COLLOQUIUM MATHEMATICUM

VOL. 129 2012 NO. 1

WEAKLY PRECOMPACT SUBSETS OF Ly(u, X)

BY

IOANA GHENCIU (River Falls, WI)

Abstract. Let (£2,X, 1) be a probability space, X a Banach space, and L1 (u, X)
the Banach space of Bochner integrable functions f : 2 — X. Let W = {f € L1(p, X) :
for a.e. w € 2, f(w)]] < 1}. In this paper we characterize the weakly precompact subsets
of Li(u, X). We prove that a bounded subset A of Li(u, X) is weakly precompact if and
only if A is uniformly integrable and for any sequence (f.) in A, there exists a sequence
(gn) with g, € co{fi : © > n} for each n such that for a.e. w € £2, the sequence (gn(w))
is weakly Cauchy in X. We also prove that if A is a bounded subset of L1 (u, X), then A
is weakly precompact if and only if for every e > 0, there exist a positive integer N and
a weakly precompact subset H of NW such that A C H + €B(0), where B(0) is the unit
ball of Li(u, X).

1. Introduction. Throughout this paper, X and Y will denote Banach
spaces. The unit ball of X will be denoted by By, and the closed linear span
of a sequence (z,,) in X will be denoted by [z,]. The unit basis of ¢; will be
denoted by (e}), and a continuous linear transformation 7': X — Y will be
referred to as an operator.

A subset S of X is said to be weakly precompact provided that every
bounded sequence from S has a weakly Cauchy subsequence. A series > x,, in
X is said to be weakly unconditionally convergent (wuc) if for every z* € X*,
the series > |x*(x,)| is convergent. An operator T': X — Y is weakly pre-
compact if T(Bx) is weakly precompact, and unconditionally converging if
it maps weakly unconditionally convergent series to unconditionally conver-
gent ones. An operator T is completely continuous (or Dunford—Pettis) if T
maps weakly Cauchy sequences to norm convergent sequences.

A bounded subset A of X (resp. A of X*) is called a V*-subset of X
(resp. a V-subset of X*) provided that

lim(sup{|z} (z)| : x € A}) =0 (resp.lim(sup{|z*(zy)| : ¥ € A}) =0)
n n
for each wuc series Yz} in X* (resp. wuc series Y x, in X).

In his fundamental paper [Pe|, Pelczynski introduced property (V') and
property (V*). The Banach space X has property (V) (resp. (V*)) if every
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134 I. GHENCIU

V-subset of X* (resp. V*-subset of X) is relatively weakly compact. The
following results were also established in [Pe]:

(a) C(K) spaces have property (V).

(b) L'-spaces have property (V*).

(c) A Banach space X has property (V) if and only if every uncondition-
ally converging operator 71" from X to any Banach space Y is weakly
compact.

(d) Every closed subspace of a Banach space with property (V*) has
property (V*).

(e) In the last portion of the proof of Proposition 6 on p. 646, Petczyniski
noted that every weakly Cauchy sequence is a V*-set. Consequently,
every bounded weakly precompact set in X is a V*-set.

(f) If X has property (V*), then X is weakly sequentially complete.

A Banach space X has property weak (V*) (wV™*) if every V*-subset of X
is weakly precompact [Bom)|. If X does not contain a copy of ¢1, then X has
property (wV*), by Rosenthal’s theorem (|[Dill, Ch. XI]). In particular, ¢y has
property (wV™*), but it does not have property (V*). A Banach space X has
property (wV*) if and only if every sequence in X equivalent to (e}) contains
a subsequence (z,,) so that [z,,] is complemented in X [Bom|. A Banach
space X has property (wV™*) if and only if every operator 7' : ¥ — X
with unconditionally converging adjoint is weakly precompact [GL]. Every
order continuous Banach lattice has property (wV™*) (|Boml, [TZ]). A Banach
lattice has property (V*) if and only if it is weakly sequentially complete if
and only if it does not contain a copy of ¢y (|[Bom]|, [LT], [Em]).

