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ON SMALL DEVIATIONS OF GAUSSIAN PROCESSES USING
MAJORIZING MEASURES
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Abstract. We give two examples of periodic Gaussian processes, having entropy
numbers of exactly the same order but radically different small deviations. Our construc-
tion is based on Knopp’s classical result yielding existence of continuous nowhere differ-
entiable functions, and more precisely on Loud’s functions. We also obtain a general lower
bound for small deviations using the majorizing measure method. We show by examples
that our bound is sharp. We also apply it to Gaussian independent sequences and to a
generic class of ultrametric Gaussian processes.

1. Introduction and preliminaries. The relatively recent small devi-
ations theory of Gaussian processes and of more general processes is a very
active and interactive domain of research, having connections with statistics
and operator theory. It also completes the theory of large deviations, which
was earlier extensively investigated.

Suppose that X = {X(t), t ∈ T} is a sample bounded Gaussian process
defined on a countable set, and let M(X) = supt∈T |X(t)|. The case of
an uncountable parameter set T can be easily reduced to the countable
case by using the familiar notion of separable processes, a good reference
being [7]. The small deviation problem it to find satisfactory estimates for
the probability

P{M(X) ≤ λ}, λ = o(µ),

where µ(X) denotes the median of M(X). Typically, one can take µ(X) =
2EM(X). The moderate deviation problem concerns the range of values
λ ≈ µ and seems not to be much investigated. The case µ = o(λ) naturally
corresponds to the study of the large deviations of X. The large devia-
tions theory is essentially based on the Borel–Sudakov–Tsirelson isoperi-
metric inequality, regularity methods (metric entropy method, majorizing
measure method) as well as Slepian’s comparison lemma. Although some of
these tools are relevant to the study of small deviations, this area also relies
upon intrinsic devices: Laplace transform, Tauberian theorems, subadditive
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lemma, and most importantly, Kathri–Sidák’s inequality implying for any
centered Gaussian vector (X1, . . . , XJ) that

(1.1) P
{

J
sup
j=1
|Xj | ≤ z} ≥ P{|X1| ≤ z}P

{
J

sup
j=2
|Xj | ≤ z

}
.

Talagrand’s well-known lower bound [9] is based on this device. Let {X(t),
t ∈ T} be a Gaussian process, and as is customary, let

d(s, t) = ‖X(s)−X(t)‖2, s, t ∈ T.
Recall that the entropy number N(T, d, ε) is the minimal number (possibly
infinite) of d-balls of radius ε > 0 that suffice to cover T . Assume there exists
a nonnegative function φ on R+ such that N(T, d, ε) ≤ φ(ε), and moreover
c1φ(ε) ≤ φ(ε/2) ≤ c2φ(ε) for some constants 1 < c1 ≤ c2 < ∞. Then, for
some K > 0 and every ε > 0,

(1.2) P
{

sup
s,t∈T

|X(s)−X(t)| ≤ ε
}
≥ e−Kφ(ε).

This estimate has been recently improved in [1] where a much larger set of
size functions φ is permitted. The basic idea is the use of inequality (1.1)
to control the Laplace transform of some standard approximating chaining
sum, and next to apply de Bruijn’s Tauberian result. As moreover some
general links between Kolmogorov’s entropy function H(ε) = logN(T, d, ε)
(relative to the unit ball of the associated reproducing Hilbert space) and
− logP{supt∈T |X(t)| ≤ ε} were earlier established by Kuelbs and Li (see [4]
or [5]), there seems to be a kind of dual behavior between small deviations
and entropy numbers of a Gaussian process.

However, this is not exactly so. The convenient estimate (1.2) is indeed
known to not always provide sharp lower estimates, whereas in some cases
it is quite sharp. See [4, §3.4] and [5, §2–3]. A typical instance is X(t) =
g|t|α, t ∈ [0, 1], where 0 < α ≤ 1. We have d(s, t) ≤ |t − s|α, so that
N(T, d, ε) ≤ Cε1/α. However P{sup0≤s,t≤1 |X(s) −X(t)| ≤ ε} ≈ ε. In fact,
much more can be said. In Section 2, we show that there exist two sample
continuous periodic Gaussian processes, with entropy numbers of exactly the
same order, but having radically different small deviations. There also exist
aperiodic sample continuous Gaussian processes for which this duality fails
even more dramatically. In Section 3, we establish a new general lower bound
for small deviations by using the majorizing measure method. We show by
examples that our bound is sharp. We also apply it to Gaussian independent
sequences and to a generic class of ultrametric Gaussian processes.

Notation and conventions. All Gaussian processes we consider are
supposed to be centered. The letter g is used throughout to denote a standard
Gaussian random variable. Further g1, g2, . . . will always denote a sequence
of i.i.d. standard Gaussian random variables. The notation f(t) � h(t) (resp.
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f(t) � h(t)) near t0 ∈ R means that for t in a neighborhood of t0, |f(t)| ≤
c|h(t)| (resp. |f(t)| ≥ c|h(t)|) for some constant 0 < c < ∞. We write
f(t) ≈ h(t) when f(t) � h(t) and f(t) � h(t).

2. Examples failing the duality with entropy numbers. By con-
sidering two kinds of processes, one of type X(t) = gf(t), where g is N (0, 1),
and the other as in the example given in [5, (2.5), (2.6)] (see also [4, Sec-
tion 3.4]), we will prove the following striking result.

