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Abstract. The purpose of the paper is to provide a general method for computing
the hitting distributions of some regular subsets D for Ornstein–Uhlenbeck type operators
of the form 1

2
∆ + F · ∇, with F bounded and orthogonal to the boundary of D. As

an important application we obtain integral representations of the Poisson kernel for
a half-space and balls for hyperbolic Brownian motion and for the classical Ornstein–
Uhlenbeck process. The method developed in this paper is based on stochastic calculus
and on the skew product representation of multidimensional Brownian motion and yields
more complete results than those based on the Feynman–Kac technique.

1. Introduction. Adetailed knowledge of the hitting distribution (equiv-
alently: harmonic measure) of a domain for a diffusion with a given gener-
ator A is fundamental for solving many potential-theoretic problems, e.g.
the Dirichlet problem for a domain or the Harnack inequality or even the
boundary Harnack inequality for harmonic functions with respect to A.

In this paper we compute the hitting distributions of some subsets D for
operators of the form 1

2∆+ F · ∇ on subsets of Rn. It is worth pointing out
that even in the case of the classical Ornstein–Uhlenbeck diffusion explicit
formulas for half-spaces or balls were obtained only quite recently (see [2]
and [14]). Although the inspiration for our work comes from the paper [10],
where the potential theory for bounded sets D and the operators

(1.1)
1

2
∆+ F · ∇

was established, the purpose as well as most of the technical tools are here
different: instead of setting up a general theory, we focus on providing explicit
formulas for hitting distributions for some important operators of the above
type and sets D. The importance of explicit formulas is highlighted e.g. in
the recent papers [7] and [16], where the precise asymptotics for the Poisson
kernel for Bessel diffusions was obtained. Throughout the paper we assume
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that the vector field F in (1.1) is bounded and orthogonal to the bound-
ary of D. The method developed here is based on stochastic calculus and
Girsanov’s theorem and consists in computing various integral functionals of
Brownian motion and representing them in terms of special functions.

We provide a closed formula for the density function of the hitting ditri-
bution, i.e. the Poisson kernel of a half-space or a ball for hyperbolic Brown-
ian motion or for the classical Ornstein–Uhlenbeck process. The importance
of hyperbolic Brownian motion stems from the fact that it is the canoni-
cal diffusion on hyperbolic spaces; it also has some important applications
in risk theory in financial mathematics (see [11] and [20]). Explicit inte-
gral representations are crucial in obtaining estimates of the Poisson kernel
and of the Green function [4], [8]. In these papers, the main tool was the
Feynman–Kac formula, applied to describe the distribution of a stopped
multiplicative functional. The present approach, based on methods related
to Girsanov’s theorem, enables us to obtain representation formulas for the
Poisson kernel, different from those mentioned above. The advantage of this
approach is seen in Theorem 4, where we obtain the precise asymptotics
of the Poisson kernel for large values of parameters. Another result worth
mentioning is Theorem 6, where we provide a convenient representation of
the Poisson kernel of a ball. Also the formula for the Poisson kernel of a ball
for the classical Ornstein–Uhlenbeck diffusion is more complete than the one
obtained in [14] (as a series representation only).

The paper is organized as follows. In Section 2 we provide a general frame-
work for the next sections. Throughout the paper we assume that in (1.1)
we deal with a potential vector field F on D, orthogonal to the boundary.
Under this assumption, with the aid of stochastic calculus and Girsanov’s
theorem, we establish a general formula for the harmonic measure of the
set D (Theorem 2).

In Section 3 we provide a closed formula for the Poisson kernel P (xn, y)
of a half-space for the hyperbolic Brownian motion on the real hyperbolic
space Hn (Theorem 3) and provide an asymptotic formula for P (xn, y)
(Theorem 4). In Section 4 we provide an integral representation of the Pois-
son kernel for concentric balls for hyperbolic Brownian motion on the ball
model Dn. We remark here that a similar representation from [5] depends on
additional conjectures on the zeros of some hypergeometric functions which
so far remain unsettled. The important tool here, as well as in the next
section, is the skew-product representation of the n-dimensional Brownian
motion. In Section 5 we provide an integral representation for the Poisson
kernel of a ball for the classical Ornstein–Uhlenbeck process (Theorem 7). In
Appendix we collect some useful information on Bessel functions, hyperge-
ometric and Legendre functions and on the skew-product of n-dimensional
Brownian motion.
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2. Change of measure due to Girsanov’s theorem

Notation. For n > 2 we denote by Rn the n-dimensional Euclidean
space, 〈x, y〉 denotes the standard inner product of x, y ∈ Rn, and by |x| we
denote the Euclidean length of a vector x ∈ Rn. The ball with center at zero
and radius r is written as Br = {x ∈ Rn : |x| < r}; its boundary, which is
the (n−1)-dimensional sphere, is denoted by Sn−1r = {x ∈ Rn : |x| = r} and
the spherical measure on Sn−1r is denoted by σn−1r . Furthermore, we write
f(x) ∼ g(x) as x→ b when limx→b f(x)/g(x) = 1. If for two functions f and
g there exist constants c1, c2 such that c1 < f(x)/g(x) < c2 for every x ∈ D
we will write briefly f ≈ g, x ∈ D.

Throughout the paper D will stand for a domain in Rn with a smooth,
connected boundary ∂D, and F will be a bounded vector field which is
defined on an open Lipschitz set U containing D. We assume that F is con-
tinuously differentiable up to the boundary of U and continuously vanishes
on the boundary of U . We further assume that F = ∇V on D for a scalar
valued function V and call the function V a potential (and F a potential
vector field on D). We set F = V ≡ 0 on the complement of U . We say that
the vector field F is orthogonal to the boundary ∂D if for every differentiable
curve Γ : [0, 1)→ ∂D we have F (Γ (s)) · Γ ′(s) = 0 for every s ∈ [0, 1).

Lemma 2.1. Under the above assumptions, if the potential vector field
F is orthogonal to the boundary of the set D then the potential function V
determined, up to a constant, by the equation

∇V (x) = F (x)

is constant on the boundary ∂D.

Proof. Fix x0 ∈ ∂D. The potential V is given by the curve integral

V (x) =
�

γ

F (r) dr + V (x0),

where γ is an arbitrary continuously differentiable path beginning at x0 and
ending at x. For x ∈ ∂D we choose γ to follow the boundary of the set D,
i.e. γ : [0, 1]→ ∂D, γ(0) = x0, γ(1) = x. Then

V (x)− V (x0) =

1�

0

F (γ(s)) · γ′(s) ds = 0.

