SKEW DERIVATIONS AND THE NIL AND PRIME RADICALS

ву
JEFFREY BERGEN (Chicago, IL) and PIOTR GRZESZCZUK (Białystok)

Abstract

We examine when the nil and prime radicals of an algebra are stable under q-skew σ-derivations. We provide an example which shows that even if q is not a root of 1 or if δ and σ commute in characteristic 0 , then the nil and prime radicals need not be δ-stable. However, when certain finiteness conditions are placed on δ or σ, then the nil and prime radicals are δ-stable.

In this paper, we examine when the nil and prime radicals of an algebra are stable under q-skew derivations. Throughout, R will be an algebra over a field F. The nil radical of R will be denoted as $N(R)$ and it is the largest nil two-sided ideal of R. The prime radical of R will be denoted as $P(R)$ and it is the intersection of all the prime ideals of R. It is well known that $P(R) \subseteq N(R)$ and that $\sigma(P(R))=P(R)$ and $\sigma(N(R))=N(R)$ for any automorphism σ of R. When F has characteristic 0 , Proposition 2.6.28 of R shows that if δ is a derivation of R, then $\delta(N(R)) \subseteq N(R)$ and $\delta(P(R)) \subseteq$ $P(R)$. Whenever f is a function and A is a subset of R such that $f(A) \subseteq A$, we say that A is f-stable. In [LMS], the authors examine various conditions under which the Jacobson radical is stable under actions of finite-dimensional semisimple Hopf algebras.

For any prime p, the case when F has characteristic p is quite different. For example, let $R=F\left[x \mid x^{p}=0\right]$ and consider the F-linear derivation δ defined as $\delta(x)=1$. In this example, neither $N(R)$ nor $P(R)$ are δ-stable as $x \in P(R) \subseteq N(R)$ but $\delta(x)=1 \notin N(R)$.

If σ is an F-linear automorphism of R we say that δ is a σ-derivation if

$$
\delta(r s)=\delta(r) s+\sigma(r) \delta(s)
$$

for all $r, s \in R$. Furthermore, if $0 \neq q \in F$, we say that δ is a q-skew derivation provided

$$
\delta(\sigma(r))=q \sigma(\delta(r))
$$

for all $r \in R$. Regardless of the characteristic of F, the behavior of q-skew derivations when q is a root of 1 is often quite similar to that of derivations

[^0]Key words and phrases: nil radical, prime radical, skew derivation.
in characteristic p. For example, suppose $q^{n}=1$ and $q \neq 1$. If we let $R=$ $F\left[x \mid x^{n}=0\right]$, then there is an automorphism σ such that $\sigma(x)=q x$ and a q-skew derivation δ such that $\delta(x)=1$. Observe that neither $P(R)$ nor $N(R)$ are δ-stable as $x \in P(R) \subseteq N(R)$ but $\delta(x)=1 \notin N(R)$. Note that since $1+q+\cdots+q^{n-1}=0, \delta$ preserves the relation $x^{n}=0$.

In light of the above, it remains to consider the case where $1+q+$ $\cdots+q^{n-1} \neq 0$ for all $n \in \mathbb{N}$. This is equivalent to saying that either q is not a root of 1 , or $q=1$ and F has characteristic 0 . In this situation, the behavior of q-skew derivations is often quite similar to that of derivations in characteristic 0. However, we now present an example that shows that the nil and prime radicals need to be δ-stable in this situation. Following this example, we will show that when certain finiteness conditions are placed on σ or δ, the nil and prime radicals will be δ-stable.

The example below is motivated by an example in [BR] in which the authors examine the Jacobson radical of skew polynomial rings of automorphism type.

EXAMPLE 1. Let $0 \neq q \in F$ such that $1+q+\cdots+q^{n-1} \neq 0$, for all $n \in \mathbb{N}$. Then there exists an F-algebra R with an automorphism σ and a locally nilpotent q-skew derivation δ such that neither the nil radical nor the prime radical of R are δ-stable.