Theorem 2.1. Let 0 < α < 1. There exist two cyclic continuous Gaus-
sian processes X1(t), X2(t), t ≥ 0, such that, as ε→ 0,

N([0, 1], dXi , ε) ≈ ε1/α, i = 1, 2,

but

P
{

sup
0≤t≤1

|X1(t)| ≤ ε
}
≈ ε, logP

{
sup

0≤t≤1
|X2(t)| ≤ ε

}
≈ −

(
log

1

ε

)2

.

Therefore the sole information on the size of the entropy numbers of the
process is in general insufficient to estimate its small deviations. The proof
is essentially based on two lemmas.

To begin, recall a classical result from real analysis, the existence of con-
tinuous nowhere differentiable functions (see Knopp’s construction in [3]).
In [6], Loud has given an example of a function f(t) which satisfies, for every
real t, a Lipschitz condition of order precisely α (0 < α < 1). The proof is
based on the method used in [3], as well as on van der Waerden’s construc-
tion [11]. More precisely, if 0 < α < 1, there exists a continuous periodic
function f and a pair of positive constants K1,K2 such that

(a) for any t and any h, |f(t+ h)− f(t)| ≤ K1|h|α
(b) for any t and infinitely many, arbitrarily small h,

(2.1) |f(t+ h)− f(t)| ≥ K2|h|α.

Let ϕ(t, h) be the saw-tooth function equal to 0 for even multiples of h,
to 1 for odd multiples of h, and linear otherwise. Loud’s function is defined
as follows: Let A be an integer such that 22A(1−α) > 2 and put

(2.2) f(t) =
∞∑
n=1

2−2αAnϕ(t, 2−2An).

Then f satisfies (2.1). Notice that f is 2−2A-periodic. The leading idea in
Loud’s proof is that for every pair of values of t and h, at most one or two
terms of the series (2.2) make a significant contribution to the difference
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f(t+ h)− f(t). Further, it is of interest to notice that property (b) is es-
tablished for the values h = 2−2An, n > 1. From this and by considering
X(ω, t) = g(ω)f(t), one easily deduces

Lemma 2.2. For any 0 < α ≤ 1, there exists a cyclic Gaussian pro-
cess X(t), t ≥ 0, with sample paths satisfying a Lipschitz condition of order
precisely α. Moreover, as ε→ 0,

N([0, 1], dX , ε) � ε−1/α whereas P
{

sup
0≤t≤1

|X(t)| ≤ ε
}
� ε.

Now consider the following example. Let 0 < α < 1, let p ≥ 2 be some
integer, and let A be an integer such that p2(1−α)A > 2. For each integer k,
let ϕk(t) = p−2αAkϕ(t, p−2Ak). Put

(2.3) f(t) =
∞∑
k=1

ϕk(t), X(t) =
∞∑
k=1

gkϕk(t).

To prove Theorem 2.1 as well as Proposition 2.6, we will use the lemma
below providing estimates of both the increments of f and of its random
counterpart X.

Lemma 2.3.

(a) For all 0 ≤ s, t ≤ 1,

c1|s− t|α ≤ ‖X(s)−X(t)‖2 ≤ c2|s− t|α,
where

c1 = p−2A, c2 =

(
p4Aα

1− p−4(1−α)A
+

1

1− p−4αA

)1/2

.

(b) For all 0 ≤ s, t ≤ 1 with |s− t| = p−2A(m+1) for some integer m ≥ 1,

|f(s)− f(t)| ≥ κp|s− t|α.
Moreover, for all 0 ≤ s, t ≤ 1,

|f(s)− f(t)| ≤ Kp|s− t|α.
Here

κp = p−2(1−α)A
1− 2p−2(1−α)A

1− p−2(1−α)A
, Kp =

p4Aα

1−p−4(1−α)A
+

1

1−p−4αA
.

Proof. This is just reproducing Loud’s proof for p 6= 2, which we do
because the way the constants depend on p and α matters in what follows.
Given any function f , we write ∆f = f(t+∆t)− f(t) for any t and ∆t. Let
m be the integer such that p−2A(m+1) < ∆t ≤ p−2Am. The slope of ϕk(t) is
± p2(1−α)Ak, so that

|∆ϕk| ≤ p2(1−α)Ak|∆(t)| ≤ p2(1−α)Ak−2Am = p−2(1−α)A(m−k)−2Aαm.
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Moreover ϕk has maximal oscillation p−2αAk. Therefore

|∆f(t)| ≤
∞∑
k=1

|∆ϕk(t)| ≤
m∑
k=1

p−2(1−α)A(m−k)−2Aαm +

∞∑
k=m+1

p−2αAk(2.4)

≤ p−2Aαm

1− p−2(1−α)A
+
p−2αA(m+1)

1− p−2αA

≤ |∆t|α
(

p2Aα

1− p−2(1−α)A
+

1

1− p−2αA

)
.

Furthermore,

‖∆X(t)‖22 =
∞∑
k=1

[∆ϕk(t)]
2 ≤ 2

m∑
k=1

p−4(1−α)A(m−k)−4Aαm + 2
∞∑

k=m+1

p−4αAk

≤ 2

{
p−4Aαm

1− p−4(1−α)A
+
p−4αA(m+1)

1− p−4αA

}
≤ 2|∆t|2α

(
p4Aα

1− p−4(1−α)A
+

1

1− p−4αA

)
.

