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DENSITY OF SOME SEQUENCES MODULO 1
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ARTŪRAS DUBICKAS (Vilnius)

Abstract. Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that
for each integer a ≥ 2 the sequence of fractional parts {an/n}∞n=1 is everywhere dense in
the interval [0, 1]. We prove a similar result for all Pisot numbers and Salem numbers α
and show that for each c > 0 and each sufficiently large N , every subinterval of [0, 1] of
length cN−0.475 contains at least one fractional part {Q(αn)/n}, where Q is a nonconstant
polynomial in Z[z] and n is an integer satisfying 1 ≤ n ≤ N .

1. Introduction. Throughout, let {x} be the fractional part of x ∈ R.
In a recent paper [3] Cilleruelo, Kumchev, Luca, Rué and Shparlinski showed
that for each integer a ≥ 2,

(1.1) the sequence {an/n}∞n=1 is everywhere dense in [0, 1]

and, furthermore, for any c > 0 and any sufficiently large integer N every
interval J ⊆ [0, 1] of length |J | ≥ cN−0.475 contains an element of this
sequence with the index n satisfying 1 ≤ n ≤ N . In the proof of (1.1) they
considered a subsequence A of the sequence {an/n}∞n=1 with indices n = pq,
where both p and q are primes satisfying q ≤ log p/log a. Using exponential
sums and other tools from analytic number theory they first proved an
upper bound for the discrepancy of the sequence A which implies (1.1) (see
Theorem 1 in [3]) and then gave an alternative (much shorter) argument
which implies (1.1) as well (see Theorem 2 in [3]). The main result of this
note (see Theorem 1.2 below) generalizes Theorem 2 of [3].

A reader familiar with the literature in analytic number theory may
guess, from the constant 0.475 and the fact that prime numbers are involved
in A1, that the authors of [3] used some results on gaps between consecutive
primes. A well-known result of Baker, Harman and Pintz [1] asserts there
is a constant θ < 0.525 such that for each sufficiently large x the interval
(x−xθ, x) contains a prime number. (Note that 0.475 = 1−0.525.) We shall
use a version of this result which follows from a more general Lemma 2 of [3]
(which itself is extracted from Theorem 10.8 in [7]):
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Lemma 1.1. If C is a positive constant and h is a positive integer satis-
fying h ≤ (log x)C then for each sufficiently large x the interval (x− xθ, x),
where θ < 0.525 is some constant, contains a prime number which is equal
to 1 modulo h.

Before stating our result we recall that an algebraic integer α > 1 is
a Pisot number (resp. a Salem number) if all of its conjugates over Q (if
any) lie strictly inside the unit circle |z| = 1 (resp. in the disc |z| ≤ 1 with
at least one conjugate lying on the circle |z| = 1). See [2] for some basic
properties of Pisot and Salem numbers. For example, all rational integers
greater than or equal to 2, the golden section (1 +

√
5)/2 = 1.61803 . . .

and the number 1.32471 . . . which is a root of the polynomial z3 − z − 1
are Pisot numbers. (Siegel [9] proved that the latter is the smallest Pisot
number.) The smallest known Salem number 1.17628 . . . is a root of the
Lehmer polynomial z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

We can now state the main result of this paper.

Theorem 1.2. If α is a Pisot number or a Salem number and Q(z)
is a nonconstant polynomial with integer coefficients then the sequence
{Q(αn)/n}∞n=1 is everywhere dense in [0, 1]. Furthermore, for any c > 0
and any sufficiently large integer N every interval J ⊆ [0, 1] of length
|J | ≥ cN−0.475 contains at least one element of this sequence with the index
n in the range 1 ≤ n ≤ N .

By the same method Theorem 1.2 can be proved for nonconstant poly-
nomials Q with rational coefficients. It would be of interest to extend this
result to sequences of the form {Q(αn)/P (n)}∞n=1, where P ∈ Q[z] is a
polynomial of degree at least 2, e.g., to the sequence {2n/(n3 + 1)}∞n=1.

2. Preparation for the proof of Theorem 1.2. We begin with a
short proof of (1.1) (following [3], i.e. taking n = pg, although without
assuming that g is a prime) and then continue the proof of Theorem 1.2
along the same lines with a more subtle choice of g (see (2.3) and (3.1))
and p.

To prove (1.1) it suffices to show that the sequence {an/n}∞n=1, where
a ≥ 2 is an integer, is everywhere dense in the open interval (0, 1). Fix any
λ in the interval (0, 1). We will show that for each ε satisfying 0 < ε < λ
there is n ∈ N of the form n = pg, where g is a large integer and p is a prime
number, such that λ − ε < {an/n} < λ. Indeed, for each sufficiently large
integer g > g0(a, λ, ε) (which is assumed to be relatively prime to a) there
is a prime number p > g which satisfies

(2.1)
ag

gλ
< p <

ag

g(λ− ε)
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and ϕ(g) | (p−1), where ϕ(g) is Euler’s function. With this choice of p and g,
by Euler’s theorem, we see that the difference a(p−1)g − 1 is divisible by p
and by g. Hence their product pg divides apg − ag. Using (2.1) we find that
for n = pg,

{an/n} = {apg/pg} = {ag/pg} = ag/pg ∈ (λ− ε, λ),

as claimed.

