DENSITY OF SOME SEQUENCES MODULO 1

BY
ARTŪRAS DUBICKAS (Vilnius)

Abstract

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer $a \geq 2$ the sequence of fractional parts $\left\{a^{n} / n\right\}_{n=1}^{\infty}$ is everywhere dense in the interval $[0,1]$. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each $c>0$ and each sufficiently large N, every subinterval of $[0,1]$ of length $c N^{-0.475}$ contains at least one fractional part $\left\{Q\left(\alpha^{n}\right) / n\right\}$, where Q is a nonconstant polynomial in $\mathbb{Z}[z]$ and n is an integer satisfying $1 \leq n \leq N$.

1. Introduction. Throughout, let $\{x\}$ be the fractional part of $x \in \mathbb{R}$. In a recent paper [3] Cilleruelo, Kumchev, Luca, Rué and Shparlinski showed that for each integer $a \geq 2$,

$$
\begin{equation*}
\text { the sequence }\left\{a^{n} / n\right\}_{n=1}^{\infty} \text { is everywhere dense in }[0,1] \tag{1.1}
\end{equation*}
$$

and, furthermore, for any $c>0$ and any sufficiently large integer N every interval $J \subseteq[0,1]$ of length $|J| \geq c N^{-0.475}$ contains an element of this sequence with the index n satisfying $1 \leq n \leq N$. In the proof of (1.1) they considered a subsequence A of the sequence $\left\{a^{n} / n\right\}_{n=1}^{\infty}$ with indices $n=p q$, where both p and q are primes satisfying $q \leq \log p / \log a$. Using exponential sums and other tools from analytic number theory they first proved an upper bound for the discrepancy of the sequence A which implies (1.1) (see Theorem 1 in [3]) and then gave an alternative (much shorter) argument which implies (1.1) as well (see Theorem 2 in [3]). The main result of this note (see Theorem 1.2 below) generalizes Theorem 2 of [3].

A reader familiar with the literature in analytic number theory may guess, from the constant 0.475 and the fact that prime numbers are involved in A_{1}, that the authors of [3] used some results on gaps between consecutive primes. A well-known result of Baker, Harman and Pintz [1] asserts there is a constant $\theta<0.525$ such that for each sufficiently large x the interval $\left(x-x^{\theta}, x\right)$ contains a prime number. (Note that $0.475=1-0.525$.) We shall use a version of this result which follows from a more general Lemma 2 of [3] (which itself is extracted from Theorem 10.8 in [7]):

[^0]Lemma 1.1. If C is a positive constant and h is a positive integer satisfying $h \leq(\log x)^{C}$ then for each sufficiently large x the interval $\left(x-x^{\theta}, x\right)$, where $\theta<0.525$ is some constant, contains a prime number which is equal to 1 modulo h.

Before stating our result we recall that an algebraic integer $\alpha>1$ is a Pisot number (resp. a Salem number) if all of its conjugates over \mathbb{Q} (if any) lie strictly inside the unit circle $|z|=1$ (resp. in the disc $|z| \leq 1$ with at least one conjugate lying on the circle $|z|=1$). See [2] for some basic properties of Pisot and Salem numbers. For example, all rational integers greater than or equal to 2 , the golden section $(1+\sqrt{5}) / 2=1.61803 \ldots$ and the number $1.32471 \ldots$ which is a root of the polynomial $z^{3}-z-1$ are Pisot numbers. (Siegel [9 proved that the latter is the smallest Pisot number.) The smallest known Salem number $1.17628 \ldots$ is a root of the Lehmer polynomial $z^{10}+z^{9}-z^{7}-z^{6}-z^{5}-z^{4}-z^{3}+z+1$.

We can now state the main result of this paper.
Theorem 1.2. If α is a Pisot number or a Salem number and $Q(z)$ is a nonconstant polynomial with integer coefficients then the sequence $\left\{Q\left(\alpha^{n}\right) / n\right\}_{n=1}^{\infty}$ is everywhere dense in $[0,1]$. Furthermore, for any $c>0$ and any sufficiently large integer N every interval $J \subseteq[0,1]$ of length $|J| \geq c N^{-0.475}$ contains at least one element of this sequence with the index n in the range $1 \leq n \leq N$.

By the same method Theorem 1.2 can be proved for nonconstant polynomials Q with rational coefficients. It would be of interest to extend this result to sequences of the form $\left\{Q\left(\alpha^{n}\right) / P(n)\right\}_{n=1}^{\infty}$, where $P \in \mathbb{Q}[z]$ is a polynomial of degree at least 2 , e.g., to the sequence $\left\{2^{n} /\left(n^{3}+1\right)\right\}_{n=1}^{\infty}$.
2. Preparation for the proof of Theorem 1.2. We begin with a short proof of (1.1) (following [3], i.e. taking $n=p g$, although without assuming that g is a prime) and then continue the proof of Theorem 1.2 along the same lines with a more subtle choice of g (see (2.3) and (3.1)) and p.