In the other direction, fix t and let ∆t = p−2A(m+1). By periodicity, ∆ϕk = 0
if k > m, while ∆ϕk = ± p2(1−α)Ak−2Am if k ≤ m. Thus

|∆f(t)| = p−2A(m+1)[±p2(1−α)Am ± p2(1−α)A(m−1) ± · · · ± p2(1−α)A]

= p−2A−2αAm[±1± p−2(1−α)A ± · · · ± p−2(1−α)A(m−1)].

As r := p−2(1−α)A < 1/2, it follows that

g| ± 1± p−2(1−α)A ± · · · ± p−2(1−α)A(m−1)| ≥ 1− r

1− r
=

1− 2r

1− r
.

As |∆t|α = p−2αA−2αAm, we therefore get

(2.5)

|∆f(t)| ≥ p−2A−2αAm 1− 2p−2(1−α)A

1− p−2(1−α)A
= |∆t|αp−2(1−α)A 1− 2p−2(1−α)A

1− p−2(1−α)A
.

The corresponding estimate for ∆X is very easy. Let m be such that
p−2A(m+1) ≤ |∆t| < p−2Am. We have ∆ϕm(t) = ±p−2Aαmp2Am∆t. Thus

‖∆X(t)‖22 ≥ [∆ϕm(t)]2 = p−4Aαmp4Amp−4A(m+1)

= p−4Ap−4Aαm ≥ p−4A|∆t|2α.

This yields the lower bound with c1 = p−2A.

The following known estimate will be used. We give a proof because it
is elementary and may be easily adapted (to some extent) to other non-
geometric coeffcients.



46 M. J. G. WEBER

Lemma 2.4. Given any 0 < ρ < 1,

logP
{ ∞∑
n=1

|gn|ρn ≤ ε
}
≈
(

log
1

ε

)2

as ε→ 0.

Here, we recall (see end of Section 1) that g1, g2, . . . denotes a sequence
of i.i.d. standard Gaussian random variables.

Proof. We begin with the lower bound. Let H =
√
ρ/(1−√ρ). Plainly,

P
{ ∞∑
n=1

|gn|ρn ≤ ε0
}
≥
∞∏
n=1

P
{
|g| < ε0

H
ρ−n/2

}
.

Thus it suffices to estimate the product
∏∞
n=1 P{|g| < εδn} with ε = ε0/H,

δ = ρ−1/2, δ > 1. Let a be such that P{|g| ≥ a} ≤ 1/2, and put N =
sup{n : δn ≤ a/ε}. Then

N∏
n=1

P{|g| < εδn} ≥ P{|g| < ε}N ≥ exp

{
−Cδ

(
log

1

ε

)2}
.

Now,
∞∑

n=N+1

P{|g| ≥ εδn} =

∞�

a

{ ∑
a≤εδn≤u

1
}
e−u

2/2 du

≤ Cδ
∞�

a

{1 ∨ log u}e−u2/2 du <∞.

As log(1 − x) ≥ −2x if 0 ≤ x ≤ 1/2 and P{|g| > εδn} ≤ 1/2 if n > N , we
get

∞∏
n=N+1

P{|g| < εδn} ≥ exp
{
−

∞∑
n=N+1

P{|g| ≥ εδn}
}
≥ cδ > 0.

Thus
∏∞
n=1 P{|g| < εδn} ≥ cδ exp

{
−Cδ

(
log 1

ε

)2}
. To get the upper bound is

faster. Let N ′ = sup{n : δn ≤ 1/
√
ε}. Then

(2.6)
∞∏
n=1

P{|g| < εδn} ≤
N ′∏
n=1

P{|g| < εδn} ≤ P{|g| <
√
ε}N ′

= exp

{
−N ′ log

1

P{|g| <
√
ε}

}
≤ exp

{
−Cδ

(
log

1

ε

)2}
.

We can now prove Theorem 2.1. Take X1 as in Lemma 2.2. Let
p = 2 in (2.3) and choose X2 = X. The entropy numbers clearly satisfy
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N([0, 1], dXi , ε) ≈ ε1/α, i = 1, 2. First, by using Lemma 2.4,

P
{

sup
0≤t≤1

|X2(t)| ≤ ε
}
≥ P

{ ∞∑
k=1

2−2αAk|gk| ≤ ε
}
≥ e−Cα log2 1

ε .

Next we notice

ϕj(2
−2Ak) =

{
2−2Aαj2−2A(k−j) if j ≤ k,

0 if j > k.

Thus X2(2
−2Ak) = 2−2Ak

∑k
j=1 gj2

2A(1−α)j . And as

22AkX2(2
−2Ak)− 22A(k−1)X2(2

−2A(k−1)) = gk2
2A(1−α)k,

it follows from (2.6) that

P
{

sup
0≤t≤1

|X2(t)| ≤ ε
}
≤ P

{
sup
s,t∈T

|X(s)−X(t)| ≤ ε(1 + 2−2A)
}

≤
∞∏
k=1

P{|gk| ≤ 22Aαk(1 + 2−2A)ε}

≤ exp

{
−Cα

(
log

1

ε

)2}
.

This completes the proof.

Remark 2.5. Let ψ(t) = 1− |2{t}− 1| where {t} denotes the fractional
part of t. Lifshits has considered the following example:

(2.7) X(t) = g0t+
∞∑
n=1

gn2−αn/2ψ({2nt}), t ∈ [0, 1].