Since ∂D is connected, we obtain the conclusion.

Throughout the paper we work within the framework of the canonical
representation of processes, i.e. our basic probability space is the space of
all continuous Rn-valued functions defined on [0,∞) with appropriate σ-
fields (see [17]). The standard n-dimensional Brownian motion is denoted by
W (t) = (W1(t), . . . ,Wn(t)).
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Define a process X by the SDE

(2.1) dX(t) = dW (t) + F (X(t))dt ,

under the conditions specified above. Then X is a local diffusion on U with
generator L = 1

2∆+F (x) ·∇. Since the field F is bounded, X can be defined
as a local semimartingale (see e.g. [17]). Let τ be the first exit time of the
trajectory from the set D. The harmonic measure wx on ∂D is defined as
the distribution of X(τ) under the distribution P x of the process X starting
at x ∈ D. We define a local martingale M by the formula

M(t) =

t�

0

F (W (s)) · dW (s).(2.2)

Its quadratic variation is then given by the formula

〈M〉(t) =
t�

0

|F (W (s))|2 ds.

We further define the basic object of our study, namely

(2.3) N(t) = exp

(
M(t)− 1

2
〈M〉(t)

)
.

We now provide the basic formula for the harmonic measure of the process
defined by (2.1) under some additional conditions.

Theorem 2.2. Under the conditions stated above, suppose that X is the
process defined by the system (2.1). Assume additionally that:

(i) The vector field F is potential and orthogonal to the boundary of D.
(ii) For every t > 0,

(2.4) Ex[exp(〈M〉(t ∧ τ))] <∞.
(iii)

(2.5) {N(t ∧ τ)}t>0 is uniformly integrable.

Then for x ∈ D the harmonic measure wx has the density function

wx(dz) = eV (∂D)−V (x)Ex[e−
1
2

	τ
0 (|∇V (W (s))|2+∆V (W (s))) ds; W (τ) ∈ dz],

where V is the potential function of the field F and V (∂D) is its value on ∂D.

Proof. According to (2.2) the process

F (W (t)) · dW (t)− 1

2
|F (W (t))|2dt = dM(t)− 1

2
d〈M〉(t)

is a local semimartingale. Writing, as in (2.3),

N(t) = exp

(
M(t)− 1

2
〈M〉(t)

)
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we deduce, as an application of Itô’s formula, that N(t) is a local martingale.
If we define a measure Qx by

dQx

dP x

∣∣∣∣
Ft∧τ

= N(t ∧ τ),

then, as a consequence of Girsanov’s theorem, (W,Qx) and (X,P x) are dif-
ferent descriptions of the same process, up to time τ (see [10]). Consequently,
for a continuous bounded function f defined on Rn we obtain

Exf(X(t ∧ τ)) = Ex[N(t ∧ τ); f(W (t ∧ τ))].
Now, the condition (2.5) shows that the expression on the right-hand side
converges to Ex[N(τ); f(W (τ))] as t → ∞. The left-hand side converges to
Exf(X(τ)), by the continuity of the process X. This indicates that indeed
wx has a density given by

wx(dz) = Ex[N(τ); W (τ) ∈ dz].(2.6)

We now provide a further description of the function wx. Recall that F
is the potential of the vector field B. Define

Z(t) = V (W (t)).

Applying the Itô formula we see that

Z(t)− Z(0) =
t�

0

∇V (W (s)) · dW (s) +
1

2

t�

0

∆V (W (s)) ds

=M(t)− 1

2
〈M〉(t) + 1

2
〈M〉(t) + 1

2

t�

0

∆V (W (s)) ds.

Consequently,

N(t) = exp

(
M(t)− 1

2
〈M〉(t)

)
(2.7)

= exp

(
Z(t)− Z(0)− 1

2

t�

0

[|∇V (W (s))|2 +∆V (W (s))] ds

)
.

Observe that Y (τ) = V (W (τ)) = V (∂D) since the vector field F is orthog-
onal to ∂D. Hence, stopping at t ∧ τ and taking expectation we get, when
t→∞,

wx(dz) = eV (∂D)−V (x)Ex[e−
1
2

	τ
0 [|∇V (W (s))|2+∆V (W (s))] ds; W (τ) ∈ dz].

This, together with (2.6), finishes the proof.

3. Harmonic measure of a hyperbolic horocycle in Hn. For every
a > 0 we define Ha = {x ∈ Rn : xn > a}. In this section we consider the
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harmonic measure ωxa of the set Ha for the operator

∆LB = x2n

n∑
i=1

∂2

∂x2i
− (n− 2)xn

∂

∂xn
, n ≥ 2.

The motivation for studying this operator comes from hyperbolic geome-
try. More precisely, this is the Laplace–Beltrami operator associated with
the Riemannian metric in the half-space model Hn of real n-dimensional
hyperbolic space. From the geometric point of view, the set Ha is the inte-
rior of the hyperbolic horocycle ∂Ha = {x ∈ Rn : xn = a}. Let (Bi(t))

n
i=1

be the n-dimensional Brownian motion on Rn with generator d2

dx2
(and not

1
2
d2

dx2
), i.e. the variance E0B2

i (t) is 2t. Then the Brownian motion on Hn,
Y = (Yi)

n
i=1, can be described by the following system of stochastic differ-

ential equations:

(3.1)


dY1(t) = Yn(t)dB1(t),

dY2(t) = Yn(t)dB2(t),

· · ·
dYn(t) = Yn(t)dBn(t)− (n− 2)Yn(t)dt.

By the Itô formula the generator of the solution of this system is ∆LB.
The Laplace–Beltrami operator can be rewritten in the form ∆LB = 2x2nL1,
where

(3.2) L1 =
1

2
∆+ F1(x) · ∇,

with F1(x) = (0, . . . , 0, (2 − n)/(2xn)). Now, we make a change of time.
Namely, we write

A(u) =

u�

0

Y 2
n (s) ds,

and
σ(t) = inf{u > 0 : A(u) > t}.

If we now write

B̃k(t) =

σ(t/2)�

0

Yn(s) dBk(s), k = 1, . . . , n,

then B̃k are martingales with mutual variations 〈B̃k, B̃l〉(t) = δ(k, l)t, k, l =
1, . . . , n, so B̃ = (B̃k) is the standard n-dimensional Brownian motion. Sub-
stituting

Ỹk(t) = Yk(σ(t/2)), k = 1, . . . , n,

we find that (3.1) transforms into the following system of SDEs:
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(3.3)


dỸ1(t) = dB̃1(t),

dỸ2(t) = dB̃2(t),

· · ·
dỸn(t) = Zn(t)dB̃n(t)− (n− 2)

dt

2Zn(t)
.