Proof. Let F be a field and let B be the set of all bi-infinite sequences of elements of F. Thus $B=\left\{\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right) \mid a_{i} \in F\right\}$ and B is a ring where addition and multiplication are defined componentwise. Observe that B is commutative with no nonzero nilpotent elements. Next, let τ denote the right-shift operator on B, thus $\tau\left(\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right)\right)=$ $\left(\ldots, b_{-2}, b_{-1}, b_{0}, b_{1}, b_{2}, \ldots\right)$, where $b_{i}=a_{i-1}$, for all $i \in \mathbb{Z}$. Note that τ is an automorphism of B.

If we let A consist of the elements of B with only a finite number of nonzero entries, then A is an ideal of B. Now let $e=(\ldots, 1,1,1,1,1, \ldots)$ denote the multiplicative identity of B and let $F e$ be all multiples of e by elements of F. If we let $C=F e+A$, then C is a commutative algebra over F with no nonzero nilpotent elements, τ is an automorphism of C, and A is a τ-stable ideal of C of codimension 1.

Let $R=C[x ; \tau]$ be the skew polynomial ring over C of automorphism type. Therefore every element of R can be written uniquely as a finite sum of the form $\sum_{i=0}^{n} c_{i} x^{i}$. When multiplying in R, we have $x c=\tau(c) x$ for all $c \in C$. Let e_{1} be the element of A where every component is 0 except the $i=1$ component which is 1 . Thus e_{1} has the properties that $0 \neq e_{1}=\left(e_{1}\right)^{2}$ and $e_{1} \tau^{t}\left(e_{1}\right)=0$ for $t \neq 0$. If $c \in C$ and $n \geq 0$, then, computing in R, we have

$$
\begin{aligned}
\left(e_{1} x\right)\left(c x^{n}\right)\left(e_{1} x\right) & =\left(e_{1} x\right)\left(c \tau^{n}\left(e_{1}\right)\right) x^{n+1}=e_{1} \tau\left(c \tau^{n}\left(e_{1}\right)\right) x^{n+2} \\
& =\left(e_{1} \tau^{n+1}\left(e_{1}\right)\right) \tau(c) x^{n+2}=0
\end{aligned}
$$

This equation tells us that $\left(R\left(e_{1} x\right) R\right)^{2}=0$, hence

$$
e_{1} x \in R\left(e_{1} x\right) R \subseteq P(R) \subseteq N(R)
$$

Next, we can define an automorphism σ of R as $\sigma(c)=\tau^{-1}(c)$ for all $c \in C$, and $\sigma(x)=q x$. Since $1+q+\cdots+q^{n-1} \neq 0$ for all $n \in \mathbb{N}$, we can apply Theorem 2 of BG to conclude that there is a q-skew derivation δ of R such that $\delta(c)=0$ for all $c \in C$, and $\delta(x)=1$. Furthermore, Theorem 2 of BG also asserts that δ is locally nilpotent and its ring of constants, $R^{\delta}=\{r \in R \mid \delta(r)=0\}$, is equal to C.

We know that $e_{1} x \in P(R) \subseteq N(R)$. However,

$$
0 \neq \delta\left(e_{1} x\right)=\delta\left(e_{1}\right) x+\sigma\left(e_{1}\right) \delta(x)=\tau^{-1}\left(e_{1}\right) \in C
$$

Since C has no nonzero nilpotent elements, we see that $\delta\left(e_{1} x\right)$ is not nilpotent and cannot belong to $N(R)$. As a result, $e_{1} x \in P(R) \subseteq N(R)$ and $\delta\left(e_{1} x\right) \notin$ $N(R)$, and so the nil and prime radicals of R are not δ-stable.

We now begin the work needed to show that if certain finiteness conditions are placed on σ or δ, then the assumption that $1+q+\cdots+q^{n-1} \neq 0$ for all $n \in \mathbb{N}$ is enough to guarantee that $P(R)$ and $N(R)$ are δ-stable. Our earlier example indicates that it is not enough to assume that δ is locally nilpotent. If σ has locally finite order then $N(R)$ will be δ-stable and $P(R)$ will be δ-stable under the somewhat weaker condition that σ is locally algebraic. Both $P(R)$ and $N(R)$ will be δ-stable if we assume that δ is algebraic. In the next lemma, we will see that some of these assumptions place certain restriction on the possible values of q.