It is observed in [5] that ‖X(s)−X(t)‖2 ≥ c|t− s|α/2 whereas

logP
{

sup
t∈T
|X(t)| ≤ ε

}
≈ − log2

1

ε
.

As we said at the beginning, our second process is of the same type since
ψ(t) = ϕ(t, 1/2).

A class of examples. If τ is a piecewise C2 expanding map on T =
R/Z, by the Lasota–Yorke theorem there exists a τ -invariant probability
measure µ which is absolutely continuous with respect to Lebesgue measure.
So is the case for ψ. This leads us to introduce the following family of
processes: let {an, n ≥ 1} ∈ `1, f ∈ L1(T, µ) and put

X(t) =
∞∑
n=1

angnf(ψn(t)).

We have just considered the case f(t) = t. It would certainly be very infor-
mative to describe the small deviations of this class of Gaussian processes.
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By Birkhoff’s theorem,

1

n

n−1∑
k=0

f(ψn(t))→
�

T

f dµ almost everywhere.

The rate of this convergence, which for specific f only may be given ex-
plicitly, certainly plays a role since by using Abel summation we formally
have

X(t) =
∞∑
n=1

n(an − an+1)gn

[
1

n

n−1∑
k=0

f(ψn(t))

]
∼
(�
T

f dµ
) ∞∑
n=1

n(an − an+1)gn.

Shao and Li [4] argued from example (2.7) that stationarity (in fact,
periodicity) should play a big role in upper estimates for small deviations.

We show that Loud’s functions can be used to build aperiodic examples
failing the duality even more dramatically. The intuitive idea behind the
construction is that adding infinitely many functions with periods q−1n , where
qn are mutually coprime integers, produces aperiodic functions.

Proposition 2.6. There exists an aperiodic sample continuous Gaus-
sian process {X(t), 0 ≤ t ≤ 1} such that

lim
ε→0

logN([0, 1], dX , ε)

log 1
ε

=∞ while lim inf
ε→0

logP
{

sup
0≤t≤1

|X(t)| ≤ ε
}

(
log 1

ε

)2 >−∞.

Proof. Let P be an infinite set of mutually coprime integers larger than 2.
Let 0 < αp < 1/2, αp ↓ 0. Take A = 1; then the condition p2(1−αp)A > 2
holds. We further assume that

(2.8) lim
p→∞

αp log p = 0, 2hpαp log p ↑ ∞ (∀h > 0).

Let ϕp,k(t) = p−2αpkϕ(t, p−2k), k = 1, 2, . . . , and put fp =
∑∞

k=1 ϕp,k. Then
fp is p−2-periodic. Now let {ap, p ∈ P} be a sequence of reals such that∑

p a
2
p <∞, and consider the Gaussian process

(2.9) X(t) =
∑
p

gpapfp(t).

Since P is a set of mutually coprime integers, periodicity is destroyed and
so by considering its covariance, X is no longer periodic.

By Lemma 2.3, |fp(s)− fp(t)| ≥ κp|s− t|αp whenever |s− t| = p−2(m+1),
m an integer. By assumption (2.8), pαp ∼ 1 as p→∞, so that

κp = p−2(1−αp)
1− 2p−2(1−αp)

1− p−2(1−αp)
∼ p−2.
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Moreover,

‖fp‖∞ ≤
∞∑
k=1

p−2αpk =
p−2αp

1− p−2αp
≤ 1

1− e−2αp log p
≤ C

αp log p
.

Let 0 ≤ s, t ≤ 1 be such that |s− t| = p−2(m+1). Then

‖X(s)−X(t)‖22 =
∑
q

a2q |fq(s)−fq(t)|2 ≥ a2p|fp(s)−fp(t)|2 ≥ a2pκ2p|s− t|2αp .

Thus ‖X(s) − X(t)‖2 ≥ Capp
−2|s − t|αp . Now let α > 0. We choose an

integer m so that

m+ 1 ∼ pα log 2

2αp log p
.

Then |s − t|αp = p−2αp(m+1) ∼ 2−pα. Let β, γ be such that 0 < β < α <
α+ β < γ, and choose ap = 2−βp. Then, for all p large enough,

‖X(s)−X(t)‖2 ≥ C2−(α+β)pp−2 ≥ 2−γp.

Put ε = 2−γp. Then

N([0, 1], dX , ε) ≥ p2(m+1) = e2(m+1) log p ≥ 2c pα/αp ,

and so
logN([0, 1], dX , ε)

log 1
ε

≥ c pα/αp
γp

=
cα

γαp
,

which implies our first claim since αp ↓ 0 as p→∞.
Now let 0 < β′ < β. As 2hpαp log p ↑ ∞ for any h > 0, it follows that

|X(t)| ≤
∑
p

|gp|2−βp‖fp‖∞ ≤ C
∑
p

|gp|
2−βp

αp log p
≤ C

∑
p

|gp|2−β
′p.

Therefore, by using Lemma 2.4,

P
{

sup
0≤t≤1

|X(t)| ≤ ε
}
≥ P

{∑
p

|gp|2−β
′p ≤ ε/C

}
≥ e−C(log 1

ε
)2 .

