$ $f^{\prime}(0)-1=0$ and there exists a holomorphic function $\varphi: \mathbb{D} \rightarrow \overline{\mathbb{D}}$ such that

$$
\begin{equation*}
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\alpha+1}{1-z}+\frac{(\alpha-1) \varphi(z)}{1+z \varphi(z)}, \quad z \in \mathbb{D} . \tag{1.1}
\end{equation*}
$$

In this note, our main aim is to find a sharp bound for the modulus of the Schwarzian derivative for functions in $\operatorname{Co}(\alpha)$. This result will yield a sharp norm estimate for the Schwarzian derivative of concave mappings, which will help us to comment on quasiconformal extension and get a pair of two-point distortion conditions of such mappings. These are the contents of Section 2.
2. Results. The main result of this article is the following theorem:

Main Theorem 2.1. Let $\alpha \in[1,2], f \in \operatorname{Co}(\alpha)$, and $z \in \mathbb{D}$. Then

$$
\begin{equation*}
\left|\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right| \leq \frac{2\left(\alpha^{2}-1\right)}{\left(1-|z|^{2}\right)^{2}} \tag{2.1}
\end{equation*}
$$

Equality is attained in (2.1) if and only if

$$
f(\zeta)=\int_{0}^{\zeta} \frac{\left(1+t e^{i \theta_{0}}\right)^{\alpha-1}}{(1-t)^{\alpha+1}} d t, \quad \zeta \in \mathbb{D},
$$

where

$$
e^{i \theta_{0}}=\frac{1-2 \bar{z}+|z|^{2}}{1-2 z+|z|^{2}}
$$

Proof. A little computation using the representation formula (1.1) in Theorem B yields

$$
\begin{aligned}
\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime} & -\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2} \\
& =(\alpha-1)\left(\frac{\varphi^{\prime}(z)}{(1+z \varphi(z))^{2}}-\frac{1}{2}(\alpha+1) \frac{(1+\varphi(z))^{2}}{(1-z)^{2}(1+z \varphi(z))^{2}}\right) \\
& =(\alpha-1) M_{1}(z, \varphi)
\end{aligned}
$$

In the further considerations, we exclude the trivial case $\alpha=1$. Since it is known (see []) that for a holomorphic function $\varphi: \mathbb{D} \rightarrow \overline{\mathbb{D}}$ we have

$$
\left|\varphi^{\prime}(z)\right| \leq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}}, \quad z \in \mathbb{D}
$$

we get an upper bound for $\left|M_{1}(z, \varphi)\right|$ if we assume that the first term in the sum defining $M_{1}(z, \varphi)$ has the same argument as the second one:

$$
\begin{aligned}
\left|M_{1}(z, \varphi)\right| & \leq\left|\frac{(1+\varphi(z))^{2}}{(1-z)^{2}}\left(\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \frac{|1-z|^{2}}{|1+\varphi(z)|^{2}}+\frac{1}{2}(\alpha+1)\right)\right| \frac{1}{|1+z \varphi(z)|^{2}} \\
& =\left(\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}}+\frac{1}{2}(\alpha+1) \frac{|1+\varphi(z)|^{2}}{|1-z|^{2}}\right) \frac{1}{|1+z \varphi(z)|^{2}}=: M_{2}(z, \varphi) .
\end{aligned}
$$

Our aim is to prove that, for fixed $z \in \mathbb{D}$ and $|\varphi(z)| \leq 1$,

$$
\begin{equation*}
M_{2}(z, \varphi) \leq \frac{2(\alpha+1)}{\left(1-|z|^{2}\right)^{2}} . \tag{2.2}
\end{equation*}
$$

Further we will show that equality occurs in (2.2) if and only if

$$
\begin{equation*}
\varphi(z)=\frac{1-2 \bar{z}+|z|^{2}}{1-2 z+|z|^{2}}=e^{i \theta_{0}}, \tag{2.3}
\end{equation*}
$$

where $\theta_{0} \in[0,2 \pi)$. This will imply $\varphi(z)=e^{i \theta_{0}}$ for all $z \in \mathbb{D}$, due to the maximum principle for analytic functions. We divide the proof of these claims into two parts.

Part A. First, for fixed $z \in \mathbb{D}$, we consider the image under $M_{2}(z, \varphi)$ of the circle $\{\varphi:|\varphi|=1\}$. To this end, let

$$
w=\frac{1+\varphi}{1+z \varphi} .
$$

It is easily seen that $|\varphi|=1$ is equivalent to

$$
\left|w-\frac{1-\bar{z}}{1-|z|^{2}}\right|=\frac{|1-z|}{1-|z|^{2}} .
$$

This implies that

$$
\begin{equation*}
\left|\frac{w}{1-z}\right| \leq \frac{2}{1-|z|^{2}}, \tag{2.4}
\end{equation*}
$$

where equality occurs if and only if

$$
w=\frac{2(1-\bar{z})}{1-|z|^{2}}
$$

or

$$
\varphi=\frac{1-2 \bar{z}+|z|^{2}}{1-2 z+|z|^{2}}
$$

Hence, for fixed $z \in \mathbb{D}$ and $|\varphi|=1$, the inequality 2.4 will imply the validity of (2.2), and equality is attained in (2.2) if and only if $\varphi=e^{i \theta_{0}}$, where θ_{0} is given by the equation 2.3 .