Again, by Itô’s formula, L1 is the generator of the process Ỹ = (Ỹk). Since
the change of time does not affect the exit place, the harmonic measures of
the operators ∆LB and L1 are the same.

The potential of the vector field F1 is given by V1(x) = (2− n) ln(xn)/2.
Moreover, it is easy to check that the vector field F1 is orthogonal to ∂Ha.
Using (2.2) and (2.7), we obtain

M(t) =
2− n
2

t�

0

dWn(s)

Wn(s)
, 〈M〉(t) =

(
n− 2

2

)2 t�

0

ds

W 2
n(s)

,

N(t) =

(
Wn(0)

Wn(t)

)(n−2)/2
exp

(
−n(n− 2)

8

t�

0

ds

W 2
n(s)

)
,

where W (t) = (W1(t), . . . ,Wn(t)) denotes the standard Brownian motion in
Rn starting from W (0) = x. If we put τa = inf{t > 0 : W (t) /∈ Ha} we
obtain

Ex exp(〈M〉(t ∧ τa)) = Ex exp
(
(n− 2)2

4

t∧τa�

0

ds

W 2
n(s)

)

≤ Ex exp
(
(n− 2)2

4

t∧τa�

0

ds

a2

)
<∞.

Moreover,

N(t ∧ τa) ≤
(

Wn(0)

Wn(t ∧ τa)

)(n−2)/2
≤
(
xn
a

)(n−2)/2
, t ≥ 0.

Now, the results of Theorem 2.2 imply that

(3.4) ωxa(dy) =

(
xn
a

)(n−2)/2
Ex
[
exp

(
−n(n− 2)

8

τa�

0

ds

Wn(s)2

)
; W (τa) ∈ dy

]
.

The above formula enables us to find the density function Pa(x, y), x ∈ Ha,
y ∈ ∂Ha, of the measure ωxa(dy) with respect to the Lebesgue measure on
∂Ha. The scaling property of n-dimensional Brownian motion implies the
scaling property for the Poisson kernels,

Pa(x, y) = a1−nP1(x/a, y/a), x ∈ Ha, y ∈ ∂Ha.

Moreover, the Brownian motion W (t) and the set H1 are invariant un-
der translations (x̃, xn) 7→ (x̃ + b, xn + b), where b ∈ Rn−1. Consequently,
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P1(x, y) = P1((0, xn), (ỹ − x̃, 1)) for all x ∈ H1 and y ∈ ∂H1. We will use
these properties in further considerations to simplify the notation. We will
write

P (xn, y) = P1((0, xn), (y, 1)), y ∈ Rn−1, and τ = τ1.

Theorem 3.1. For every xn > 1 and y ∈ Rn−1 we have

(3.5)

P (xn, y) =
1

2ν−1πν+1

xνn
|y|ν−1

∞�

0

Jν(t)Yν(txn)− Jν(txn)Yν(t)
J2
ν (t) + Y 2

ν (t)
tνKν−1(t|y|) dt,

where ν = (n− 1)/2.

Proof. Observe that the integral appearing in (3.4) as well as the hit-
ting time τ depend only on the last coordinate of the Brownian motion
W (t) = (W̃ (t),Wn(t)). Since the processes W̃ (t) and Wn(t) are independent
we obtain

ωx1 (dy) = x(n−2)/2n

∞�

0

E0[W̃ (s) ∈ dy]Exn
[
e
−n(n−2)

8

	τ
0

ds
Wn(s)2 ; τ ∈ ds

]
(3.6)

= x(n−2)/2n

(∞�
0

exp(−|y|2/(2s))
(2πs)(n−1)/2

µxn(ds)

)
dy,

where

µxn(ds) = Exn
[
exp

(
−n(n− 2)

8

τ�

0

ds

Wn(s)2

)
; τ ∈ ds

]
.

The Laplace transform of µxn is given by

Lµxn(w) = Exn exp
(
−n(n− 2)

8

τ�

0

ds

Wn(s)2
− w

τ�

0

ds

)
= Exneq(τ),

where w ≥ 0 and q(x) = −n(n− 2)/(8x2) − w. The function ϕ(xn) =
Exneq(τ) is a gauge function for an appropriate Schrödinger operator based
on the generator of Wn(t). Consequently, ϕ is a bounded solution of the
equation

1

2
ϕ′′(x)−

(
n(n− 2)

8x2
+ w

)
φ(x) = 0, x ≥ 1,

such that ϕ(1) = 1. Making the substitution
√
xψ(x

√
2w) = ϕ(x) we reduce

the above equation to

2x2wψ′′(x
√
2w) + x

√
2wψ′(x

√
2w)−

(
(n− 1)2

4
+ 2wx2

)
ψ(x
√
2w) = 0,

which is the modified Bessel equation (6.5) with ν = (n− 1)/2. Taking into
account the general form of solutions of (6.5), the boundary condition and
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boundedness of ϕ we arrive at

Lµxn(w) =
√
xn

Kν(xn
√
2w)

Kν(
√
2w)

, w ≥ 0.(3.7)

Since square root can be extended to a holomorphic function on C \
(−∞, 0] and the modified Bessel functionKν has no zeros in the positive half-
plane Rew ≥ 0, the Laplace transform Lµxn(w) can also be extended to an
analytic function on C \ (−∞, 0]. Moreover, using the asymptotic expansion
(6.6) we obtain

|Lµxn(w)| ≤
∣∣∣∣e−(xn−1)√2w 1 + E(xn

√
2w)

1 + E(
√
2w)

∣∣∣∣(3.8)

≤ 2 exp

(
−(xn − 1)

√
2|w| cos argw

2

)
for every w ∈ C \ (−∞, 0] such that |w| is large enough. Note that here
argw ∈ [−π, π]. In particular, Lµxn(w) is bounded for |w| ≥ 1. These prop-
erties of Lµxn and its analytic continuation guarantee that we can apply
the inverse Laplace transform to (3.7) (see [13, Theorem 8.5, p. 267]). More
precisely, there exists a density function of µxn with respect to Lebesgue
measure on (0,∞) given by the inversion formula

µxn(s) =
1

2πi
lim
r→∞

1+ir�

1−ir
Lµxn(w)esw dw.