3. A general lower bound using majorizing measures. The re-
sults from the previous section suggest the search of lower bounds for small
deviations by using the majorizing measure method. It is known from the
general theory of Gaussian processes that this is the paramount method
for studying the regularity of Gaussian processes. And also that in gen-
eral, entropy numbers are not a sufficiently precise tool. A classical example
is provided by independent Gaussian sequences. See [8], [10], [12]. Gener-
ally speaking, once having Kathri–Sidák’s inequality in hand, the argument
leading to lower bounds is relatively direct. Familiarity with the chaining
technique is however necessary. In [13], we obtained a general lower estimate
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for small deviations by using the majorizing measure method. Since the re-
sult is relevant there and in the next section, we present a slightly updated
formulation of it and provide a proof.

Let X = {X(t), t ∈ T} be a centered Gaussian process, with basic
probability space (Ω,A,P), and let

d(s, t) = ‖X(s)−X(t)‖2, D = diam(T, d).

We assume that σ = supt∈T ‖X(t)‖2 < ∞ and that X is d-separable. Let
Π0 � Π1 � · · · be a sequence of finite measurable ordered partitions of T
(Πn+1 is a refinement of Πn) such that

(3.1) max
π∈Πn

max
u,v∈π

d(u, v) ≤ 2−nD, n = 0, 1, . . . .

Let Nn = #{Πn}. For any π ∈ Πn, let π̄ be such that π ⊂ π̄ ∈ Πn−1. If
t ∈ T , we also define πn(t) by the relations t∈πn(t) ∈ Πn. We now introduce
a majorizing measure condition.

• There exists a probability measure µ on T such that

(3.2) lim
n→∞

sup
t∈T

∑
m>n

2−m
(

log

(
1 +

1

µ(πm(t))

))1/2

= 0.

Put

H(n) = sup
t∈T

∑
m>n

(2−mD)

(
log

(
1 +

1

µ(πm(t))

))1/2

.

Then H(n) is finite and H(n)→ 0 as n→∞.

Theorem 3.1. For 0 < εσ < H(0), let n(ε) be such that H(n(ε))
≤ 24εσ. Then

P
{

sup
t∈T
|X(t)| ≤ 25εσ

}
≥ Ce−Nn(ε) log

1
ε .

Proof. Since X is d-separable, it suffices to produce a proof for a count-
able d-dense subset of T , which we will call again T . Put

Xπ =
�

π

X(u)
µ(du)

µ(π)
, Xn(t) =

�

πn(t)

X(u)
µ(du)

µ(πn(t))
.

These Gaussian random variables are the bricks of the majorizing measure
method. By (3.1), we have ‖X(t) − Xn(t)‖2 ≤ 2−n. Elementary consid-

erations then yield X(t)
a.s.
= limn→∞Xn(t). It follows that X(t) − Xn(t)

a.s.
=
∑∞

m=n+1(Xm(t)−Xm−1(t)) and we have the bound

|X(t)| ≤ sup
π∈Πn

|Xπ|+
∞∑

m=n+1

|Xm(t)−Xm−1(t)|.(3.3)
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Let n = n(ε). Then by using (3.3), and by applying Kathri–Sidák’s inequal-
ity (1.1) repeatedly, we get

P
{

sup
t∈T
|X(t) ≤ 25εσ

}
≥ P

{
sup
π∈Πn

|Xπ| ≤ εσ, sup
t∈T
|X(t)−Xn(t)| ≤ 24εσ

}
≥ P

{
sup
π∈Πn

|Xπ| ≤ εσ, sup
m≥n

1

D2−(m+1)

|Xm(t)−Xm+1(t)|(
log2

(
1 + 1

µ(πm(t))

))1/2 ≤ 24

}

≥
∏
π∈Πn

P{|Xπ| ≤ εσ}P
{

sup
m≥n

1

D2−(m+1)

|Xm(t)−Xm+1(t)|(
log2

(
1+ 1

µ(πm+1(t))

))1/2 ≤ 24

}
.

Now we apply the following inequality. Let ϕ(x) = 2x
2 − 1. Then

x

y
≤ 1 +

ϕ(x)

ϕ(y)
, x ≥ 0, y > 0.

We have (with c =
√

8(log 2)/3)

1

D2−(m+1)

|Xm(t)−Xm+1(t)|(
log2

(
1 + 1

µ(πm+1(t))

))1/2
≤ 4c(

log2
(
1+ 1

µ(πm+1(t))

))1/2 �

πm(t)

�

πm+1(t)

|X(u)−X(v)|
cd(u, v)

µ(du)

µ(πm(t))

µ(dv)

µ(πm+1(t))

≤ 4
√

2 c
�

πm(t)

�

πm+1(t)

|X(u)−X(v)|
cd(u,v)(

log2
(
1 + 1

µ(πm(t))µ(πm+1(t))

))1/2 µ(du)

µ(πm(t))

µ(dv)

µ(πm+1(t))

≤ 4
√

2 c

(
1 +

�

πm(t)

�

πm+1(t)

ϕ

(
|X(u)−X(v)|

cd(u, v)

)
µ(du)µ(dv)

)
≤ 8(1 + Z),

where

Z =
�

T

�

T

ϕ

(
|X(u)−X(v)|

d(u, v)

)
µ(du)µ(dv).