A bounded subset A of X is called a Dunford—Pettis (DP) subset of X if
each weakly null sequence in X* tends to 0 uniformly on A. Every DP set is
weakly precompact; see e.g., see [Ra, p. 377, [An], [GL]. A Banach space X
the Dunford—Pettis property (DPP) if every weakly compact operator T' with
domain X is completely continuous. Equivalently, X has the DPP if and only
if 27 (zy,) — 0 for all weakly null sequences (x,,) in X and (z}) in X* (|Di2]).
Schur spaces, C(K) spaces, and Lj(u) spaces have the DPP (|[BDS], [DP],
[Gr]). The reader can check [Dil], [Di2], [DU], and [An] for a guide to the
extensive classical literature dealing with the DPP, equivalent formulations
of the preceding definitions, and undefined notation and terminology.

Let Li(u, X) be the Banach space of all X-valued Bochner integrable
functions on a probability space ({2, X, ). In this paper we characterize
weakly precompact subsets of Li(u, X). The problem was also studied by
Bourgain [Boul| (when X does not contain a copy of ¢1) and Talagrand [Ta].
N. Randrianantoanina [Ra] proved that Li(u, X) has property (V*) if and
only if X has property (V*). The proof of Theorem 2 in [Ral] shows that
Ly (p, X) has property (wV™*) if and only if X has property (wV™).
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2. Weak precompactness in Lj(u, X). Let (£2, X, u) be a probabil-
ity space, X be a Banach space, and let L;(u, X) be the Banach space of
(equivalence classes of) p-strongly measurable X-valued Bochner integrable
functions f : {2 — X, equipped with the norm

1 = § £l d.
Q

For a subset A of X, let co(A) denote the convex hull of A. Let B(0)
denote the unit ball of L (u, X). A subset A of Ly (u, X) is called uniformly
integrable if for any € > 0 there exists 6 > 0 such that if u(F) < §, then
Spllf(w)]ldu < eforall feA.

Following [UI2], let W = {f € Li(u, X) : for a.e. w € 2, ||f(w)|| < 1}.
For a positive integer N, let W(N) = {f € Li(u,X) : for ae. w € £,
|f(w)|]| < N}. Note that W(N) = NW and W (1) = W. For a subset H
of Wand w € 2, let H(w) = {f(w) : f € H}. Strictly speaking, as noted
in [Ul2], H(w) is not well defined since the elements of H are not single
functions but classes of functions. To make the definition of H(w) precise,
one can introduce a lifting p of Lo (1), and define p(f) as in [Dinl p. 212], or
[IT, p. 76] and set H(w) = {p(f)(w) : f € H}. However, not to complicate
the notations, we do not introduce a lifting but deal with the elements of W
as if they were strongly measurable bounded single functions. For a subset
Aof Li(p, X) and w € £2, let A(w) ={f(w): f € A}.

The following two lemmas will be useful in our study.

LEMMA 2.1 (JUIL, Lemma 2.2|). Let K be a bounded subset of X. Then
K is weakly precompact if and only if for each sequence (xy) in K, there is
a sequence (yp) so that y, € co{z; : i > n} for each n and (y,) is weakly
Cauchy.

LEMMA 2.2 (|[DRS| Theorem 2.4|). Assume that (fy) is a bounded se-
quence in Li(p, X). Then there exist a sequence (gn) with g, € cof{f; :
i > n} for each n, and three measurable subsets C1, Co, and L of 2 with
uw(CLUCyU L) =1, such that

(a) for w e C1, the sequence (gn(w)) is norm convergent in X ;

(b) for w € Cy, the sequence (gn(w)) is weakly Cauchy but not weakly
convergent in X ;

(c) forw € L, there exists a positive integer k with (gn(w))n>k ~ (€}).

The main result of this paper is the following theorem.
THEOREM 2.3. Let A be a bounded subset of Li(p, X). Then A is weakly
precompact if and only if A is uniformly integrable and for any sequence (fy)

in A, there exists a sequence (gn) with gn, € co{fi : i > n} for each n such
that for a.e. w € 2, the sequence (gn(w)) is weakly Cauchy in X.
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Proof. Suppose that A is weakly precompact. Then A is uniformly in-
tegrable ([DU, Theorem IV.2.4, p. 104]). Let (f,) be a sequence in A. By
Lemma there exist a sequence (g,) with g, € co{f; : ¢ > n} for each n,
and three sets C1, Co, and L in X with u(C; U Co U L) = 1 and satisfying
conditions (a)—(c) of that lemma.