To compute the limit we integrate the function fs(w) = Lµxn(w)esw over a
rectangular contour surrounding the branch-cut of fs which is the negative
real axis. Let Γ be the positively oriented contour consisting of four horizon-
tal segments γ1 = [−r+ i/r, i/r], γ2 = [−r− i/r,−i/r], γ3 = [−r+ ir, 1+ ir],
γ4 = [−r − ir, 1 − ir], three vertical segments γ5 = [−r + i/r,−r + ir],
γ6 = [−r − i/r,−r − ir], γ7 = [1 − ir, 1 + ir], and a semi-circle γ8 = {|w|
= 1/r, Rew > 0}. The formula (6.7) implies that fs is bounded for small w
such that Rew > 0. Consequently, the integral over γ8 tends to zero when
r →∞. The boundedness of Lµxn(w) for large w implies that for r ≥ 1 and
every s > 0 we have∣∣∣( �

γ5

+
�

γ6

)
fs(w) dw

∣∣∣ ≤ 2 sup
|w|≥1

Lµxn(w) re−rs → 0

as r →∞. Finally, using (3.8), we obtain∣∣∣( �
γ3

+
�

γ4

)
fs(w) dw

∣∣∣ ≤ 4 exp(−(xn − 1) cos(3π/8)
√
r)

∞�

−1
e−su du→ 0

as r → ∞. The Cauchy theorem together with the previous considerations
and (6.8) gives
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µxn(s) =
1

2πi
lim
r→∞

1+ir�

1−ir
Lµxn(w)esw dw =

1

2πi
lim
r→∞

( �
γ1

+
�

γ2

)
fs(w) dw

=

√
xn

2πi

∞�

0

[
Kν(−i

√
2t xn)

Kν(−i
√
2t)

− Kν(i
√
2t xn)

Kν(i
√
2t)

]
e−st dt

= −
√
xn
π

∞�

0

Im

(
Kν(i

√
2txn)

Kν(i
√
2t)

)
e−st dt

= −
√
xn
π

∞�

0

Im

(
Kν(itxn)

Kν(it)

)
te−st

2/2 dt

=

√
xn
π

∞�

0

Jν(t)Yν(txn)− Jν(txn)Yν(t)
J2
ν (t) + Y 2

ν (t)
te−st

2/2 dt.

From (6.3) and (6.4) it is easy to see that J2
ν (t) + Y 2

ν (t) ∼ t−1 ∨ t−2ν and∣∣∣∣Jν(t)Yν(txn)− Jν(txn)Yν(t)J2
ν (t) + Y 2

ν (t)

∣∣∣∣ ≤ C(1 + t), t > 0,

for some constant C = C(xn) > 0. With the use of (6.9) we verify

∞�

0

|Jν(t)Yν(txn)− Jν(txn)Yν(t)|
J2
ν (t) + Y 2

ν (t)
t

(∞�
0

e−|y|
2/(2s)e−st

2/2ds

(2πs)(n−1)/2

)
dt

≤ C
∞�

0

(t+ 1)tνKν−1(t|y|) dt.

The last integral is finite by (6.6) and (6.7). Consequently, by Fubini’s the-
orem we obtain

P (xn, y) =
xνn
π

∞�

0

Jν(t)Yν(txn)− Jν(txn)Yν(t)
J2
ν (t) + Y 2

ν (t)
t

[∞�
0

e−|y|
2/(2s)e−st

2/2ds

(2πs)(n−1)/2

]
dt

=
1

2ν−1πν+1

xνn
|y|ν−1

∞�

0

Jν(t)Yν(txn)− Jν(txn)Yν(t)
J2
ν (t) + Y 2

ν (t)
tνKν−1(t|y|) dt.

The integral formula of Theorem 3.1 can be used to obtain the asymp-
totics of the Poisson kernel P (xn, y) as well as its sharp bounds for small xn
and large |y|. Note that the results of the next theorem cover those obtained
in [4] (see Theorems 4.9 and 4.10 there; compare also with Theorem 5.3
of [9]). Moreover, the formula (3.5) allows us to omit laborious and sophis-
ticated computations used in [4] to examine the behavior of P (xn, y) when
|y| tends to infinity. Our approach is simpler and gives more general results.
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Theorem 3.2. For every x0 ≥ 1 we have

(3.9) P (xn, y) ∼
Γ (n/2)

2n−2πn/2

n−2∑
k=0

xk0 ·
xn − 1

|y|2n−2
, xn → x0, |y| → ∞.

Moreover, for every y0 > 0 we have

P (xn, y) ∼
c(y0)

π(n+3)/22(n−5)/2
· (xn − 1), xn → 1, |y| → y0,(3.10)

where

c(y0) = |y0|(1−n)/2
∞�

0

sνKν−1(sy0) ds

J2
ν (s) + Y 2

ν (s)
.

Proof. Making the substitution t|y| = s in (3.5) we can rewrite the Pois-
son kernel in the following way:

P (xn, y)|y|4ν

xn − 1
=

xνn
πν+12ν−1

∞�

0

gν

(
xn,

s

|y|

)
s3νKν−1(s) ds,

where

gν(x, t) =
1

t2ν(x− 1)

Jν(t)Yν(xt)− Jν(tx)Yν(t)
J2
ν (t) + Y 2

ν (t)
, x > 1, t > 0.

Since s3νKν−1(s) is integrable on [0,∞) and (6.13) gives boundedness of
|gν(xn, s/|y|)| for xn < R, we can apply the Lebesgue dominated convergence
theorem to get

lim
(xn,|y|)→(1,∞)

P (xn, y)|y|4ν

xn − 1
=

1

πν23ν−2Γ 2(ν)

∞�

0

s3νKν−1(s) ds

=
2Γ (2ν)Γ (ν + 1)

πνΓ 2(ν)

and

lim
(xn,|y|)→(x0,∞)

P (xn, y)|y|4ν

xn − 1
=

x0
πν+12ν−1

∞�

0

π(x2ν0 − 1)s3νKν−1(s) ds

22ν(x0 − 1)Γ (ν)Γ (ν + 1)xν0

=
(x2ν0 − 1)Γ (2ν)

πν(x0 − 1)Γ (ν)xν−10

=
(
∑n−2

k=0 x
k
0)Γ (2ν)

πνxν−10 Γ (ν)

whenever x0 > 1. Here we used formula (6.11) from Lemma 6.1 and relation
(6.10). The duplication formula for the gamma function gives (3.9). In the
same way, using (6.11), we get

lim
(xn,|y|)→(1,y0)

P (xn, y)|y|4ν

x− 1
=

1

πν+12ν−1

∞�

0

2sν |y0|2νKν−1(s) ds

π(J2
ν (s/|y0|) + Y 2

ν (s/|y0|))
.

which, by substituting s = ty0, proves (3.10).
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As a consequence of Theorem 3.2 we obtain the following sharp bounds
for the Poisson kernel for small xn and large |y|. Similar results have recently
been obtained in [7, Theorem 7]. Those results are more general (there is
no restriction on xn and |y|), but the methods of proof are much more
complicated.

