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FINITE GROUPS WITH FEW SELF-NORMALIZING SUBGROUPS

BY

HUAGUO SHI and ZHANGJIA HAN (Sichuan)

Abstract. We describe finite groups which contain just one conjugate class of self-
normalizing subgroups.

1. Introduction and preliminaries. Throughout this paper the term
group always means a group of finite order.

A subgroup of a finite group is called a Carter subgroup if it is nilpotent
and self-normalizing. By [C2], any finite solvable group contains exactly one
conjugacy class of Carter subgroups. P. Hall proved that a subgroup H of a
finite group G is abnormal in G if and only if every subgroup containing H is
self-normalizing ([DH, p. 251]). It has been shown in [C1] that if G = G1G2

where G1 and G2 are solvable subgroups and G1 commutes with every self-
normalizing subgroup of G2, and G2 commutes with every self-normalizing
subgroup of G1, then G is solvable. So, self-normalizing subgroups have a
strong influence on the structure of groups. In this paper, we study finite
groups which contain just one conjugacy class of self-normalizing subgroups
and obtain a characterization of such groups.

Our notation is standard. All unexplained notation can be found in [DH]
and [R].

For the proof of our main theorem, we need the following definition.

Definition 1.1. Let M be a normal subgroup of a finite group G. If
the subgroup MP is nilpotent for any Sylow subgroup P of G, then M is
called an NS subgroup of G.

Let M be a normal subgroup of G. Then it is easy to see that M is
an NS subgroup of G if and only of P is normal in PM for any Sylow
subgroup P of G. Let M and N be two distinct NS subgroups of G. Then
P �PN and P �PM . Hence P �PNM , which implies that MN is an NS
subgroup of G. Thus the subgroup generated by all NS subgroups is also
an NS subgroup of G, which is the unique maximal NS subgroup of G.
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Let 1 = Z0(G) ≤ Z1(G) ≤ · · · be the upper central series of G and
Z∞(G) =

⋃∞
i=0 Zi(G). Then Z∞(G) is called the hypercenter of G (see [B]).

It is well known that for any nilpotent subgroup A of G, the subgroup
AZ∞(G) is still nilpotent (see [W, p. 6]). Hence to a certain extent, an
NS subgroup is “close” to being the hypercenter. In fact, as the following
lemma shows, the unique maximal NS subgroup of G is just equal to the
hypercenter Z∞(G).

Lemma 1.2. Let G be a finite group. Then Z∞(G) is the unique maximal
NS subgroup of G.

Proof. Let M be an NS subgroup of G, P ∈ Sylp(M) and Q ∈ Sylq(G),
where q 6= p. Then PQ is nilpotent since M is an NS subgroup. Hence
Q ≤ CG(P ), which implies that Op(G) ≤ CG(P ). Therefore G/CG(P ) is
a p-group and hence G = CG(P )P . Let P1 = [P,G]. Then P1 � G. Since
G = CG(P )P , we see that P1 = [P,G] = [P,CG(P )P ] = [P, P ] < P . Now
let P2 = [P1, G], P3 = [P2, G], . . . . Then there must exist a natural number
k such that Pk = 1 by what has been said above. Hence

[P,G, . . . , G︸ ︷︷ ︸
k

] = 1.

This implies that P ≤ Zk(G) ≤ Z∞(G). Thus we obtain M ≤ Z∞(G). On
the other hand, obviously Z∞(G) itself is an NS subgroup (see [W, p. 6]).
Hence the claim of the lemma follows.

The following lemma gives an interesting property of NS subgroups,
which will play an important role in the next part of our paper.

Lemma 1.3. Let M be an NS subgroup of G, and H be a proper self-
normalizing subgroup of G. Then M is contained in H.

Proof. Suppose that M is not contained in H. Then there exists a prime
r such that any Sylow r-subgroup R of M is not contained in H. Since M
is an NS subgroup of G, R is characteristic in M . Hence for any Sylow
p-subgroup P of H, we have R ≤ NG(P ), where p is a prime which is not
equal to r. Let R1 be a Sylow r-subgroup of H. Then there is an element
x ∈ R \ R1 such that x ∈ NG(R1). It follows that there is an x 6∈ H such
that x ∈ NG(H), a contradiction.

By the above lemma, we can immediately get the following corollary.

Corollary 1.4. Let M be an NS subgroup of G. Then a subgroup H is
self-normalizing in G if and only if H/M is self-normalizing in G/M , and
two self-normalizing subgroups H1 and H2 are conjugate in G if and only if
H1/M and H2/M are conjugate in G/M .
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2. Theorems. In this section, we give a characterization of finite groups
with only one conjugacy class of proper self-normalizing subgroups.

Main Theorem 2.1. Let G be a finite group. Then the number of con-
jugacy classes of proper self-normalizing subgroups of G is 1 if and only if
there exists an NS subgroup M of G such that G/M = UW , where U is an
elementary abelian normal Sylow p-subgroup of G/M , W is a nilpotent Hall
p′-subgroup of G/M , W acts irreducibly on U , and NU (NW (U1)) � U1 for
any proper subgroup U1 of U .

Proof. We first assume that the number of conjugacy classes of proper
self-normalizing subgroups of G is 1. Since nilpotent groups have no proper
self-normalizing subgroups, it can be easily seen that there exists at least
one maximal subgroup H of G such that H is not normal in G. Similarly,
G has a Sylow q-subgroup Q which is not normal. Hence NG(Q) is a proper
self-normalizing subgroup of G. Without loss of generality, we may assume
that H = NG(Q).

Assume that p | |G : H| for some prime p. Then the Sylow p-subgroup
P is normal in G. Indeed, otherwise, NG(P ) must be a self-normalizing
subgroup of G. Thus NG(P ) and H are conjugate in G by hypothesis and
then p | |G : H| = |G : NG(P )|, a contradiction.