LEmma 2. Let δ be a q-skew derivation of R where $1+q+\cdots+q^{n-1} \neq 0$ for all $n \in \mathbb{N}$.
(i) If σ has locally finite order and $\delta \neq 0$, then $q=1$ and F has characteristic 0.
(ii) If δ is algebraic then either δ is nilpotent, or $q=1$ and F has characteristic 0.

Proof. For (i), let $r \in R$ be such that $\delta(r) \neq 0$. Since σ has locally finite order, there exists $n \in \mathbb{N}$ such that $\sigma^{n}(r)=r$ and $\sigma^{n}(\delta(r))=\delta(r)$. Observe that $\delta \sigma^{n}=q^{n} \sigma^{n} \delta$, therefore

$$
\delta(r)=\sigma^{n}(\delta(r))=q^{-n} \delta\left(\sigma^{n}(r)\right)=q^{-n} \delta(r)
$$

Since $\delta(r) \neq 0$, we see that $q^{n}=1$. Furthermore, since $1+q+\cdots+q^{n-1} \neq 0$, we know that $q=1$, which immediately implies that F has characteristic 0 .

For (ii), since δ is algebraic over F, there exists some minimal $n \in \mathbb{N}$ and $\alpha_{i} \in F$ such that

$$
\begin{equation*}
\delta^{n}(r)=\alpha_{n-1} \delta^{n-1}(r)+\cdots+\alpha_{1} \delta(r)+\alpha_{0} r \tag{1}
\end{equation*}
$$

for all $r \in R$. If we replace r by $\sigma(r)$ in (1) and use the fact that $\delta^{j} \sigma=q^{j} \sigma \delta^{j}$ for all $j \in \mathbb{N}$, we obtain

$$
q^{n} \sigma\left(\delta^{n}(r)\right)=q^{n-1} \alpha_{n-1} \sigma\left(\delta^{n-1}(r)\right)+\cdots+q \alpha_{1} \sigma(\delta(r))+\alpha_{0} \sigma(r)
$$

Applying σ^{-1} to this equation and then multiplying by q^{-n} results in

$$
\delta^{n}(r)=q^{-1} \alpha_{n-1} \delta^{n-1}(r)+\cdots+q^{1-n} \alpha_{1} \delta(r)+q^{-n} \alpha_{0} r .
$$

When we compare this to (1), the minimality of n implies that $q^{n-i} \alpha_{i}=\alpha_{i}$ for $0 \leq i \leq n-1$. If each $\alpha_{i}=0$, then δ is nilpotent. On the other hand, if some $\alpha_{i} \neq 0$, then q must be a root of 1 . As in the proof of (i), since q is a root of 1 , it follows that $q=1$ and F has characteristic 0 .

Our next lemma does not require that δ be q-skew nor that R be an algebra.

Lemma 3. Let R be a ring with a σ-derivation δ.
(i) If I is a σ-stable ideal of R, then $I+\delta(I)$ is an ideal of R.
(ii) If $\delta(s)$ is nilpotent for all $s \in N(R)$, then $N(R)$ is δ-stable.

Proof. For (i), if $r \in R$ and $s \in I$, then

$$
r \delta(s)=\delta\left(\sigma^{-1}(r) s\right)-\delta\left(\sigma^{-1}(r)\right) s \in I+\delta(I)
$$

and

$$
\delta(s) r=\delta(s r)-\sigma(s) \delta(r) \in I+\delta(I)
$$

Therefore $R \delta(I), \delta(I) R \subseteq I+\delta(I)$, and so $I+\delta(I)$ is an ideal of R. In particular, this tells us that $N(R)+\delta(N(R))$ is an ideal of R.