Corollary 3.3. We have

P (xn, y) ≈
xn − 1

|y|2n−2
, 1 < xn ≤ 2, |y| ≥ 1.

Proof. Existence and positivity of the limits proved in Theorem 3.2 imply
that for every x ∈ [1, 2] there exist εx > 0 and Yx > 0 and strictly positive
constants c1(x), c2(x) such that

c1(x)
x′ − 1

|y|2n−2
≤ P (x′, y) ≤ c2(x)

x′ − 1

|y|2n−2

for every x′ ∈ [1, 2] and y ∈ Rn−1 satisfying |x − x′| < εx and |y| > Yx.
Since the family of intervals (x − εx, x + εx) is an open cover of [1, 2], we
can choose a finite subcover {(xi − εxi , xi + εxi) : i = 1, . . . ,m}. Putting
Y = max{Yxi : i = 1, . . . ,m}, c1 = min{c1(xi) : i = 1, . . . ,m} and c2 =
max{c2(xi) : i = 1, . . . ,m} we get

c1
xn − 1

|y|2n−2
≤ P (xn, y) ≤ c2

xn − 1

|y|2n−2
(3.11)

for every xn ∈ [1, 2] and |y| > Y . Observe that formula (3.6) implies positiv-
ity of P (xn, y). Moreover, by (3.10), the function P (xn, y)|y|2n−2/(xn − 1)
can be continuously extended to a strictly positive function on the compact
set [1, 2] × [1, Y ] and consequently (3.11) is also true for |y| ∈ [1, Y ] (with
possibly different constants c1 and c2).

4. Harmonic measure of hyperbolic balls in Dn. In this section we
consider the harmonic measure of balls associated with the operator

∆LB =
(1− |x|2)2

4

n∑
i=1

∂2

∂x2i
+ (n− 2)

1− |x|2

2

n∑
i=1

xi
∂

∂xi
.(4.1)

This operator appears naturally as the Laplace–Beltrami operator on the
ball model of the real hyperbolic space Dn (see [5] for more details).

In particular, ifB = (Bk) is the standard n-dimensional Brownian motion
then the system of SDEs

dYk(t)

1− |Y (t)|2
= dBk(t) + 2(n− 2)Yk(t)dt, k = 1, . . . , n,

describes a diffusion with values in Dn with generator 2∆LB. As in the case
of the half-space model, we perform a change of time defined by
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A(u) =

u�

0

(1− |X(s)|2) ds and σ(t) = inf{u; A(u) > t}.

Then the process defined by

Ỹk(t) = Yk(σ(t))

is a diffusion with values in Dn with generator L2.
As in the case of Hn in Section 3, the harmonic measures of the operators

∆LB and L2 are the same.
We now consider the harmonic measure ωxr of the ball Br = {x ∈ Rn :

|x| < r}, r < 1, supported on the boundary of Br which is the sphere
Sn−1r . We denote by Pr(x, y) the Poisson kernel of Br, i.e. the density of the
measure ωxr with respect to the (n− 1)-dimensional spherical measure σn−1r .
As in the previous section, we can write the Laplace–Beltrami operator in
the form (1−|x|2)2

2 L2, where

L2 =
1

2
∆+ F2(x) · ∇ with F2(x) =

n− 2

1− |x|2
(x1, . . . , xn).

The positivity of the factor (1−|x|2)2/2 implies that the harmonic functions
on the ball Br for the operators (4.1) and L2 are exactly the same and
consequently the harmonic measures coincide.

Moreover, the vector field F2 is orthogonal to Sn−1r and its potential
function is V2(x) = 2−n

2 ln(1− |x|2). Denote by τr = inf{t > 0 :W (t) /∈ Br}
the first exit time of the Brownian motion W (t) from the ball Br. Note that
τr depends only on the Euclidean norm of W .

The martingale M related to the vector field F2 and its quadratic varia-
tion are

M(t) = (n− 2)

t�

0

Wi(s) dWi(s)

1− |W (s)|2
, 〈M〉(t) = (n− 2)2

t�

0

|W (s)|2 ds
(1− |W (s)|2)2

.

Observe that the condition (2.4) is fulfilled in this case, since

Ex exp
[
(n− 2)2

t∧τr�

0

|W (s)|2 ds
(1− |W (s)|2)2

]
≤ Ex exp

[
(n− 2)2

r2(t ∧ τr)
(1− r2)2

]
,

and the last expression is finite. By (2.7), the kernel N(t) is of the form

N(t) =

(
1− |W (0)|2

1− |W (t)|2

)(n−2)/2
exp

(
−n(n− 2)

2

t�

0

ds

(1− |W (s)|2)2

)
,

and it is now evident that {N(t ∧ τr)}t>0 is uniformly bounded in t so the
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condition (2.5) holds. Applying Theorem 2.2 we obtain

wxr (dy) =

(
1− |x|2

1− r2

)(n−2)/2
(4.2)

× Ex
[
exp

(
−n(n− 2)

2

τr�

0

ds

(1− |W (s)|2)2

)
; W (τr) ∈ dy

]
,

From now on we assume that x 6= 0. For x = 0, from the rotational
invariance of the Laplace–Beltrami operator, we easily see that ωxr is just
σn−1r /σn−1r (Sn−1r ). Recall the skew-product representation of the Brownian
motion,

W (t) = R(ν)(t)Θ(A(ν)(t)),

where R(ν) is the Bessel process with index ν = n/2 − 1 starting from |x|
and Θ is a spherical Brownian motion on Sn−11 independent of R(ν) (see Ap-
pendix). Using the fact that τr depends only on R(ν) we find that W (τr) =
R(ν)(τr)Θ(A(ν)(τr)), where Θ is independent of R(ν)(τr) and A(ν)(τr). Ap-
plying this decomposition to formula (4.2) we get

ωxr (dy) =

(
1− |x|2

1− r2

)(n−2)/2

×
∞�

0

P x/|x|(Θt ∈ dy)E|x|
[
exp
(τr�

0

q(R(ν)
s ) ds

)
; A(ν)(τr) ∈ dt

]
,

where q(y) = − n(n−2)
2(1−y2)2 . Rotational invariance of spherical Brownian motion

implies that the harmonic measure ωxr is symmetric with respect to the x
axis. As a consequence, its density Pr(x, y) depends only on the cosine of
the angle between the starting point x and the point y, i.e.