Now we claim that |G : H| is a power of p. Indeed, let r be a prime which
is not equal to p such that r | |G : H|. Then we can easily seen that both the
Sylow r-subgroup R and the Sylow p-subgroup P are normal in G. Hence
RH is a proper subgroup of G by hypothesis, a contradiction. This proves
that |G : H| is a power of p.

By the Schur–Zassenhaus Theorem, P has a complement K in G and all
such complements are conjugate in G. Without loss of generality, we may
assume that K ≤ H.

We now claim that K is nilpotent. Let T be a Sylow t-subgroup of K.
Then either NG(T ) = G, or NG(T ) and H are conjugate in G by hypothesis.
Therefore |NG(T )P/P | = |K|. On the other hand, since NG/P (TP/P ) =
NG(T )P/P , we have |NG/P (TP/P )| = |K| = |G/P |, hence it follows that
TP/P �G/P . Thus we find that G/P is nilpotent. Now as K/K∩P = K ∼=
KP/P = G/P , it follows that K is nilpotent.

Let M = P ∩ H. Then H = H ∩ G = H ∩ KP = K(H ∩ P ) = KM
and M �H. Hence Φ(P ) ≤M since Φ(P ) ≤ H. Thus we have that M � P
since M/Φ(P ) � P/Φ(P ). Let T be a Sylow subgroup of K. By hypothesis
NG(T ) and H are G-conjugate. Hence M ≤ NG(T ), which implies that H
is nilpotent. Moreover, it is easily seen that M is an NS subgroup of G.

Let U = PM/M and W = H/M . Then U is a normal elementary abelian
p-subgroup of G/M and W is a nilpotent Hall p′-subgroup of G/M . Since
W is a maximal subgroup of G/M , it follows that W acts irreducibly on U .
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Let U1 be any proper subgroup of U , and W1 = NW (U1), G1 = U1W1.
Then G1 is a proper subgroup of G/M , and G1 and W are not conjugate
in G/M . By Corollary 1.4 and the hypothesis, G1 is not self-normalizing
in G/M . Therefore there exist u ∈ U and w ∈ W such that uw 6∈ G1

but Guw
1 = G1. Since W1 = NW (U1), we see that U1 is the normal Sylow

subgroup of G1 and hence Uuw
1 = U1. Therefore Uw

1 = U1 since U1 is normal
in U . It follows that w ∈ W1. Thus we get u 6∈ U1. On the other hand,
since (U1W1)

u = U1W1, there is an u1 ∈ U1 such that W u
1 = W u1

1 , that is,

W
uu−1

1
1 = W1. Hence uu−11 ∈ NU (W1), but uu−11 6∈ U1. This implies that

NU (NW (U1)) � U1.

Conversely, since W acts irreducibly on U , it follows that W is a maximal
subgroup of G/M which is not normal in G/M . Hence, W is self-normalizing
in G/M . Thus to complete the proof, we only need to show that G1 is not
self-normalizing in G/M as soon as |G1| 6= |W |, for any proper subgroup
G1 of G/M . Let G1 = U1W1, where U1 is a Sylow p-subgroup of G1, and
W1 is a Hall p′-subgroup of G1. Then by the Schur–Zassenhaus Theorem,
some conjugates of W1 are contained in W . Hence we may assume that
U1 ≤ U and W1 ≤W . If U1 = 1, then we can easily see that our claim holds
since W is nilpotent. If U1 = U , then the claim follows from the nilpotency
of W . For the case 1 < U1 < U , let W2 = NW (U1). If W1 < W2, then
G1/U1 ≤ U1W2/U1

∼= W2 ≤ W . Thus G1 is not self-normalizing in G/M ,
as expected. If W1 = W2, then there exists u ∈ U \U1 satisfying W u

1 = W1.
Thus u ∈ NG/M (G1), which means G1 is not self-normalizing in G/M .

Let G be a group as in Theorem 2.1. By Lemma 1.2 and Theorem 2.1,
we have CG/Z∞(G)(U) = U and hence W ∼= NG/Z∞(G)(U)/CG/Z∞(G)(U)

. Aut(U). Thus we get the following corollary.

Corollary 2.2. Let G be a finite group. Then the number of con-
jugacy classes of proper self-normalizing subgroups of G is 1 if and only
if G/Z∞(G) = UW , where U is an elementary abelian normal Sylow p-
subgroup of G/Z∞(G), W is a nilpotent Hall p′-subgroup of G/Z∞(G),
W acts irreducibly on U , W . Aut(U), and NU (NW (U1)) � U1 for any
proper subgroup U1 of U . In addition, in this case, the number of proper
self-normalizing subgroups of G is equal to the order of U .

It is easy to see that the number of subgroups conjugate to any proper
self-normalizing subgroup cannot be two. Hence if G contains just three or
four or five proper self-normalizing subgroups, then those subgroups must
be conjugate in G. Now Corollary 2.2 implies the following corollaries.

Corollary 2.3. There is no group which contains exactly two proper
self-normalizing subgroups.
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Corollary 2.4. Let G be a finite group. Then G contains just three
proper self-normalizing subgroups if and only if G/Z∞(G) ∼= S3.

Corollary 2.5. Let G be a finite group. Then G contains just four
proper self-normalizing subgroups if and only if G/Z∞(G) ∼= A4.

Corollary 2.6. Let G be a finite group. Then G contains just five
proper self-normalizing subgroups if and only if either G/Z∞(G) ∼= C5 oC4

and Z(C5 o C4) = 1, or G/Z∞(G) ∼= C5 o C2.
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