For (ii), if $r, s \in N(R)$ and $n \in \mathbb{N}$, then $(r+\delta(s))^{n}=(\delta(s))^{n}+w$, where $w \in N(R)$. Since $\delta(s)$ is nilpotent, we can choose n such that $(\delta(s))^{n}=0$, hence $(r+\delta(s))^{n} \in N(R)$. As a result, $(r+\delta(s))^{n}$ is nilpotent, which immediately implies that $r+\delta(s)$ is nilpotent. Therefore $N(R)+\delta(N(R))$ is a nil ideal, hence it must be contained in $N(R)$. Thus $\delta(N(R)) \subseteq N(R)$, as required.

For the remainder of this paper, if $n \in \mathbb{N}$, we let

$$
(n!)_{q}=(1)(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)
$$

Note that if $q=1$, then $(n!)_{q}=n!$.
Lemma 4. Let R be a ring with q-skew derivation δ. If I is a σ-stable ideal of R and $r_{1}, \ldots, r_{n} \in I$, then
(i) $\delta^{n}\left(r_{1} r_{2} \cdots r_{n}\right)=(n!)_{q} \sigma^{n-1}\left(\delta\left(r_{1}\right)\right) \sigma^{n-2}\left(\delta\left(r_{2}\right)\right) \cdots \sigma\left(\delta\left(r_{n-1}\right)\right) \delta\left(r_{n}\right)+w$, where $w \in I$;
(ii) $\sigma^{n-1}\left(\delta\left(r_{1}\right)\right) \sigma^{n-2}\left(\delta\left(r_{2}\right)\right) \cdots \sigma\left(\delta\left(r_{n-1}\right)\right) \delta\left(r_{n}\right)$
$=q^{-(n-1) n / 2} \delta\left(\sigma^{n-1}\left(r_{1}\right)\right) \delta\left(\sigma^{n-2}\left(r_{2}\right)\right) \cdots \delta\left(\sigma\left(r_{n-1}\right)\right) \delta\left(r_{n}\right)$;
(iii) if $\sigma(I)=I,(n!)_{q} \neq 0$, and $\delta^{n}\left(I^{n}\right) \subseteq K$ for some ideal K, then $(\delta(I))^{n} \subseteq I+K$.

Proof. For (i), if $r_{1}, \ldots, r_{n} \in R$, we have

$$
\begin{align*}
\delta\left(r_{1} r_{2} \cdots\right. & \left.r_{n-1} r_{n}\right)=\delta\left(r_{1}\right) r_{2} \cdots r_{n-1} r_{n}+\sigma\left(r_{1}\right) \delta\left(r_{2}\right) \cdots r_{n-1} r_{n}+\cdots \tag{2}\\
& +\sigma\left(r_{1}\right) \cdots \sigma\left(r_{n-2}\right) \delta\left(r_{n-1}\right) r_{n}+\sigma\left(r_{1}\right) \sigma\left(r_{2}\right) \cdots \sigma\left(r_{n-1}\right) \delta\left(r_{n}\right)
\end{align*}
$$

If $1 \leq k \leq n$, let $f_{k}=\sum_{i=0}^{n-k} \sigma^{n-k-i} \delta \sigma^{i}$. Repeated application of δ to (2) results in

$$
\begin{equation*}
\delta^{n}\left(r_{1} r_{2} \cdots r_{n}\right)=f_{1}\left(r_{1}\right) f_{2}\left(r_{2}\right) \cdots f_{n}\left(r_{n}\right)+w \tag{3}
\end{equation*}
$$

where w is a sum of terms of the form $g_{1}\left(r_{1}\right) g_{2}\left(r_{2}\right) \cdots \sigma^{j}\left(r_{i}\right) \cdots g_{n}\left(r_{n}\right)$ such that $j \geq 0$ and each g_{i} is a composition of l copies of δ and σ, for some $0 \leq l \leq n$.