To prove (1.1) it suffices to show that the sequence $\left\{a^{n} / n\right\}_{n=1}^{\infty}$, where $a \geq 2$ is an integer, is everywhere dense in the open interval $(0,1)$. Fix any λ in the interval $(0,1)$. We will show that for each ε satisfying $0<\varepsilon<\lambda$ there is $n \in \mathbb{N}$ of the form $n=p g$, where g is a large integer and p is a prime number, such that $\lambda-\varepsilon<\left\{a^{n} / n\right\}<\lambda$. Indeed, for each sufficiently large integer $g>g_{0}(a, \lambda, \varepsilon)$ (which is assumed to be relatively prime to a) there is a prime number $p>g$ which satisfies

$$
\begin{equation*}
\frac{a^{g}}{g \lambda}<p<\frac{a^{g}}{g(\lambda-\varepsilon)} \tag{2.1}
\end{equation*}
$$

and $\varphi(g) \mid(p-1)$, where $\varphi(g)$ is Euler's function. With this choice of p and g, by Euler's theorem, we see that the difference $a^{(p-1) g}-1$ is divisible by p and by g. Hence their product $p g$ divides $a^{p g}-a^{g}$. Using (2.1) we find that for $n=p g$,

$$
\left\{a^{n} / n\right\}=\left\{a^{p g} / p g\right\}=\left\{a^{g} / p g\right\}=a^{g} / p g \in(\lambda-\varepsilon, \lambda),
$$

as claimed.
Let $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$ be the full set of conjugates of α over \mathbb{Q} with minimal polynomial

$$
F(z)=\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{d}\right)=z^{d}+b_{d-1} z^{d-1}+\cdots+b_{0} \in \mathbb{Z}[z] .
$$

Put

$$
\begin{equation*}
S_{n}:=\alpha_{1}^{n}+\cdots+\alpha_{d}^{n} \quad \text { and } \quad R_{n}:=S_{n}-\alpha_{1}^{n}=S_{n}-\alpha^{n} . \tag{2.2}
\end{equation*}
$$

Note that, by the Newton formula,

$$
S_{n}+b_{d-1} S_{n-1}+\cdots+b_{0} S_{n-d}=0
$$

for each integer $n \geq d+1$.
Suppose that g is a positive integer satisfying

$$
\begin{equation*}
\operatorname{gcd}\left(b_{0}, g\right)=1 \tag{2.3}
\end{equation*}
$$

Then $\left(S_{n}\right)_{n=1}^{\infty}$ is a sequence of integers which is purely periodic modulo g with period h in the range $1 \leq h \leq g^{d}$. (This result is known and can be easily proved in few lines; see, for instance, Lemma 2 in [5].) In particular, this implies that

$$
\begin{equation*}
g \mid\left(S_{l}-S_{k}\right) \quad \text { if } h \mid(l-k) . \tag{2.4}
\end{equation*}
$$

Another useful result concerning S_{n} is that

$$
\begin{equation*}
p \mid\left(S_{p k}-S_{k}\right) \tag{2.5}
\end{equation*}
$$

for every $k \in \mathbb{N}$ and every prime number p. This is an old 1839 result of Schönemann [8], several times rediscovered by different authors. See, e.g., [4] and also [6], [10] for some generalizations; e.g., the latter paper contains the proof of $n \mid \sum_{t \mid n} \mu(n / t) S_{t k}$ for each $n \in \mathbb{N}$, where μ is the Möbius function, which gives (2.5) when n is a prime number. We remark that the properties (2.4) and 2.5) hold for all algebraic integers α (and not just for Pisot and Salem numbers).