If (L) > 0, then by [Tal Lemma 4], there exists a positive integer k such
that (gn)n>k ~ (e;,). Since (gn)n>k lies in the set co(A), which is weakly
precompact ([Rol, p. 377], [Sch, p. 27]), one obtains a contradiction. Hence
(L) =0, and for a.e. w € {2, the sequence (g,(w)) is weakly Cauchy in X.

Conversely, let (f,) be a sequence in A. Let (g,) be a sequence with
gn € co{ fi : i > n} such that for a.e. w € 2, the sequence (g,(w)) is weakly
Cauchy in X. By [Tal, Lemma 8|, (g,) is weakly Cauchy in L;j(u, X). By
Lemma A is weakly precompact. =

Talagrand showed that if A is a uniformly integrable subset of Lj(u, X)
and for each w € 2, the set A(w) is weakly precompact, then A is weakly
precompact ([Ta, p. 704]). Theoremenables an efficient proof of a stronger
implication.

COROLLARY 2.4. Let A be a bounded uniformly integrable subset of
Ly(p, X).

(i) If the set A(w) is weakly precompact for a.e. w € §2, then A is weakly
precompact.

(ii) Suppose that X has property (wV*). If A(w) is a V*-set for a.e.
w € 2, then A is a V*-set.

Proof. (i) Let (f,) be a sequence in A. By Lemma there exist a
sequence (g, ) with g, € co{f; : i > n} for each n, and three sets C7, Cs, and
L in ¥ with x(Cy UC> UL) = 1, such that conditions (a)—(c) of Lemma[2.2)
are satisfied. Since for a.e. w € (2, the set co(A(w)) is weakly precompact
(JRol, p. 377], [Schl, p. 27]), and for w € L the sequence (g (w))n> lies in this
set, we have p(L) = 0. Then for a.e. w € £2, the sequence (g, (w)) is weakly
Cauchy in X. Apply Theorem

(ii) Suppose that X has property (wV*). For a.e. w € {2, the set A(w) is
a V*-set, and thus weakly precompact (since X has property (wV™*)). Since
A is bounded and weakly precompact (by (1)), 4 is a V*-set ([Pe]). u

COROLLARY 2.5. Let g : £2 — R be a positive integrable function and
(fn) be a sequence in Li(u, X) such that

(i) for a.e. w € 2 and alln € N, || fp(w)|| < g(w);
(ii) for a.e. w € §2, the sequence (fn(w)) is weakly precompact.

Then the sequence (fy) is weakly precompact.
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Proof. Let A = {f, : n € N}. Then A is bounded and uniformly in-
tegrable and for a.e. w € (2, the set A(w) is weakly precompact. Apply

Corollary [2.4]i). =

The next result is motivated by [Bou, Corollary 9].

COROLLARY 2.6. Suppose that X contains no copy of £1, and let A be a

bounded subset of Li(u, X). Then the following are equivalent:
(i) A is uniformly integrable.

(ii) A is weakly precompact.

(iii) A is a V*-set.

Proof. (i)=(ii). Suppose that A is uniformly integrable. Let (f,) be a
sequence in A. By Lemma there exist a sequence (g,,) with g, € co{f; :
i > n} for each n, and three sets C, Co, and L in X with u(C1UCyUL) =1,
such that conditions (a)—(c) of Lemma are satisfied. However, since X
contains no copy of ¢1, condition (c) is not possible. Therefore p(L) = 0, and
for a.e. w € £2, the sequence (g,(w)) is weakly Cauchy. By Theorem A
is weakly precompact.

(ii)=-(iii). If A is weakly precompact, then A is a V*-set [Pe].

(iii)=(i). If Ais a V*-set, then A is uniformly integrable, by [Bom| Propo-
sition 3.1]. =

LEMMA 2.7 (|[Boml Theorem 1.1 and Proposition 1.1]). Let A be a
bounded subset of a Banach space X. Then A is a V*-set if and only if
T(A) is relatively compact for each operator T : X — 1.

THEOREM 2.8. If A is a V*-set in Li(u, X), then the set
{IfOllx - f € A}

is weakly precompact in L1(u).