Pr(x, y) = P̃r

(
x,
〈x, y〉
|x| |y|

)
.

If we consider sets of the form A = {η ∈ Sn−11 : 〈x, η〉/|x| ∈ (a, b)}, where
−1 < a < b < 1, we get (for the definition of the process S see Appendix)

P x/|x|(Θt ∈ A) = P 1(St ∈ (a, b))

=

b�

a

pSt (1, z)m(dz) = 2

b�

a

pSt (1, z)(1− z2)(n−3)/2 dz,

where pSt is defined in (6.23). On the other hand, using spherical coordinates
we obtain
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ωxr (rA) =
�

rA

Pr(x, y) dσ
n−1
r (y)

= rn−1σn−2r (Sn−21 )
�

cosφ∈(a,b)

P̃r(x, cosφ) sin
n−2 φdφ

=
nπ(n−1)/2rn−1

Γ
(
n+1
2

) b�

a

P̃r(x, z)(1− z2)(n−3)/2 dz.

Comparing both sides we infer that the Poisson kernel Pr(x, y) equals

Γ
(
2n+1

2

)
π(n−1)/2nrn−1

(
1− |x|2

1− r2

)(n−2)/2 ∞�

0

pSt

(
1,
〈x, y〉
|x| |y|

)
µ|x|(dt),(4.3)

where

µy(dt) = Ey
[
exp
(τr�

0

q(R(ν)(s)) ds
)
; A(ν)(τr) ∈ dt

]
, y ∈ (0, r].

The formula for pSt can be computed from the appropriate formula for the
transition density function for Θ, which is given in terms of spherical har-
monics, and that approach leads to the series representation for Pr(x, y)
presented in [5]. However, we want to compute the Laplace transform of pSt
which is the so called λ-Green function of the process S,

Gλ(x, 1) =

∞�

0

e−λtpSt (1, x) dt, x ∈ (−1, 1),

and we do this directly. From the general theory (see for example [3, Chap-
ter II] for a short résumé) the function Gλ is described by solutions of the
second-order differential equation

(4.4)
1− x2

2
u′′(x)− n− 1

2
xu′(x) = λu(x), x ∈ (−1, 1).

Note that the expression on the left-hand side is just Gu(x), where G is the
generator of S described in (6.22). More precisely, we have

Gλ(x, 1) =
ϕλ(1)ψλ(x)

wλ
, x ∈ (−1, 1),

where ϕλ is a decreasing and ψλ is an increasing solution of (4.4) such that
ϕ−λ (1) = 0 and ψ+

λ (−1) = 0. The boundary conditions for the derivatives
follow from the fact that the non-singular points −1 and 1 are reflecting.
Here f+ and f− denote the right and left derivatives with respect to the
speed function s(x). The Wronskian wλ is given by

wλ = ψ−λ (x)ϕλ(x)− ψλ(x)ϕ
−
λ (x)

and it does not depend on x. Putting x = 1 in the above formula and using
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the boundary conditions we obtain

Gλ(x, 1) =
ϕλ(1)ψλ(x)

ψ−λ (1)ϕλ(1)− ψλ(1)ϕ
−
λ (1)

=
ψλ(x)

ψ−λ (1)
, x ∈ (−1, 1).

This implies that Gλ(x, 1) is uniquely described as a solution of (4.4) such
that u+(−1) = 0 and u−(1) = 1. Making the substitution u(x) = f(z) with
z = (1 + x)/2 in equation (4.4) we reduce it to the hypergeometric equation

z(1− z)f ′′(z) +
(
n− 1

2
− (n− 1)z

)
f ′(z)− 2λf(z) = 0,

i.e. equation (6.14) with α = n−2
2 − A(λ), β = n−2

2 + A(λ), γ = n−1
2 ,

A(λ) = 1
2

√
(n− 2)2 − 8λ. Consider the function

hλ(x) = 2F1

(
n− 2

2
−A(λ), n− 2

2
+A(λ);

n− 1

2
;
1 + x

2

)
.

The above computation implies that hλ is a solution of (4.4). Using (6.16)
and (6.17) we compute the derivative of this function with respect to the
scale function s(x) in the following way:

d

dx
hλ(x) =

2λ

n− 1
2F1

(
n

2
−A(λ), n

2
+A(λ);

n+ 1

2
;
1 + x

2

)
=

2(n+1)/2λ

n− 1

(
1 + x

1− x2

)(n−1)/2

2F1

(
1

2
+A(λ),

1

2
−A(λ); n+ 1

2
;
1 + x

2

)
.

The first equality and the fact that the hypergeometric function 2F1 is equal
to 1 at zero imply h+λ (−1) = 0. Using the second equality and (6.15) we
obtain

h−λ (1) =
2nλ

n− 1
2F1

(
1

2
+A(λ),

1

2
−A(λ); n+ 1

2
; 1

)
=

2n−1λΓ 2
(
n−1
2

)
Γ
(
n−2
2 −A(λ)

)
Γ
(
n−2
2 +A(λ)

) .
Moreover, using once again (6.17) and the definition (6.19) we can express
hλ in terms of the Legendre function of the first kind:

hλ(x) =

(
1− x
2

)(3−n)/2

2F1

(
1

2
−A(λ), 1

2
+A(λ);

n− 1

2
;
1 + x

2

)
=

(1− x2)(3−n)/4

2(3−n)/2
Γ

(
n− 1

2

)
P

(3−n)/2
A(λ)−1/2(−x).

Finally we have just shown that

Gλ(x, 1) = Bn(λ)(1− x2)(3−n)/4P (3−n)/2
A(λ)−1/2(−x),
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where

Bn(λ) =
Γ
(
n−2
2 −A(λ)

)
Γ
(
n−2
2 +A(λ)

)
2(n+1)/2λΓ

(
n−1
2

) .