Part B. Now, for fixed $z \in \mathbb{D}$, we consider the curve in the φ-plane which is defined by

$$
\begin{equation*}
M_{2}(z, \varphi)=\frac{2(\alpha+1)}{\left(1-|z|^{2}\right)^{2}} \tag{2.5}
\end{equation*}
$$

Hereafter, we use the abbreviation $a=\frac{1}{2}(\alpha+1) \in\left(1, \frac{3}{2}\right]$. A little computation reveals that 2.5 is equivalent to

$$
B \varphi \bar{\varphi}+C \varphi+\bar{C} \bar{\varphi}+D=0
$$

where

$$
\begin{aligned}
& B=a\left(1-|z|^{2}\right)^{2}-4 a|z|^{2}|1-z|^{2}-|1-z|^{2}\left(1-|z|^{2}\right) \\
& C=a\left(1-|z|^{2}\right)^{2}-4 a z|1-z|^{2} \\
& D=|1-z|^{2}\left(1-|z|^{2}\right)+a\left(1-|z|^{2}\right)^{2}-4 a|1-z|^{2}
\end{aligned}
$$

We wish to analyze the set in the φ-plane described by 2.5 . To this end, first we claim that $C \neq 0$; indeed, if $C=0$, then either

$$
z=r \quad \text { and } \quad a\left(1-r^{2}\right)^{2}-4 a r(1-r)^{2}=a(1-r)^{4}=0
$$

or

$$
z=-r \quad \text { and } \quad a\left(1-r^{2}\right)^{2}+4 a r(1+r)^{2}=a(1+r)^{4}=0
$$

We see that both are impossible. This proves $C \neq 0$. Next, we consider the following two cases:

CASE (i): $B=0$, which is equivalent to

$$
\begin{equation*}
|1-z|^{2}=\frac{a\left(1-|z|^{2}\right)^{2}}{4 a|z|^{2}+1-|z|^{2}}=: R^{2} \tag{2.6}
\end{equation*}
$$

Since this equation describes the circle with center 1 and radius R, we have to decide whether it is possible that for fixed $|z|=r \in[0,1)$, the inequalities $-r \leq 1-R \leq r$ are satisfied. They imply $(1-r)^{2} \leq R^{2} \leq(1+r)^{2}$ and we see that the left inequality is always true for $r \in[0,1)$, whereas the right one is satisfied for $r \in\left[\frac{a-1}{3 a-1}, 1\right)$. Hence, the equation $B=0$ is valid for the intersection points of the circle $\{z:|z|=r\}$ with the circle given by 2.6). So for $B=0$, the equation $(2.5$ represents a straight line that divides the plane
into two open half-planes. According to Part A, the closed disc $\{\varphi:|\varphi| \leq 1\}$ lies in the closed half-plane

$$
M_{2}(z, \varphi) \leq \frac{2(\alpha+1)}{\left(1-|z|^{2}\right)^{2}}
$$

and the straight line defined by formula (2.5) has only the point $\varphi=e^{i \theta_{0}}$ in common with the unit circle $\{\varphi:|\varphi|=1\}$. This proves the assertion of the theorem for $B=0$.

Case (ii): $B \neq 0$. Here the equation (2.5) represents a circle if and only if $C \bar{C}-B D>0$. A straightforward computation yields

$$
C \bar{C}-B D=(2 a-1)^{2}\left(1-|z|^{2}\right)^{2}|1-z|^{4},
$$

which is always >0. Hence, whenever $B \neq 0,(2.5)$ is the equation of a circle, which divides the φ-plane into the corresponding inner and outer domains. Again, according to Part A, the closed disc $\{\varphi:|\varphi| \leq 1\}$ lies in the region defined by

$$
M_{2}(z, \varphi) \leq \frac{2(\alpha+1)}{\left(1-|z|^{2}\right)^{2}},
$$

and the only intersection point of the circle 2.5) with the unit circle $\{\varphi$: $|\varphi|=1\}$ is the point $\varphi=e^{i \theta_{0}}$. This proves the assertion of the theorem for $B \neq 0$.

To get the extremal function as given in the theorem, we only have to integrate the differential equation (1.1).

Remark. We note that $\left\|S_{f}\right\| \leq 2\left(\alpha^{2}-1\right)$ for $f \in \operatorname{Co}(\alpha)$. In the case of $\alpha=2,\left\|S_{f}\right\| \leq 6$, which is the bound obtained by Nehari for the norm of the Schwarzian derivative for univalent functions. This is a natural consequence of the fact that the Koebe function, which is extremal in that problem, belongs to the class $\mathrm{Co}(2)$.

Corollary 2.2. Let $\alpha \in[1, \sqrt{2})$, and $f \in \operatorname{Co}(\alpha)$. Then f extends to an ($\alpha^{2}-1$)-quasiconformal mapping.