Proof. Suppose that {||f(:)[|x : f € A} is not weakly precompact in
Li(p). By [AKL Theorem 5.2.9], there is a sequence (A4,,) of pairwise disjoint
sets in {2, a sequence (fy,) in A, and an € > 0 such that

)l dp > €
An

for all n € N.

For each n € N, choose g, € Loo (1, X*) such that ||gn||cc < 1, gn vanishes
off A,, and

S (fn(w), gn(w)) du > €.
An

Define T : L1(u, X) — ¢1 by
T(f) =3 ([ (@), gi(w)) dp)e;

P A
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for f € L1(u, X). Note that T is a well-defined operator, ||T']] < 1, and
(T(fn)sen) = § {falw), gn(w)) du > €

An
for all n. Then {T'(f,) : n > 1}, and thus T(A) is not relatively compact
in /1. By Lemma A is not a V*-set, a contradiction. m

COROLLARY 2.9. Let A be a bounded set in Ly (p, X). Then the following
are equivalent:

(i) A is weakly precompact.

(i1) The set {||f()llx : f € A} is relatively weakly compact in Ly(p),
A is uniformly integrable, and for any sequence (fy,) in A, there is a
sequence (gpn) with g, € co{f; : i > n} for each n such that for a.e.
w € §2, the sequence (gn(w)) is weakly Cauchy in X.

Proof. (i)=(ii). If A is weakly precompact, then A is uniformly inte-
grable ([DU, Theorem IV.2.4]) and a V*-set [Pe]. By the previous theorem,
the set {||f(*)|lx : f € A} is weakly precompact, and thus relatively weakly
compact (and uniformly integrable) in L;(u) (JAKL Theorem 5.2.9]). The
third assertion of (ii) follows from Theorem

(ii)=(i). Apply Theorem [2.3| =

In order to prove a result similar to Lemma for V*-sets, we need the
following two lemmas.

LEMMA 2.10 (|BLL Lemma 3.3|). Let (z},x,) be a sequence in X* x X
such that (x3)) is bounded and (x,) is weakly null. If (€;) is a sequence of

positive numbers, then there exists a subsequence (x7, ,Tn;) of (z},,2n) such
that [z, (n,)| < ¢, i1 7 J.

If (x,) is a sequence and (y;) C co{(zn,)} for each j, then we say that
(yj) has pairwise disjoint support if N; N Ny = () whenever j # k and
Y; = ZieNj Ty, with EieNj a; = 1, (67 Z 0.

LEMMA 2.11. Let (x,,) be a bounded sequence in X such that {x,, : n > 1}
is not a V*-set. Then there is a subsequence (zy,,) of (zn) such that if (yx) C
co{(zn,)} is a sequence having pairwise disjoint support, then {yx : k > 1}
s not a V*-set.

Proof. Let ¢ > 0 and )z} be wuc in X* such that (z},x,) > e
By Lemma there is a subsequence (z}, ,xy;) of (z3,2n) such that
(5, Tn) | < ¢/2"%3 for all i # j. Let (y) C cof(wn,)} be a sequence hav-
ing pairwise disjoint support. Suppose that yp = >, N, O Tn, with a; > 0,
i € Ny, and 37,y o; = 1. Let yi = > .y, ay, for each k. Then ) y; is
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wuc in X* and

ykvyk: <Z n;zaz$nl>

zENk ZGNk
> Z%(x ) Ty ) — Zai( Z |<1:;‘li,a:nj>|)>e—e/2:e/2. .
1ENy 1€ENy JEN, j#i

We now have a version of Lemma 2.1l for V*-sets.

LEMMA 2.12. Let A be a bounded subset of X. Then A is a V*-set if
and only if for any sequence (x,) in A, there is a sequence (z,) so that
zn, € co{z; : i >n} for each n and {z, : n > 1} is a V*-set.

Proof. Suppose A is a V*-set and let (x,) be a sequence in A. Set
Zp = Tp. Then (z,) satisfies the required conditions.