Let α1 = α, α2, . . . , αd be the full set of conjugates of α over Q with
minimal polynomial

F (z) = (z − α1) · · · (z − αd) = zd + bd−1z
d−1 + · · ·+ b0 ∈ Z[z].

Put

(2.2) Sn := αn1 + · · ·+ αnd and Rn := Sn − αn1 = Sn − αn.

Note that, by the Newton formula,

Sn + bd−1Sn−1 + · · ·+ b0Sn−d = 0

for each integer n ≥ d+ 1.

Suppose that g is a positive integer satisfying

(2.3) gcd(b0, g) = 1.

Then (Sn)∞n=1 is a sequence of integers which is purely periodic modulo g
with period h in the range 1 ≤ h ≤ gd. (This result is known and can be
easily proved in few lines; see, for instance, Lemma 2 in [5].) In particular,
this implies that

(2.4) g | (Sl − Sk) if h | (l − k).

Another useful result concerning Sn is that

(2.5) p | (Spk − Sk)

for every k ∈ N and every prime number p. This is an old 1839 result of
Schönemann [8], several times rediscovered by different authors. See, e.g., [4]
and also [6], [10] for some generalizations; e.g., the latter paper contains the
proof of n |

∑
t|n µ(n/t)Stk for each n ∈ N, where µ is the Möbius function,

which gives (2.5) when n is a prime number. We remark that the properties
(2.4) and (2.5) hold for all algebraic integers α (and not just for Pisot and
Salem numbers).

Let

Q(z) = atz
t + · · ·+ a0 ∈ Z[z],

where t ∈ N and at 6= 0. Without restriction of generality we may assume
that at > 0, since otherwise one can consider the polynomial −Q instead
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of Q. Put

(2.6) Dn := Q(αn)−
t∑

j=1

ajSjn.

From (2.2) and (2.6) it follows that Dn = a0 −
∑t

j=1 ajRjn. Since α is a
Pisot or a Salem number, all its conjugates lie in |z| ≤ 1, so |Rjn| ≤ d − 1.
Hence

(2.7) |Dn| ≤ K := |a0|+ (d− 1)
t∑

j=1

|aj |.

As we already observed above, for any positive integer g as in (2.3),
the sequence (Sn)∞n=1 is purely periodic modulo g with period h ≤ gd.
Assume that p > g is a prime which is equal to 1 modulo h. Take n =
pg. Then p | (Sjpg − Sjg), by (2.5). Also, g | (Sjpg − Sjg), by (2.4), because
jpg − jg = jg(p − 1) is divisible by the period h. Hence pg | (Sjpg − Sjg),
because gcd(p, g) = 1. It follows that pg divides the difference between∑t

j=1 ajSjpg and
∑t

j=1 ajSjg. Thus, if g < p is a positive integer satisfying

(2.3) then in view of (2.6) we obtain

(2.8) {Q(αpg)/pg} =
{

(pg)−1Dpg + (pg)−1
t∑

j=1

ajSjpg

}
= {y(p)},

where

(2.9) y(p) := (pg)−1
(
Dpg +

t∑
j=1

ajSjg

)
.

In the next section we will select appropriate prime numbers p and using
(2.8) complete the proof of Theorem 1.2.

3. Proof of Theorem 1.2. Fix a large positive integer N and take the
largest g ∈ N satisfying (2.3) for which

(3.1)

t∑
j=1

ajSjg −K ≤ N

with K given in (2.7). Observe that the main term of the expression on the
left hand side of (3.1) is atα

tg and at least one of |b0| consecutive integers g
satisfies the condition (2.3). Hence there are two positive constants c1 ≤ 1
and c2 (depending on t, at, α, b0 only and not on N) such that

c1N ≤
t∑

j=1

ajSjg −K,(3.2)
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g ≤ c2 logN(3.3)

for N large enough. In particular, in view of h ≤ gd the inequality (3.3)
implies that

(3.4) h ≤ (logN)d+1

for each sufficiently large N .
For g chosen as in (3.1) we set

(3.5) L1 := (g−1
t∑

j=1

ajSjg + g−1K)/2, L2 := g−1
t∑

j=1

ajSjg − g−1K.

Clearly, by (3.1), (3.2) and (3.5),

(3.6) c1N/g ≤ L2 ≤ N/g
and, since 2L1 = L2 + 2K/g,

(3.7) c1N/2g ≤ L1 ≤ (N + 2K)/2g.

Let p1 < · · · < ps be all the primes which are equal to 1 modulo h and are
greater than L1 and smaller than L2. Then, by (3.6), we have ps < L2 ≤ N/g
and, by (3.7), p1 > L1 ≥ c1N/2g. Hence

(3.8) c1N/2 < p1g < · · · < psg < N.