Let

$$
Q(z)=a_{t} z^{t}+\cdots+a_{0} \in \mathbb{Z}[z],
$$

where $t \in \mathbb{N}$ and $a_{t} \neq 0$. Without restriction of generality we may assume that $a_{t}>0$, since otherwise one can consider the polynomial $-Q$ instead
of Q. Put

$$
\begin{equation*}
D_{n}:=Q\left(\alpha^{n}\right)-\sum_{j=1}^{t} a_{j} S_{j n} \tag{2.6}
\end{equation*}
$$

From (2.2) and 2.6 it follows that $D_{n}=a_{0}-\sum_{j=1}^{t} a_{j} R_{j n}$. Since α is a Pisot or a Salem number, all its conjugates lie in $|z| \leq 1$, so $\left|R_{j n}\right| \leq d-1$. Hence

$$
\begin{equation*}
\left|D_{n}\right| \leq K:=\left|a_{0}\right|+(d-1) \sum_{j=1}^{t}\left|a_{j}\right| \tag{2.7}
\end{equation*}
$$

As we already observed above, for any positive integer g as in (2.3), the sequence $\left(S_{n}\right)_{n=1}^{\infty}$ is purely periodic modulo g with period $h \leq g^{d}$. Assume that $p>g$ is a prime which is equal to 1 modulo h. Take $n=$ $p g$. Then $p \mid\left(S_{j p g}-S_{j g}\right)$, by (2.5). Also, $g \mid\left(S_{j p g}-S_{j g}\right)$, by 2.4), because $j p g-j g=j g(p-1)$ is divisible by the period h. Hence $p g \mid\left(S_{j p g}-S_{j g}\right)$, because $\operatorname{gcd}(p, g)=1$. It follows that $p g$ divides the difference between $\sum_{j=1}^{t} a_{j} S_{j p g}$ and $\sum_{j=1}^{t} a_{j} S_{j g}$. Thus, if $g<p$ is a positive integer satisfying (2.3) then in view of 2.6 we obtain

$$
\begin{equation*}
\left\{Q\left(\alpha^{p g}\right) / p g\right\}=\left\{(p g)^{-1} D_{p g}+(p g)^{-1} \sum_{j=1}^{t} a_{j} S_{j p g}\right\}=\{y(p)\} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
y(p):=(p g)^{-1}\left(D_{p g}+\sum_{j=1}^{t} a_{j} S_{j g}\right) \tag{2.9}
\end{equation*}
$$

In the next section we will select appropriate prime numbers p and using (2.8) complete the proof of Theorem 1.2 .
3. Proof of Theorem 1.2 . Fix a large positive integer N and take the largest $g \in \mathbb{N}$ satisfying (2.3) for which

$$
\begin{equation*}
\sum_{j=1}^{t} a_{j} S_{j g}-K \leq N \tag{3.1}
\end{equation*}
$$

with K given in (2.7). Observe that the main term of the expression on the left hand side of (3.1) is $a_{t} \alpha^{t g}$ and at least one of $\left|b_{0}\right|$ consecutive integers g satisfies the condition (2.3). Hence there are two positive constants $c_{1} \leq 1$ and c_{2} (depending on t, a_{t}, α, b_{0} only and not on N) such that

$$
\begin{equation*}
c_{1} N \leq \sum_{j=1}^{t} a_{j} S_{j g}-K \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
g \leq c_{2} \log N \tag{3.3}
\end{equation*}
$$

for N large enough. In particular, in view of $h \leq g^{d}$ the inequality (3.3) implies that

$$
\begin{equation*}
h \leq(\log N)^{d+1} \tag{3.4}
\end{equation*}
$$

for each sufficiently large N.
For g chosen as in (3.1) we set

$$
\begin{equation*}
L_{1}:=\left(g^{-1} \sum_{j=1}^{t} a_{j} S_{j g}+g^{-1} K\right) / 2, \quad L_{2}:=g^{-1} \sum_{j=1}^{t} a_{j} S_{j g}-g^{-1} K \tag{3.5}
\end{equation*}
$$

Clearly, by (3.1), (3.2) and (3.5),

$$
\begin{equation*}
c_{1} N / g \leq L_{2} \leq N / g \tag{3.6}
\end{equation*}
$$

and, since $2 L_{1}=L_{2}+2 K / g$,

$$
\begin{equation*}
c_{1} N / 2 g \leq L_{1} \leq(N+2 K) / 2 g \tag{3.7}
\end{equation*}
$$

Let $p_{1}<\cdots<p_{s}$ be all the primes which are equal to 1 modulo h and are greater than L_{1} and smaller than L_{2}. Then, by (3.6), we have $p_{s}<L_{2} \leq N / g$ and, by 3.7), $p_{1}>L_{1} \geq c_{1} N / 2 g$. Hence

$$
\begin{equation*}
c_{1} N / 2<p_{1} g<\cdots<p_{s} g<N \tag{3.8}
\end{equation*}
$$

Note that $p_{1}>g$, by (3.3) and (3.8), so the formula 2.8 holds for the primes p_{1}, \ldots, p_{s}.