Conversely, suppose that A is not a V*-set. Let (z,) be a sequence
in A such that {z, : n > 1} is not a V*-set. Use Lemma to choose
a subsequence (z,;) of (x,) such that if (yx) C co{(zy,,)} is a sequence
having pairwise disjoint support, then {y; : & > 1} is not a V*-set. Let
zj € co{wp, : 1 > j} for each j € N. Let (2;,) be a subsequence having
pairwise disjoint support. Then {z; : k > 1} is not a V*-set, and thus
{z 19> 1} is not a V*-set. m

COROLLARY 2.13. Suppose that X has property (wV™*). Then a subset A
of Li(u, X) is a V*-set if and only if A is bounded, uniformly integrable, and
for any sequence (fy) in A, there exists a sequence (g,) with g, € co{f; :
i > mn} for each n such that for a.e. w € 2, (gn(w)) is a V*-set.

Proof. Suppose that A is a V*-set. Then A is bounded and uniformly
integrable ([Boml, Proposition 3.1]). Since X has property (wV™*), Lq(p, X)
has property (wV*) (|Ral]). Then A is weakly precompact. Let (f,) be a
sequence in A. By Theorem [2.3| there exists a sequence (g,) with g, €
co{fi : i > n} for each n such that for a.e. w € £2, (g,(w)) is weakly Cauchy.
Then for a.e. w € £2, (gn(w)) is a V*-set (|Pe]).

Conversely, let (f,) be a sequence in A. Choose a sequence (g,) with
gn € co{fi : i > n} for each n such that for a.e. w € 2, (g (w)) is a V*-set.
By Corollary 2.4(ii), {gn : n > 1} is a V*-set. By Lemma Ais a
V*-set. m

COROLLARY 2.14. Suppose that X* has the Schur property. Then a sub-
set A of Li(p, X) is a DP set if and only if A is bounded, uniformly in-
tegrable, and for any sequence (f,) in A, there exists a sequence (gp) with
gn € cof{fi : i > n} for each n such that for a.e. w € 2, (gn(w)) is a DP set.

Proof. We note that X* has the Schur property if and only if X has the
DPP and X contains no copy of ¢; (|Di2]).
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Suppose that A is a DP set. Then A is bounded, weakly precompact,
and uniformly integrable [An|. Let (f,) be a sequence in A. By Theorem
there exists a sequence (g,) with g, € co{f; : i > n} for each n such
that for a.e. w € 2, (gn(w)) is weakly Cauchy in X, and hence a DP set
(IDi2)).

Conversely, if A is bounded and uniformly integrable, then A is a DP set,
by [Anl, Corollary 4|. =

We will need the following lemmas. The first of them is similar to a result
of Grothendieck about relatively weakly compact sets (|[Dill p. 227]).

LEMMA 2.15. Let A be a bounded subset of X. If for any € > 0 there
exists a weakly precompact subset A, of X such that A C A. + eBx, then A
18 weakly precompact.

Proof. Let (x,) be a sequence in A. Choose a weakly precompact subset
A of X, a sequence (y.) in Aj, and a sequence (z}) in Bx so that z, =
yl + zL for n > 1. We observe that (y.) has a weakly Cauchy subsequence.
Let ¢1 : N — N be a strictly increasing function so that (y;b1 (n)) is weakly
Cauchy.

Now consider the sequence (74, (,)). Choose a weakly precompact subset
As of X, a sequence (y2) in As, and a sequence (22) in (1/2)By so that
Ty (n) = y2 + 22 for n > 1. Then (y2) has a weakly Cauchy subsequence.
Let ¢2 : ¢1(N) — ¢1(N) be a strictly increasing function so that (yéz( ) is

weakly Cauchy.

n)

Consider the sequence (74,4, (n)). Choose a weakly precompact subset
Asz of X, a sequence (y2) in Az, and a sequence (z3) in (1/3)Byx so that
Ty (n) = Y2+ 23, n > 1. Let ¢3 : ¢od1(N) — ¢o¢1(N) be a strictly increas-
ing function so that (yfz?)(n)) is weakly Cauchy and consider the sequence
(Tpy961(n))- Choose a weakly precompact subset A4 of X and use the hy-
potheses to continue this process.