Since δ is q-skew, it follows that $f_{k}(r)=\left(1+q+\cdots+q^{n-k}\right) \sigma^{n-k}(\delta(r))$ for all $r \in R$. Thus

$$
\begin{aligned}
& f_{1}\left(r_{1}\right) f_{2}\left(r_{2}\right) \cdots f_{n}\left(r_{n}\right) \\
& \quad=(1)(1+q) \cdots\left(1+q+\cdots+q^{n-1}\right) \sigma^{n-1}\left(\delta\left(r_{1}\right)\right) \cdots \sigma\left(\delta\left(r_{n-1}\right)\right) \delta\left(r_{n}\right) \\
& \quad=(n!)_{q} \sigma^{n-1}\left(\delta\left(r_{1}\right)\right) \cdots \sigma\left(\delta\left(r_{n-1}\right)\right) \delta\left(r_{n}\right)
\end{aligned}
$$

Therefore, if each $r_{i} \in I$, we can rewrite (3) as

$$
\delta^{n}\left(r_{1} r_{2} \cdots r_{n}\right)=(n!)_{q} \sigma^{n-1}\left(\delta\left(r_{1}\right)\right) \sigma^{n-2}\left(\delta\left(r_{2}\right)\right) \cdots \sigma\left(\delta\left(r_{n-1}\right)\right) \delta\left(r_{n}\right)+w
$$

where $w \in I$, proving (i).
Since $\delta \sigma=q \sigma \delta$, we see that $\sigma^{n-i} \delta=q^{-(n-i)} \delta \sigma^{n-i}$ for $1 \leq i \leq n$. Therefore (ii) follows by replacing each term of the form $\sigma^{n-i}\left(\delta\left(r_{i}\right)\right)$ in

$$
\sigma^{n-1}\left(\delta\left(r_{1}\right)\right) \sigma^{n-2}\left(\delta\left(r_{2}\right)\right) \cdots \sigma\left(\delta\left(r_{n-1}\right)\right) \delta\left(r_{n}\right)
$$

by $q^{-(n-i)} \delta\left(\sigma^{n-i}\left(r_{i}\right)\right)$.
For (iii), we know that both $(n!)_{q}$ and $q^{-(n-1) n / 2}$ are nonzero. Therefore, since $\delta^{n}\left(I^{n}\right) \subseteq K$, it follows from (i) and (ii) that

$$
\begin{equation*}
\delta\left(\sigma^{n-1}\left(r_{1}\right)\right) \delta\left(\sigma^{n-2}\left(r_{2}\right)\right) \cdots \delta\left(\sigma\left(r_{n-1}\right)\right) \delta\left(r_{n}\right) \in I+K \tag{4}
\end{equation*}
$$

In addition, $\sigma(I)=I$, thus $\sigma^{i}(I)=I$ for all $i \in \mathbb{N}$. It now follows from (4) that $(\delta(I))^{n} \subseteq I+K$.

We can now prove

TheOrem 5. Let R be an algebra over a field of characteristic 0 with a σ-derivation δ such that δ and σ commute. If σ has locally finite order then the nil radical of R is δ-stable.

Proof. Let $r \in N(R)$; in light of Lemma 3, it suffices to show that $\delta(r)$ is nilpotent. Since σ has locally finite order, there exists $n \in \mathbb{N}$ such that $\sigma^{n}(r)=r$ and we can let $s=\sigma^{-n+1}(r) \cdots \sigma^{-2}(r) \sigma^{-1}(r) r$. Note that $\sigma^{-n}(s)=s$ and, for any $m \in \mathbb{N}$, it now follows that

$$
s^{m}=\sigma^{(1-m) n}(s) \cdots \sigma^{-2 n}(s) \sigma^{-n}(s) s=\sigma^{1-m n}(r) \cdots \sigma^{-2}(r) \sigma^{-1}(r) r
$$

Since $s \in N(R)$, we can choose m such than $s^{m}=0$ and we now have

$$
0=\delta^{m n}\left(s^{m}\right)=\delta^{m n}\left(\sigma^{1-m n}(r) \cdots \sigma^{-2}(r) \sigma^{-1}(r) r\right)
$$