Now, for each $p \in\left\{p_{1}, \ldots, p_{s}\right\}$ using (2.7), (2.9) and (3.5) we find that

$$
y(p) \geq(p g)^{-1}\left(-K+\sum_{j=1}^{t} a_{j} S_{j g}\right)=L_{2} / p \geq L_{2} / p_{s}>1
$$

Similarly,

$$
y(p) \leq(p g)^{-1}\left(K+\sum_{j=1}^{t} a_{j} S_{j g}\right)=2 L_{1} / p \leq 2 L_{1} / p_{1}<2
$$

Hence (2.8) yields

$$
\left\{Q\left(\alpha^{p g}\right) / p g\right\}=y(p)-1
$$

for each $p \in\left\{p_{1}, \ldots, p_{s}\right\}$.
By (3.8), all the integers $p_{1} g, \ldots, p_{s} g$ are smaller than N. We will show that for any $c>0$ and any sufficiently large integer N every interval $J \subseteq$ $[0,1]$ of length $|J| \geq c N^{-0.475}$ contains at least one number $\left\{Q\left(\alpha^{p g}\right) / p g\right\}=$ $y(p)-1$ with $p \in\left\{p_{1}, \ldots, p_{s}\right\}$. For a contradiction, suppose that there is an interval $J \subseteq[0,1]$ of length $c N^{-0.475}$ which contains no numbers of the form $y(p)-1$ with $p \in\left\{p_{1}, \ldots, p_{s}\right\}$. Our aim is to show that the number $y\left(p_{s}\right)-1$ is 'very close' to 0 , the number $y\left(p_{1}\right)-1$ is 'very close' to 1 and, moreover, the difference between two consecutive values $y\left(p_{i}\right)-1$ and $y\left(p_{i+1}\right)-1$ is
'very small' too. If this is the case then moving from $i=1$ (with $y\left(p_{1}\right)-1$ being almost the right endpoint of the interval $[0,1])$ to $i=s$ (with $y\left(p_{s}\right)-1$ being almost the left endpoint of the interval $[0,1]$) step by step we will get values all over the interval $[0,1]$ lying in every interval of length $c N^{-0.475}$.

Indeed, observe first that, by (2.7), 2.9) and (3.5),

$$
\begin{aligned}
y\left(p_{s}\right) & =\left(p_{s} g\right)^{-1}\left(D_{p_{s} g}+\sum_{j=1}^{t} a_{j} S_{j g}\right) \\
& \leq\left(p_{s} g\right)^{-1}\left(K+\sum_{j=1}^{t} a_{j} S_{j g}\right)=2 L_{1} / p_{s}=L_{2} / p_{s}+2 K / p_{s} g
\end{aligned}
$$

By Lemma 1.1, we have $L_{2}-L_{2}^{\theta}<p_{s}<L_{2}$ with $\theta<0.525$. Using (3.3) and (3.6) we find that

$$
\begin{equation*}
0<y\left(p_{s}\right)-1<\frac{L_{2}+2 K / g}{L_{2}-L_{2}^{\theta}}-1=\frac{L_{2}^{\theta}+2 K / g}{L_{2}-L_{2}^{\theta}}<c N^{-0.475} \tag{3.9}
\end{equation*}
$$

in view of $\theta<0.525$. Similarly, as

$$
y\left(p_{1}\right)=\left(p_{1} g\right)^{-1}\left(D_{p_{1} g}+\sum_{j=1}^{t} a_{j} S_{j g}\right) \geq\left(p_{1} g\right)^{-1}\left(-K+\sum_{j=1}^{t} a_{j} S_{j g}\right)=L_{2} / p_{1}
$$

and, by Lemma 1.1, $L_{1}<p_{1}<L_{1}+L_{1}^{\theta}$, applying (3.3) and (3.7) we find that

$$
2-y\left(p_{1}\right)<2-\frac{L_{2}}{L_{1}+L_{1}^{\theta}}=2-\frac{2 L_{1}-2 K / g}{L_{1}+L_{1}^{\theta}}=\frac{2 L_{1}^{\theta}+2 K / g}{L_{1}+L_{1}^{\theta}}<c N^{-0.475}
$$