Now consider the subsequence w1 ==y, (1), W2 =Ty (2), W3 =L 31 (3)>

. of (x,). Let € > 0. Choose i € N so that 2/i < ¢/2, and let z* € X*,
|lz*|| < 1. Choose N € N so that if p,q > N, then

If s,t > N + i, then ws; = ycibi(p) + Zqibi(p) and w;, = y;i(q) + Z;i(q) for some
p,q > N. Consequently,
[ (ws) = & (we)| < 12" (W, ) = 2" W) + 127 (2 ) = 27 (25
<e€/2+¢€/2=c¢.

Hence (wy,) is weakly Cauchy, and A is weakly precompact. m
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LEMMA 2.16 (|Boml Corollary 1.7]). Let A be a bounded subset of X. If
for any € > 0 there exists a V*-subset Ac of X such that A C A + €Bx,
then A is a V*-set.

LEMMA 2.17. Let A be a bounded subset of X. If for any ¢ > 0 there
exists a DP subset A of X such that A C Ac + eBx, then A is a DP set.

Proof. We recall the following characterization of DP sets obtained in
[An]: a subset A of X is a DP set if and only if every weakly compact
operator T : X — ¢p maps A into a relatively compact set. Let T : X — ¢g
be a weakly compact operator with ||T|| < 1. For each ¢ > 0, choose a DP
subset A, of X such that A C A, + eBx. Then

T(A) CT(Ae) + €T'(Bx) € T(Ae) + €Be,

and T'(A,) is relatively compact ([An|). Therefore T'(A) is relatively compact
(IDidl, p. 5]), and thus A is a DP set ([An]). =

Recall that W = {f € Li(u, X) : for a.e. w € 2, |[f(w)|| < 1}. The
following theorem is motivated by [Ul2l Theorem 8§|.

THEOREM 2.18. Let A be a bounded subset of Li(u, X).

(i) If A is uniformly integrable, then for every e > 0, there exist a positive
integer N and a subset H of NW such that A C H + eB(0).

(i1) A is weakly precompact if and only if for every e > 0, there exist a
positive integer N and a weakly precompact subset H of NW such
that A C H + ¢B(0).

Proof. (i) Let € > 0. Since A is uniformly integrable, there is a § > 0
such that if B € X, u(B) < J, then

sup § 1 ()| die < e
feA g

Using the boundedness of A, we can find a positive integer N such that for
each fe€ A, p({w e 2 : | f(w)|| > N}) < 6.

For f € A, let fn = f - xg;, where By = {w € 2 : [f(w)| < N}
Note that ||f — fn]| < e for all f € A. Let H = {fy : f € A}. Then
HCW(N)=NW and A C H+¢€B(0). For all w € 2, H(w) C A(w)U{0}.

(ii) Suppose A is weakly precompact. Then A is uniformly integrable
(IDUL Theorem IV.2.4|). Let € > 0. By (i), there exist a positive integer N
and a subset H of NW such that A C H +¢B(0). By [Bou, Proposition 10],
the set {f -xp: f € A, E € X} is weakly precompact, since A is a weakly
precompact subset of L1 (u, X) and {xg : E € X} is a bounded subset of L.
Since H C{f-xg:f€ A E € X}, H is weakly precompact.

The converse follows from Lemma 215 =
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COROLLARY 2.19. If X has property (wV™*), then A is a V*-set if and
only if for every € > 0, there exist a positive integer N and a V*-subset H
of NW such that A C H + e¢B(0).

Proof. Suppose X has property (wV*) and let A be a V*-set in Lq(u, X).
Since X has property (wV*), Li(u, X) has property (wV™*) (|Ral). Then
A is weakly precompact. Let ¢ > 0. By Theorem (ii), there exist a
positive integer N and a weakly precompact subset H of NW such that
A C H + €B(0). Since H is bounded and weakly precompact, H is a V*-set

([Pe]).
The converse follows from Lemma n

COROLLARY 2.20. If X* has the Schur property, then A is a DP set if
and only if for every e > 0, there exist a positive integer N and a DP subset
H of NW such that A C H + €B(0).

Proof. Suppose X* has the Schur property and let A be a DP set in
Li(p, X). Let € > 0. Since A is weakly precompact ([Ro, p. 377]), there exist
a positive integer N and a weakly precompact subset H of NW such that
A C H + eB(0) (by Theorem [2.1§[(ii)). Since L1(u, X) has the DPP (|An]),
H is a DP set (|Di2)]).

The converse follows from Lemma .
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