We have EZ ≤ 1. Thus

P
{

sup
m≥n

1

D2−(m+1)

|Xm(t)−Xm+1(t)|(
log2

(
1 + 1

µ(πm+1(t))

))1/2 ≤ 24

}
≥ P{Z ≤ 2}

≥ 1− 1

2
EZ ≥ 1

2
.
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Since ‖Xπ‖2 ≤ σ for all π ∈ Πn and n, we finally obtain

P
{

sup
t∈T
|X(t) ≤ 25εσ

}
≥ 1

2

∏
π∈Πn

P{|Xπ| ≤ εσ} ≥
1

2
P{|g| ≤ ε}Nn

≥ C exp

{
−Nn log

1

ε

}
.

Let δ : [0, 1] → R+ be increasing, δ(0) = 0, and satisfying the integral
condition

D�

0

(
log

(
1 +

1

δ−1(u)

))1/2

du <∞.

Corollary 3.2. Assume there exists a family {Πn, n ≥ 0} of finite
measurable ordered partitions of T satisfying (3.1) and a probability measure
µ on T such that

min{µ(π) : π ∈ Πm} ≥ δ(2−mD)/2 (∀m ≥ 0).

Let

n(ε) = sup

{
n :

2−nD�

0

(
log

(
1 +

2

δ−1(u)

))1/2

du ≤ 12εσ

}
.

Then (recalling that Nn = #{Πn})

P
{

sup
t∈T
|X(t)| ≤ 25εσ

}
≥ C exp

{
−Nn(ε) log

1

ε

}
.

Proof. We have∑
m>n

(2−mD)

(
log

(
1 +

1

µ(πm(t))

))1/2

≤
∑
m>n

(2−mD)

(
log

(
1 +

2

δ−1(2−mD)

))1/2

≤ 2

εn�

0

(
log

(
1 +

2

δ−1(u)

))1/2

du.

Therefore

P
{

sup
t∈T
|X(t)| ≤ 25εσ

}
≥ C exp

{
−Nn(ε) log

1

ε

}
.

Example 3.3. Consider a Gaussian processes X(t), t ∈ [0, 1], which
satisfy the increment condition

‖X(s)−X(t)‖2 ≤ δ(|s− t|) (∀s, t ∈ [0, 1]).

For m = 0, 1 . . . , let Πm be a partition of [0, 1] into consecutive intervals of
length less than or equal to εm = δ−1(2−mD), D = δ(1). One can arrange it
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so that each interval has length greater than εm/2. Let µ be the Lebesgue
measure. Then µ(π) ≥ δ−1(2−mD)/2 if π ∈ Πm. Thus Corollary 3.2 applies.
In the particular case δ(u) = (log(2/u))−β with β > 1/2, this gives

log
∣∣∣logP

{
sup
t∈T
|X(t)| ≤ 2εσ

}∣∣∣ = O(ε−2/(2β−1)).(3.4)

This estimate can also be deduced from the very recent work [1, Theo-
rem 3 with γ = β−1], where a growth condition on entropy numbers (namely
on the induced Gaussian metric) is given.

4. Gaussian independent sequences. Let ϕ(n) ↑ ∞ with n and
consider the Gaussian sequence G(ϕ) = {Gn, n ∈ N} defined by

Gn =
gn
ϕ(n)

, G∞ = 0.

It is known ([8, p. 102]) that already in these elementary examples, the
metric entropy approach fails to describe their regularity. As

(4.1) lim sup
n→∞

|gn|√
2 log n

a.s.
= 1,

G(ϕ) is sample bounded if ϕ(n) = O(
√

log n), and is sample continuous on
N if and only if

(4.2)
√

log n = o(ϕ(n)).

We begin with a general remark. From Talagrand’s representation of
bounded or continuous Gaussian processes ([8, Theorems 2–3]), we know
that a Gaussian process {X(t), t ∈ T} is sample bounded if and only if
there exists a (not necessarily independent) Gaussian sequence {ξn, n ≥ 1}
with ‖ξn‖2 ≤ Ka(log n+ a2/b2)−1/2, and that for each t ∈ T one can write

X(t) =
∞∑
n=1

αn(t)ξn

where αn(t) ≥ 0,
∑∞

n=1 αn(t) ≤ 1 and the series converges a.s. and in L2.
And if T is a compact metric space, {X(t), t ∈ T} is sample continuous if
and only if its covariance function is continuous, and the same representation
holds with ‖ξn‖2 = o(

√
log n). Thus by Kathri–Sidák’s inequality,

P
{

sup
t∈T
|X(t)| ≤ ε

}
≥ P

{ ∞
sup
n=1
|ξn| ≤ ε

}
≥
∞∏
n=1

P{|ξn| ≤ ε}.

This makes the study of small deviations of sequences G(ϕ) of particular
interest in this general context. We shall show that Theorem 3.1 allows one
to get sharp lower bounds. The sequence of ordered partitions associated to
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ϕ is based on an intrinsic sieve of N, and the majorizing measure we will
construct turns up to be very simple.

We notice that

‖Gn −Gm‖2 =

(
1

ϕ(n)2
+

1

ϕ(m)2

)1/2

and

D= sup
n,m≥1

‖Gn−Gm‖2 =

(
1

ϕ(1)2
+

1

ϕ(2)2

)1/2

, σ= sup
n≥1

= ‖Gn‖2 =
1

ϕ(1)
.

Theorem 4.1. Assume that (4.2) holds and

(4.3)

D�

0

(
logϕ−1

(
1

u

))1/2

du <∞.