Proof. As $\alpha \in[1, \sqrt{2})$, for $f \in \operatorname{Co}(\alpha)$ we have $\left\|S_{f}\right\| \leq 2\left(\alpha^{2}-1\right)=: 2 k$, $k \in[0,1)$. Now an application of Theorem A proves the corollary.

For, $z_{1}, z_{2} \in \mathbb{D}$, let the hyperbolic metric $d\left(z_{1}, z_{2}\right)$ be defined by

$$
d\left(z_{1}, z_{2}\right)=\frac{1}{2} \log \frac{1+\rho\left(z_{1}, z_{2}\right)}{1-\rho\left(z_{1}, z_{2}\right)}, \quad \text { where } \rho\left(z_{1}, z_{2}\right)=\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right| .
$$

We also define the following quantity for an analytic and locally univalent function f in \mathbb{D} :

$$
\Delta_{f}\left(z_{1}, z_{2}\right):=\frac{\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|}{\left\{\left(1-\left|z_{1}\right|^{2}\right)\left|f^{\prime}\left(z_{1}\right)\right|\right\}^{1 / 2}\left\{\left(1-\left|z_{2}\right|^{2}\right)\left|f^{\prime}\left(z_{2}\right)\right|\right\}^{1 / 2}}, \quad z_{1}, z_{2} \in \mathbb{D} .
$$

Now, in view of the above theorem and CDMMBO, Theorem 1], we obtain a pair of two-point distortion conditions for functions in $\operatorname{Co}(\alpha)$ for a certain range of α :

Corollary 2.3. Let $\alpha \in(\sqrt{2}, 2]$ and $f \in \operatorname{Co}(\alpha)$. Then

$$
\begin{equation*}
\Delta_{f}\left(z_{1}, z_{2}\right) \geq \frac{1}{\sqrt{\alpha^{2}-2}} \sin \left(\sqrt{\alpha^{2}-2} d\left(z_{1}, z_{2}\right)\right) \tag{2.7}
\end{equation*}
$$

for all $z_{1}, z_{2} \in \mathbb{D}$ with $d\left(z_{1}, z_{2}\right) \leq \pi / \sqrt{\alpha^{2}-2}$, and

$$
\begin{equation*}
\Delta_{f}\left(z_{1}, z_{2}\right) \leq \frac{1}{\alpha} \sinh \left(\alpha d\left(z_{1}, z_{2}\right)\right) \tag{2.8}
\end{equation*}
$$

for all $z_{1}, z_{2} \in \mathbb{D}$. Both inequalities are sharp.
Proof. Since $f \in \operatorname{Co}(\alpha), \alpha \in(\sqrt{2}, 2]$, by Theorem 2.1 we have

$$
\left\|S_{f}\right\| \leq 2\left(1+\delta^{2}\right), \quad \text { where } \quad \delta^{2}=\alpha^{2}-2>0 .
$$

Now, the corollary follows as an application of [CDMMBO, Theorem 1], with $\delta^{2}=\alpha^{2}-2$.

REFERENCES

[AW-1] L. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975-978.
[AW-2] F. G. Avkhadiev and K.-J. Wirths, Concave schlicht functions with bounded opening angle at infinity, Lobachevskii J. Math. 17 (2005), 3-10.
[B] B. Bhowmik, On concave univalent functions, Math. Nachr. 285 (2012), 606-612.
[BPW] B. Bhowmik, S. Ponnusamy, and K.-J. Wirths, Characterization and the pre-Schwarzian norm estimate for concave univalent functions, Monatsh. Math. 161 (2010), 59-75.
[C] C. Carathéodory, Theory of Functions of a Complex variable, Chelsea, New York, 1954.
[CDO] M. Chuaqui, P. Duren, and B. Osgood, On a theorem of Haimo regarding concave mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2011), no. 2, 17-28.
[CDMMBO] M. Chuaqui, P. Duren, W. Ma, D. Mejía, D. Minda, and B. Osgood, Schwarzian norms and two-point distortion, Pacific J. Math. 254 (2011), 101-116.
[KS] S. Kanas and T. Sugawa, Sharp norm estimate of Schwarzian derivative for a class of convex functions, Ann. Polon. Math. 101 (2011), 75-86.
[K] R. Kühnau, Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen, Math. Nachr. 48 (1971), 77-105.
[N1] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[N2] Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954), 700-704.
[W] K.-J. Wirths, Julia's lemma and concave schlicht functions, Quaest. Math. 28 (2005), 95-103.

Bappaditya Bhowmik
Department of Mathematics
National Institute of Technology
Rourkela 769008, India
E-mail: bappaditya.bhowmik@gmail.com

Karl-Joachim Wirths
Institut für Analysis and Algebra
TU Braunschweig
38106 Braunschweig, Germany
E-mail: kjwirths@tu-bs.de

[^0]: 2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C55, 30C62.
 Key words and phrases: Schwarzian derivative, concave functions, opening angle at infinity.