Observe that δ is q-skew with $q=1$. Therefore $(n!)_{q}=n!$ and $\sigma^{i} \delta=\delta \sigma^{i}$ for all $i \in \mathbb{N}$. As a result, the term

$$
(n!)_{q} \sigma^{n-1}\left(\delta\left(r_{1}\right)\right) \sigma^{n-2}\left(\delta\left(r_{2}\right)\right) \cdots \sigma\left(\delta\left(r_{n-1}\right)\right) \delta\left(r_{n}\right)
$$

in Lemma 4 can now be written as

$$
n!\delta\left(\sigma^{n-1}\left(r_{1}\right)\right) \delta\left(\sigma^{n-2}\left(r_{2}\right)\right) \cdots \delta\left(\sigma\left(r_{n-1}\right)\right) \delta\left(r_{n}\right)
$$

Applying Lemma 4(i) with $I=N(R)$ gives

$$
0=\delta^{m n}\left(\sigma^{1-m n}(r) \cdots \sigma^{-2}(r) \sigma^{-1}(r) r\right)=(m n)!\delta(r) \cdots \delta(r) \delta(r) \delta(r)+w
$$

where $w \in N(R)$. Thus $(m n)!(\delta(r))^{m n} \in N(R)$ and, since F has characteristic 0 , this immediately implies that $\delta(r)$ is nilpotent.

For any $\operatorname{ring} S$, let $W(S)$ be the sum of the nilpotent ideals of S. A useful property of the prime radical of R is that it can also be defined as the union of an ascending chain of ideals $P_{\alpha} \subseteq R$ as follows:

- $P_{0}=0, P_{1}=W(R) ;$
- $P_{\alpha+1}$ is the ideal of R such that $W\left(R / P_{\alpha}\right)=P_{\alpha+1} / P_{\alpha}$;
- if α is a limit ordinal, then $P_{\alpha}=\bigcup_{\beta<\alpha} P_{\beta}$.

Observe that each P_{α} is σ-stable and there exists an ordinal γ such that $P_{\gamma}=P_{\gamma+1}=P(R)$. For our next result, we can weaken the assumption in Theorem 5 and assume instead that σ is locally algebraic. This means that every element of R is contained in a finite-dimensional σ-stable subspace of R.

TheOrem 6. Let R be an algebra with a q-skew derivation δ such that $1+q+\cdots+q^{n-1} \neq 0$ for all $n \in \mathbb{N}$. If σ is locally algebraic, then the prime radical of R is δ-stable.

Proof. We will prove, using transfinite induction, that $\delta\left(P_{\alpha}\right) \subseteq P_{\alpha}$ for every ordinal α. To this end, suppose $\delta\left(P_{\beta}\right) \subseteq P_{\beta}$ for all ordinals $\beta<\alpha$. If
α is a limit ordinal, we have

$$
\delta\left(P_{\alpha}\right)=\delta\left(\bigcup_{\beta<\alpha} P_{\beta}\right)=\bigcup_{\beta<\alpha} \delta\left(P_{\beta}\right) \subseteq \bigcup_{\beta<\alpha} P_{\beta}=P_{\alpha}
$$

Next, suppose $\alpha=\beta+1$ and let $a \in P_{\alpha}$; we will show that $\delta(a) \in P_{\alpha}$. As P_{α} is σ-stable, it follows that $\left(R \sigma^{j}(a) R+P_{\beta}\right) / P_{\beta}$ is a nilpotent ideal of R / P_{β} for all $j \geq 0$. Since σ is locally algebraic, there exists $m \in \mathbb{N}$ such that

$$
\sum_{j=0}^{\infty}\left(R \sigma^{j}(a) R+P_{\beta}\right) / P_{\beta}=\sum_{j=0}^{m}\left(R \sigma^{j}(a) R+P_{\beta}\right) / P_{\beta}
$$