Let εn = 2−nD and put H(n) =
	εn
0 (logϕ−1(1/u))1/2 du, n ≥ 0. For 0 <

ε < ϕ(1)H(1)/24, let n(ε) be such that H(n(ε)) ≤ 24ε/ϕ(1). There exists
an absolute constant C such that

P
{

sup
n≥1
|Gn| ≤

25

ϕ(1)
ε

}
≥ Ce−ϕ−1(1/εn(ε)) log

1
ε .

Proof. Let Fn = ϕ−1(1/εn), n ≥ 0. We notice that F1 = ϕ−1(ϕ(1)) = 1.
For u ≥ 1, let ν(u) denote the unique integer such that Fν(u) ≤ u < Fν(u)+1.

Lemma 4.2. Let B(u, ε) = {v ≥ 1 : ‖Gu −Gv‖2 ≤ ε}. Then

B(u, εn) = {u} (∀n > ν(u)),

B(u, εn) ⊇ [Fn+1,∞) (∀n < ν(u)).

Proof. Plainly εν(u)+1 < 1/ϕ(u) ≤ εν(u). If n > ν(u), then for any v 6= u,

‖Gu −Gv‖2 >
1

ϕ(u)
> εν(u)+1 ≥ εn.

Hence B(u, εn) = {u}. Now notice that if m ≤ ν(u), then v ≥ Fm =
ϕ−1(1/εm) implies that 1/ϕ(v) ≤ εm, and so

‖Gu −Gv‖2 ≤ (ε2ν(u) + ε2m)1/2 ≤
√

2 εm < εm−1.

Hence with n = m− 1 the second assertion follows.

Let Π0 = N. For ν ≥ 1, let Πν be the finite partition of N defined by

π ∈ Πν ⇔ π = {u}, u < Fν or π = [Fν ,∞).

Then #{Πν} = Fν and Πν+1 is a refinement of Πν . Further, assump-
tion (3.1) is satisfied since by Lemma 4.2,

max
π∈Πν

max
u,v∈π

d(u, v) ≤ εν .
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Let µ be the probability measure on N defined by µ{t} = ct−2, c =
(
∑∞

t=1 t
−2)−1. For t ≥ 1, we set πm(t) = {t} if t < Fm and πm(t) = [Fm,∞)

otherwise. It follows that

(4.4) µ(πm(t)) ≥

{
Ct−2 if m > ν(t),

CF−1m if m ≤ ν(t).

Fix some integer n and let t ≥ 1. If n > ν(t), then t < Fn = ϕ−1(1/εn)
and

∞∑
m=n

εm

(
log

1

µ(πm(t))

)1/2

≤ C
( ∞∑
m=n

εm

)
(log t)1/2

≤ Cεn
(

logϕ−1
(

1

εn

))1/2

.

Now let n ≤ ν(t). If ν(t) ≥ m ≥ n, then µ(πm(t)) ≥ CF−1m ≥ CF−1ν(t) and as

t < Fν(t)+1, we may write

∞∑
m=n

εm

(
log

1

µ(πm(t))

)1/2

≤ C
ν(t)∑
m=n

εm

(
logϕ−1

(
1

εm

))1/2

+
( ∑
m>ν(t)

εm

)
(log t)1/2

≤ C
ν(t)∑
m=n

εm

(
logϕ−1

(
1

εm

))1/2

+Cεν(t)(log t)1/2

≤ C
ν(t)+1∑
m=n

εm

(
logϕ−1

(
1

εm

))1/2

≤ C
εn�

εν(t)+2

(
logϕ−1

(
1

u

))1/2

du.

Therefore

sup
t≥1

∞∑
m=n

εm

(
log

1

µ(πm(t))

)1/2

≤ C
εn�

0

(
logϕ−1

(
1

u

))1/2

du→ 0

as n→∞, by assumption. Condition (3.2) is thus realized. Let n(ε) be such
that H(n(ε)) ≤ 24ε/ϕ(1). By applying Theorem 3.1, it follows that

P
{

sup
t≥1
|Gt| ≤

25

ϕ(1)
ε

}
≥ Ce−Nn(ε) log

1
ε .

The following corollary easily follows.
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Corollary 4.3.

(a) Let ϕ(t) = (log t)β, β > 1/2. Then

log

∣∣∣∣logP
{

sup
n≥1

|gn|
ϕ(n)

≤ ε
}∣∣∣∣ � ε−2/(2β−1).

(b) Let ϕ(t) = (log t)1/2(log log t)1+h, h > 0. Then

log log

∣∣∣∣logP
{

sup
n≥1

|gn|
ϕ(n)

≤ ε
}∣∣∣∣ � ε−1/h.

5. Ultrametric Gaussian processes. For ultrametric Gaussian pro-
cesses, a general upper bound of small deviations can be established. And
by using Theorem 3.1, this is completed with a sharp lower bound. A metric
space (T, d) is called ultrametric when d satisfies the strong triangle inequal-
ity

d(s, t) ≤ max(d(s, u), d(u, t)) (∀s, t, u ∈ T ).

Thus two balls of the same radius are either disjoint or identical. Let B(t, u)
= {s ∈ T : d(s, t) ≤ u}, and let v ≤ u. It also follows that s ∈ B(t, u) ⇒
B(s, v) ⊂ B(t, u). When (T, d) is separable, it is easy to show that (T, d)
embeds continuously into a projective limit of sets, itself endowed with an
ultrametric structure. Since we need this construction, we briefly recall it.