The second part of formula (4.3) relates to the measure µy. Observe
that µy depends only on the Bessel process R(ν), which is a one-dimensional
diffusion. For every w ≥ 0 the Laplace transform Lµy(w) is

Ey exp
(
−n(n− 2)

2

τr�

0

ds

(1− (R(ν)(s))2)2
− w

τr�

0

ds

(R(ν)(s))2

)
= Eyeg(τr),

where g(y) = − n(n−2)
2(1−y2)2 −

w
y2
. The function ϕ(y) = Eyeg(τr) is by definition

the gauge function for the Schrödinger operator based on the generator of
the process R(ν) and the non-positive potential g. From the Feynman–Kac
formula, ϕ is a solution of the Schrödinger equation. Using (6.21) we find
that ϕ is a bounded solution to the second-order differential equation

(4.5)
1

2
ϕ′′(y) +

n− 1

2y
ϕ′(y)−

(
n(n− 2)

2(1− y2)2
+
w

y2

)
ϕ(y) = 0,

where y ∈ [0, r), w ≥ 0. The corresponding boundary condition is ϕ(r) = 1.
Substituting ϕ(y) = y1−n/2ψ

(1+y2
1−y2

)
we obtain

ϕ′(y) =

(
1− n

2

)
y−n/2ψ

(
1 + y2

1− y2

)
+

4y2−n/2

(1− y2)2
ψ′
(
1 + y2

1− y2

)
,

ϕ′′(y) =
n

2

(
n

2
− 1

)
y−1−n/2ψ

(
1 + y2

1− y2

)
+

16y3−n/2

(1− y2)4
ψ′′
(
1 + y2

1− y2

)
+

4y1−n/2

(1− y2)3
(3− n+ (n+ 1)y2)ψ′

(
1 + y2

1− y2

)
.

Inserting the above formulas into the differential equation (4.5) and dividing
both sides by −2y1−n/2

(1−y2)2 gives

0 =
−4y2

(1− y2)2
ψ′′
(
1 + y2

1− y2

)
− 2(1− y4)

(1− y2)2
ψ′
(
1 + y2

1− y2

)
+

(
(1− y2)2

4y2

[
(n− 2)2

4
+ 2w

]
+
n(n− 2)

4

)
ψ

(
1 + y2

1− y2

)
.

Moreover, putting z = 1+y2

1−y2 and using the equality 1 −
(1+y2
1−y2

)2
= −4y2

(1−y2)2
leads to the following differential equation for ψ:

(1− z2)ψ′′(z)− 2zψ′(z) +

(
ν(ν + 1)− A(−w)2

1− z2

)
ψ(z) = 0, z ≥ 1,

with ν = n/2 − 1 and A(−w) = 1
2

√
(n− 2)2 + 8w. This is the Legendre
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differential equation (6.18). Thus, the general solution of (4.5) is given by

ϕ(y) = c1y
1−n/2P−A(−w)ν

(
1 + y2

1− y2

)
+ c2y

1−n/2Q−A(−w)ν

(
1 + y2

1− y2

)
,

where y ∈ [0, r] and c1, c2 are absolute constants. Using (6.19) and (6.20)
one can easily check that the function y−νP

−A(−w)
ν

(1+y2
1−y2

)
is bounded on

the interval
[
1, 1+r

2

1−r2
)
in contrast to the function y−νQ−A(−w)ν

(1+y2
1−y2

)
, which

is unbounded in the neighborhood of 1. Thus c2 = 0 and the boundary
condition ϕ(r) = 1 gives

(4.6) Lµ|x|(w) =
(
r

|x|

)n/2−1P−A(−w)ν

(1+|x|2
1−|x|2

)
P
−A(−w)
ν

(
1+r2

1−r2
) , |x| ≤ r, w ≥ 0.

Now observe that for every complex number w such that Re(w) > −ν2/2 =
−(n− 2)2/8,

|Lµ|x|(w)| ≤ E|x|
[
e
−n(n−2)

2

	τr
0

ds

(1−(R
(ν)
s )2)2

−Re(w)
	τr
0

ds

(R
(ν)
s )2

]
≤ E|x| exp

(
(n− 2)2

8

τr�

0

ds

(R
(ν)
s )2

)

= E|x| exp
(
ν2

2

τr�

0

ds

(R
(ν)
s )2

)
=

(
r

x

)ν
.

The last equality follows from (see [3, 2.20.4, p. 407])

P(ν)
x

[τr�
0

ds

(R(ν)(s))2
∈ dy

]
=

(
r

x

)ν ln(r/x)√
2π y3/2

e
− ν

2y
2
− ln2(r/x)

2y dy

for y > 0. In particular Lµ|x|(−ν2/2) is finite. This implies that the formula

Lµ|x|(w) =
∞�

0

e−wt µ|x|(dt)

defines a holomorphic function in the complex half-plane Re(w) > −v2/2.
Moreover, for |z| < 1 the function 2F1(α, β; γ; z)/Γ (α) is analytic on C
as a function of α. Using this fact and the representation of Pµν in terms
of the hypergeometric function 2F1 we deduce that the right-hand side of
(4.6) is a meromorphic function of w in the half-plane Re(w) > −ν2/2.
In fact, (4.6) implies that the ratio of the Legendre functions is analytic
for Re(w) > −ν2/2 and consequently the denominator has no zeros in this
region (compare this result with Conjecture 5.2 in [5]). Moreover, we have
just proved that (4.6) holds whenever Re(w) > −ν2/2.
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Now let c = −(n− 2)2/16. We have
∞�

0

pSt

(
1,
〈x, y〉
|x| |y|

)
µ|x|(dt) =

∞�

0

pSt

(
1,
〈x, y〉
|x| |y|

)(
1

2πi

c+i∞�

c−i∞
eztLµ|x|(z) dz

)
dt

=
1

2πi

c+i∞�

c−i∞
Lµ|x|(z)

(∞�
0

eztpSt

(
1,
〈x, y〉
|x| |y|

)
dt

)
dz

=
1

2πi

c+i∞�

c−i∞
Lµ|x|(z)Gz

(
1,
〈x, y〉
|x| |y|

)
dt dz.

Taking into account the previously found formulas for the Laplace transform
Lµ|x|(z) and the Green function Gz(1, x) we finally obtain

Theorem 4.1. For every x ∈ Br, x 6= 0 and y ∈ Sn−1r the Poisson
kernel Pr(x, y) is given by the formula

2Γ (n+1
2 )

π(n−1)/2nrn−1

(
1− |x|2

1− r2
r

|x|

)ν sin(3−n)/2 ϕ
2πi

×
c+i∞�

c−i∞

P
−A(−z)
ν

(1+|x|2
1−|x|2

)
P
−A(−z)
ν

(
1+r2

1−r2
) Bn(z)P (3−n)/2

A(z)−1/2(− cosϕ) dz,

where

A(z) =
1

2

√
(n− 2)2 − 8z, Bn(z) =

Γ
(
n−2
2 −A(z)

)
Γ
(
n−2
2 +A(z)

)
2(n+1)/2zΓ

(
n−1
2

) ,

c = −ν2/4 and ϕ is the angle between x and y.