Therefore, there exists an ideal J such that $\sigma(J)=J, a \in J$ and having the additional properties that

$$
\left(R a R+P_{\beta}\right) / P_{\beta} \subseteq\left(J+P_{\beta}\right) / P_{\beta}
$$

and $J^{n} \subseteq P_{\beta}$ for some $n>0$. Since $\delta\left(P_{\beta}\right) \subseteq P_{\beta}$, we have $\delta^{n}\left(J^{n}\right) \subseteq \delta^{n}\left(P_{\beta}\right) \subseteq P_{\beta}$.
Applying Lemma 4 (iii) with $I=J$, and $K=P_{\beta}$, we have $\delta(J)^{n} \subseteq J+P_{\beta}$. Thus $(J+\delta(J))^{n} \subseteq J+\delta(J)^{n} \subseteq J+P_{\beta}$, hence $(J+\delta(J))^{n^{2}} \subseteq\left(J+P_{\beta}\right)^{n} \subseteq P_{\beta}$. By Lemma 3 (i), $J+\delta(J)$ is an ideal, therefore $J+\delta(J) \subseteq P_{\beta+1}=P_{\alpha}$. Since $a \in J$, we get $\delta(a) \in P_{\alpha}$.

An ideal I is called semiprime if whenever J is an ideal and $n \in \mathbb{N}$ such that $J^{n} \subseteq I$, we have $J \subseteq I$. Observe that both $N(R)$ and $P(R)$ are semiprime ideals of R.

Theorem 7. Let R be an algebra with a q-skew derivation δ such that δ is algebraic and $1+q+\cdots+q^{n-1} \neq 0$ for all $n \in \mathbb{N}$.
(i) If I is a semiprime ideal of R such that $\sigma(I)=I$, then I is δ-stable.
(ii) The nil radical and prime radical of R are both δ-stable.

Proof. Since $N(R)$ and $P(R)$ are both semiprime ideals of R with $\sigma(N(R))=N(R)$ and $\sigma(P(R))=P(R)$, we see that (ii) follows directly from (i). Lemma 2 (ii) showed that whenever δ is algebraic, either δ is nilpotent, or $q=1$ and F has characteristic 0 . However, in proving (i), it will not be necessary to consider those cases separately.

To begin the proof of (i), let I be a semiprime ideal of R such that $\sigma(I)=I$. Since δ is algebraic over F, there exist $n \in \mathbb{N}$ and $\alpha_{i} \in F$ such that

$$
\delta^{n}(r)=\alpha_{n-1} \delta^{n-1}(r)+\cdots+\alpha_{1} \delta(r)+\alpha_{0} r
$$

for all $r \in R$. Since $\sigma(I)=I$, it follows that if $0<j<n$, we have $\delta^{j}\left(I^{n}\right) \subseteq I$. In light of the equation above, we get $\delta^{n}\left(I^{n}\right) \subseteq I$.

Since $(n!)_{q} \neq 0$, applying Lemma 4 (iii), we have $(\delta(I))^{n} \subseteq I$. Using Lemma 3(i), we see that $I+\delta(I)$ is an ideal of R such that $(I+\delta(I))^{n} \subseteq I$.

Since I is a semiprime ideal, we know that $I+\delta(I) \subseteq I$, which immediately implies that $\delta(I) \subseteq I$. Thus I is δ-stable.

Acknowledgements. Research of the first author was supported by the University Research Council at DePaul University. Research of the second author was supported by the Polish National Center of Science Grant No. DEC-2011/03/B/ST1/04893.

REFERENCES

[BR] S. S. Bedi and J. Ram, Jacobson radical of skew polynomial rings and skew group rings, Israel J. Math. 35 (1980), 327-338.
[BG] J. Bergen and P. Grzeszczuk, On rings with locally nilpotent skew derivations, Comm. Algebra 39 (2011), 3698-3708.
[LMS] V. Linchenko, S. Montgomery, and L. W. Small, Stable Jacobson radicals and semiprime smash products, Bull. London Math. Soc. 37 (2005), 860-872.
[R] L. H. Rowen, Ring Theory, Academic Press, San Diego, 1988.

Jeffrey Bergen
Department of Mathematics
DePaul University
2320 N. Kenmore Avenue
Chicago, IL 60614, U.S.A.
E-mail: jbergen@depaul.edu

Piotr Grzeszczuk Faculty of Computer Science Białystok University of Technology

Wiejska 45A
15-351 Białystok, Poland
E-mail: piotrgr@pb.edu.pl

Received 6 September 2012;
revised 24 September 2012

[^0]: 2010 Mathematics Subject Classification: 16N40, 16W25, 16W55.