Thus

$$
\begin{equation*}
1-c N^{-0.475}<y\left(p_{1}\right)-1<1 \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10) it follows that if such an interval J of length $c N^{-0.475}$ (which contains no numbers of the form $y(p)-1$, where $p \in$ $\left.\left\{p_{1}, \ldots, p_{s}\right\}\right)$ exists then $J=[u, v]$ with $y\left(p_{s}\right)-1<u$ and $v<y\left(p_{1}\right)-1$. Moreover, for some $i \in\{1, \ldots, s-1\}$ the distance between two consecutive points $y\left(p_{i}\right)-1$ and $y\left(p_{i+1}\right)-1$ must be greater than $c N^{-0.475}$. So for a contradiction it suffices to show that

$$
\left|y\left(p_{i+1}\right)-y\left(p_{i}\right)\right|<c N^{-0.475}
$$

for each $i \in\{1, \ldots, s-1\}$.
Since, by 2.9),

$$
y\left(p_{i+1}\right)-y\left(p_{i}\right)=\left(p_{i+1} g\right)^{-1}\left(D_{p_{i+1} g}+\sum_{j=1}^{t} a_{j} S_{j g}\right)-\left(p_{i} g\right)^{-1}\left(D_{p_{i} g}+\sum_{j=1}^{t} a_{j} S_{j g}\right)
$$

from $\left|D_{p_{i+1} g}\right|,\left|D_{p_{i} g}\right| \leq K$ it follows that

$$
\begin{aligned}
\left|y\left(p_{i+1}\right)-y\left(p_{i}\right)\right| & \leq \frac{K}{p_{i+1} g}+\frac{K}{p_{i} g}+\frac{\left(p_{i+1}-p_{i}\right)\left|\sum_{j=1}^{t} a_{j} S_{j g}\right|}{p_{i+1} p_{i} g} \\
& <\frac{2 K}{p_{1} g}+\frac{\left(p_{i+1}-p_{i}\right)\left|\sum_{j=1}^{t} a_{j} S_{j g}\right|}{p_{i}^{2} g}
\end{aligned}
$$

From (3.8) we see that the first term, $2 K / p_{1} g$, is less than c_{3} / N. Using $p_{i+1}-p_{i}<p_{i}^{\theta}$ (see Lemma 1.1) and (3.1), (3.2) we can bound the second term:

$$
\frac{\left(p_{i+1}-p_{i}\right)\left|\sum_{j=1}^{t} a_{j} S_{j g}\right|}{p_{i}^{2} g}<\frac{p_{i}^{\theta}(N+K)}{p_{i}^{2}}=\frac{N+K}{p_{i}^{2-\theta}} \leq \frac{N+K}{p_{1}^{2-\theta}} .
$$

In view of (3.3) and (3.8) this second term is less than

$$
\frac{N+K}{\left(c_{1} N / 2 g\right)^{2-\theta}}<\frac{(\log N)^{2}}{N^{1-\theta}} .
$$

Therefore, as $\theta<0.525$, we conclude that for N large enough

$$
\left|y\left(p_{i+1}\right)-y\left(p_{i}\right)\right|<\frac{c_{3}}{N}+\frac{(\log N)^{2}}{N^{1-\theta}}<c N^{-0.475}
$$

as claimed. This completes the proof of Theorem 1.2 .
Acknowledgements. I thank the referee for recommending various improvements in exposition.

REFERENCES

[1] R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. 83 (2001), 532-562.
[2] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1957.
[3] J. Cilleruelo, A. Kumchev, F. Luca, J. Rué and I. E. Shparlinski, On the fractional parts of a^{n} / n, Bull. London Math. Soc., to appear.
[4] E. Dobrowolski, On the maximal modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 291-292.
[5] A. Dubickas, Sequences with infinitely many composite numbers, in: Analytic and Probabilistic Methods in Number Theory (Palanga, 2001), A. Dubickas et al. (eds.), TEV, Vilnius, 2002, 57-60.
[6] K. G. Hare, D. McKinnon and C. D. Sinclair, Patterns and periodicity in a family of resultants, J. Théor. Nombres Bordeaux 21 (2009), 215-234.
[7] G. Harman, Prime-Detecting Sieves, London Math. Soc. Monogr. Ser. 33, Princeton Univ. Press, 2007.
[8] T. Schönemann, Theorie der symmetrischen Functionen der Wurzeln einer Gleichung. Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben, J. Reine Angew. Math. 19 (1839), 231-243.
[9] C. L. Siegel, Algebraic integers whose conjugates lie in the unit circle, Duke Math. J. 11 (1944), 597-602.
[10] C. J. Smyth, A coloring proof of a generalisation of Fermat's Little Theorem, Amer. Math. Monthly 93 (1986), 469-471.

Artūras Dubickas
Department of Mathematics and Informatics
Vilnius University
Naugarduko 24
Vilnius LT-03225, Lithuania
E-mail: arturas.dubickas@mif.vu.lt

Received 23 July 2012;
revised 27 September 2012

[^0]: 2010 Mathematics Subject Classification: Primary 11K06; Secondary 11K31, 11R06. Key words and phrases: distribution modulo 1, gaps between primes.