Note that p1 > g, by (3.3) and (3.8), so the formula (2.8) holds for the
primes p1, . . . , ps.

Now, for each p ∈ {p1, . . . , ps} using (2.7), (2.9) and (3.5) we find that

y(p) ≥ (pg)−1
(
−K +

t∑
j=1

ajSjg

)
= L2/p ≥ L2/ps > 1.

Similarly,

y(p) ≤ (pg)−1
(
K +

t∑
j=1

ajSjg

)
= 2L1/p ≤ 2L1/p1 < 2.

Hence (2.8) yields
{Q(αpg)/pg} = y(p)− 1

for each p ∈ {p1, . . . , ps}.
By (3.8), all the integers p1g, . . . , psg are smaller than N . We will show

that for any c > 0 and any sufficiently large integer N every interval J ⊆
[0, 1] of length |J | ≥ cN−0.475 contains at least one number {Q(αpg)/pg} =
y(p)− 1 with p ∈ {p1, . . . , ps}. For a contradiction, suppose that there is an
interval J ⊆ [0, 1] of length cN−0.475 which contains no numbers of the form
y(p)−1 with p ∈ {p1, . . . , ps}. Our aim is to show that the number y(ps)−1
is ‘very close’ to 0, the number y(p1)− 1 is ‘very close’ to 1 and, moreover,
the difference between two consecutive values y(pi) − 1 and y(pi+1) − 1 is
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‘very small’ too. If this is the case then moving from i = 1 (with y(p1) − 1
being almost the right endpoint of the interval [0, 1]) to i = s (with y(ps)−1
being almost the left endpoint of the interval [0, 1]) step by step we will get
values all over the interval [0, 1] lying in every interval of length cN−0.475.

Indeed, observe first that, by (2.7), (2.9) and (3.5),

y(ps) = (psg)−1
(
Dpsg +

t∑
j=1

ajSjg

)

≤ (psg)−1
(
K +

t∑
j=1

ajSjg

)
= 2L1/ps = L2/ps + 2K/psg.

By Lemma 1.1, we have L2−Lθ2 < ps < L2 with θ < 0.525. Using (3.3) and
(3.6) we find that

(3.9) 0 < y(ps)− 1 <
L2 + 2K/g

L2 − Lθ2
− 1 =

Lθ2 + 2K/g

L2 − Lθ2
< cN−0.475

in view of θ < 0.525. Similarly, as

y(p1) = (p1g)−1
(
Dp1g +

t∑
j=1

ajSjg

)
≥ (p1g)−1

(
−K +

t∑
j=1

ajSjg

)
= L2/p1,

and, by Lemma 1.1, L1 < p1 < L1 + Lθ1, applying (3.3) and (3.7) we find
that

2− y(p1) < 2− L2

L1 + Lθ1
= 2− 2L1 − 2K/g

L1 + Lθ1
=

2Lθ1 + 2K/g

L1 + Lθ1
< cN−0.475.

Thus

(3.10) 1− cN−0.475 < y(p1)− 1 < 1.

From (3.9) and (3.10) it follows that if such an interval J of length
cN−0.475 (which contains no numbers of the form y(p) − 1, where p ∈
{p1, . . . , ps}) exists then J = [u, v] with y(ps) − 1 < u and v < y(p1) − 1.
Moreover, for some i ∈ {1, . . . , s− 1} the distance between two consecutive
points y(pi) − 1 and y(pi+1) − 1 must be greater than cN−0.475. So for a
contradiction it suffices to show that

|y(pi+1)− y(pi)| < cN−0.475

for each i ∈ {1, . . . , s− 1}.
Since, by (2.9),

y(pi+1)−y(pi) = (pi+1g)−1
(
Dpi+1g+

t∑
j=1

ajSjg

)
−(pig)−1

(
Dpig+

t∑
j=1

ajSjg

)
,
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from |Dpi+1g|, |Dpig| ≤ K it follows that

|y(pi+1)− y(pi)| ≤
K

pi+1g
+

K

pig
+

(pi+1 − pi)|
∑t

j=1 ajSjg|
pi+1pig

<
2K

p1g
+

(pi+1 − pi)|
∑t

j=1 ajSjg|
p2i g

.

From (3.8) we see that the first term, 2K/p1g, is less than c3/N . Using
pi+1 − pi < pθi (see Lemma 1.1) and (3.1), (3.2) we can bound the second
term:

(pi+1 − pi)|
∑t

j=1 ajSjg|
p2i g

<
pθi (N +K)

p2i
=
N +K

p2−θi

≤ N +K

p2−θ1

.

In view of (3.3) and (3.8) this second term is less than

N +K

(c1N/2g)2−θ
<

(logN)2

N1−θ .

Therefore, as θ < 0.525, we conclude that for N large enough

|y(pi+1)− y(pi)| <
c3
N

+
(logN)2

N1−θ < cN−0.475,

as claimed. This completes the proof of Theorem 1.2.

Acknowledgements. I thank the referee for recommending various im-
provements in exposition.
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