Let D = diam(T, d). Let Sn be the set of centers of balls forming a
minimal covering of (T, d) with closed balls of radius εn = 2−nD, n =
0, 1, . . . . Notice that each ball B(t, εn) contains at least one element of Sn+1,
hence a ball B(s, εn+1) for some s ∈ Sn+1. Otherwise, there is one ball
B(t0, εn), say, such that min{d(t0, s) : s ∈ Sn+1} > εn > εn+1, which
contradicts the fact that Sn+1 yields a covering of T of order εn+1. For n =
0, 1, . . . consider the mappings θn : T → Sn and Πn,n−1 : Sn → Sn−1 defined
by d(s, θn(s)) ≤ εn and d(t,Πn,n−1(t)) ≤ εn−1. Next define Πn,k : Sn → Sk
for n ≥ k as follows: Πn,n = Id(Sn) and

Πn,k = Πn,n−1 ◦ · · · ◦Πk+1,k.

The following elementary lemma arises from the construction itself, so we
omit the proof.

Lemma 5.1. The pair
(
(Sn), (Πn,k)

)
defines a projective system of sets

and we have the relations

θk = Πn,k ◦ θn (∀n ≥ k ≥ 0).

Let L = lim←−((Sn), (Πn,k)) denote its projective limit, and G =
∏∞
k=0 Sk. Let

Πk be the restriction to L of the projection of G onto Sk, k = 0, 1, . . . . For
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any two elements s, t of L put

δ(s, t) = εn(s,t),

where n(s, t) = sup{k ≥ 0 : Πk(s) = Πk(t)}. Then (L, δ) is a compact
ultrametric space. Moreover, the mapping ` : (T, d) → (L, δ) defined by
`(t) = {θk(t), k ≥ 0} is a continuous embedding from (T, d) to (L, δ), and

1

2
δ(`(s), `(t)) ≤ d(s, t) ≤ δ(`(s), `(t)) (∀s, t ∈ T ).

The projective limit L, and thereby T , is easily visualized as a tree with
branches in G, any two of them separating at offshoots of high n(s, t). One
can attach to any such tree an ultrametric Gaussian process. These pro-
cesses have been much investigated by Fernique [2]. Let {gn, n ∈

∐
Sk}

be a sequence of independent Gaussian standard random variables. We
put

Z(t) =

∞∑
n=0

εngΠn(t) (∀t ∈ T ).

Theorem 5.2.

(a) For some absolute constant γ > 0, we have for all ε ≤ D,

P
{

sup
s,t∈L

|Z(s)− Z(t)| ≤ ε
}
≤ e−γN(T,δ,2ε).

(b) Assume that condition (3.2) is fulfilled. Then, with the notation of
Theorem 3.1, letting σ = 2D/

√
3,

P
{

sup
t∈T
|Z(t)| ≤ 2εσ

}
≥ Ce−Nn(ε) log

1
ε .

Proof. (a) The assumption implies that from each offshoot of Sn grows at
least one new branch. A plain calculation yields dZ(s, t) := ‖Z(s)−Z(t)‖2 =
εn(s,t)(3/2)1/2, s, t ∈ T . Further, we notice that

Z(t)− Z(s) =

∞∑
n>n(s,t)

εn(gΠn(t) − gΠn(s)).

Write Sn = {sn,j , 1 ≤ j ≤ Nn}, where we set Nn = N(T, εn). Let Ln ⊂ L,
Ln = {tn,j , 1 ≤ j ≤ Nn}, be such that Πn(tn,j) = sn,j for each j. Then
E (Z(tn,i) − Z(tn,i−1))

2 = (3/2)ε2n, and since the random variables gn are
independent, we observe that

(5.1)
E (Z(tn,2i)− Z(tn,2i−1))(Z(tn,2j)− Z(tn,2j−1)) = 0 (∀1 ≤ j < i ≤ Nn/2).

Hence the covariance matrix of {Z(tn,2i) − Z(tn,2i−1), 1 ≤ i ≤ Nn/2} is
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diagonal with all diagonal entries equal to (3/2)ε2n. Consequently,

P
{

sup
s,t∈L

|Z(s)− Z(t)| ≤ εn
}
≤ P

{
sup

1≤i≤Nn/2
|Z(tn,2i)− Z(tn,2i−1)| ≤ εn

}
= P

{
sup

1≤i≤Nn/2

|Z(tn,2i)− Z(tn,2i−1)|
‖Z(tn,2i)− Z(tn,2i−1)‖2

≤ c
}

≤ e−γN(T,εn),

c, γ being absolute constants. Let 0 < ε ≤ diam(T, d), and let n be such
that εn+1 < ε ≤ εn. Then

P
{

sup
s,t∈L

|Z(s)− Z(t)| ≤ ε
}
≤ P

{
sup
s,t∈L

|Z(s)− Z(t)| ≤ εn
}
≤ e−γN(T,εn)

≤ e−γN(T,2ε).

(b) This is a direct consequence of Theorem 3.1.

Notice to conclude that when EX2(t) = 1 for all t ∈ T , it is easy to
modify Z so that more precise comparison relations holds: for all s and t
in T ,

EZ2(t) = EX2(t), EZ(s)Z(t) ≥ EX(s)X(t).(5.2)
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assumption (3.2), and for a careful reading of the paper.
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