5. Harmonic measure of the Ornstein–Uhlenbeck process. As in
the previous section, for fixed r > 0 we denote Br = {x ∈ Rn : |x| < r}.
Consider the vector field F3(x) = λx, where λ > 0. It is a potential vector
field with potential function V3(x) = λ|x|2/2 and as in the previous cases it
is orthogonal to the boundary of Br. The corresponding martingale M and
its quadratic variation are

M(t) = λ

n∑
i=1

t�

0

Wi(s) dWi(s), 〈M〉(t) =
t�

0

λ2|W (s)|2 ds.

The validity of (2.4) in this case follows from

Ex[exp 〈M〉(t ∧ τr)] = Ex
[
exp

t∧τr�

0

λ2|W (s)|2 ds
]

≤ Ex[exp[λ2r2(t ∧ τr)]] <∞,
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where τr = inf{t > 0 :W (t) /∈ Br}. Since

N(t) = exp
λ(|W (t)|2 − |W (0)|2)

2

[
exp

(
−1

2

τ�

0

(λ2|W (s)|2 + 2nλ) ds

)]
,

all the assumptions of Theorem 2.2 are satisfied, and consequently the har-
monic measure wxr (dy) of Br for the operator

L3 =
1

2
∆+ λx · ∇

is

wxr (dy) = exp
λ(r2 − |x|2)

2
Ex[e−

1
2

	τr
0 (λ2|W (s)|2+2nλ) ds; W (τr) ∈ dy].

Computations in this case mimic those in the previous section so we omit
some details and present only a sketch. For x 6= 0 the skew-product repre-
sentation of the Brownian motion allows us to write

ωxr (dy) = e
λ
2
(r2−|x|2)

∞�

0

P x/|x|(Θt ∈ dy)

× E|x|
[
exp
(τr�

0

q(R(ν)(s)) ds
)
;

τr�

0

ds

(R(ν)(s))2
∈ dt

]
,

where q(y) = −λ2

2 |x|
2 − nλ, and consequently the Poisson kernel Pr(x, y) is

given by

Pr(x, y) =
2Γ
(
n+1
2

)
π(n−1)/2nrn−1

e
λ
2
(r2−|x|2)

∞�

0

pSt

(
1,
〈x, y〉
|x| |y|

)
µ|x|(dt),

where

µy(dt) = Ey
[
exp

( τr�
0

q(R(ν)
s )ds

)
;

τr�

0

ds

(R
(ν)
s )2

∈ dt
]
, y ∈ (0, r].

As previously, the Laplace transform Lµy(w) given by

(5.1) Ey exp
τr�

0

(
−λ

2

2
(R(ν)

s )2 − nλ− w

(R
(ν)
s )2

)
ds = Eyeg(τr),

where g(y) = −λ2

2 y
2−nλ− w

y2
, can be identified (by applying the Feynman–

Kac formula) as a bounded solution of the Schrödinger equation

1

2
ϕ′′(y) +

n− 1

2y
ϕ′(y)−

(
λ2

2
y2 + nλ+

w

y2

)
ϕ(y) = 0, y ∈ (0, r), w ≥ 0,
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with the boundary condition ϕ(r) = 1. Setting ϕ(y) = y−n/2f(λy2) we
reduce this equation to the Whittaker equation

f ′′(x) + f(x)

[
−1

4
− n

2x
−
(
n(n− 4)

16
+
w

2

)
1

x2

]
= 0,

with parameters k = −n/2 and µ =
√

(n− 2)2 + 8w/4. Consequently,

ϕ(y) = y−n/2[c1M(k, µ, λy2) + c2W (k, µ, λy2)],

where M and W are Whittaker functions (see [1, 13.1.32, 13.1.33, p. 505]).
The boundedness of ϕ implies that c2 = 0, and the boundary condition
ϕ(r) = 1 gives

(5.2) Lµy(w) =
(
r

y

)n/2M(k, µ, λy2)

M(k, µ, λr2)
.

If we look at (5.1), the probabilistic definition of Lµy(w), the same argument
as previously gives that Lµy(w) can be extended to a holomorphic function in
the complex half-plane Re(w) > −(n− 2)2/8. Since the Whittaker functions
are well defined in this region, formula (5.2) is also satisfied there. As before,
we use the Laplace inverse formula and for c = −(n− 2)2/16 we obtain
∞�

0

pSt

(
1,
〈x, y〉
|x| |y|

)
µ|x|(dt) =

∞�

0

pSt

(
1,
〈x, y〉
|x| |y|

)(
1

2πi

c+i∞�

c−i∞
eztLµ|x|(z) dz

)
dt

=
1

2πi

c+i∞�

c−i∞
Lµ|x|(z)

(∞�
0

eztpSt

(
1,
〈x, y〉
|x| |y|

)
dt

)
dz

=
1

2πi

c+i∞�

c−i∞
Lµ|x|(z)Gz

(
1,
〈x, y〉
|x| |y|

)
dt dz.

Theorem 5.1. For every x ∈ Br, x 6= 0 and y ∈ Sn−1r the Poisson
kernel Pr(x, y) is given by the formula

2Γ
(
n+1
2

)
π(n−1)/2nrn−1

(
1− |x|2

1− r2

)(n−2)/2( r

|x|

)n/2 sin(3−n)/2 ϕ
2πi

×
c+i∞�

c−i∞

M(k, µ, λy2)

M(k, µ, λr2)
Bn(z)P

(3−n)/2
A(z)−1/2(− cosϕ) dz,

where ϕ is the angle between x and y, A(z) = 1
2

√
(n− 2)2 − 8z and

Bn(z) =
Γ
(
n−2
2 −A(z)

)
Γ
(
n−2
2 +A(z)

)
2(n+1)/2zΓ

(
n−1
2

) .
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6. Appendix. For the convenience of the reader we collect here ba-
sic information about Bessel functions, hypergeometric functions and other
special functions appearing throughout the paper. We mainly follow the ex-
position given in [1] and [12], where we refer the reader for more details (see
also [19] and [15]).

6.1. Bessel functions. The Bessel functions Jν(z) and Yν(z) are inde-
pendent solutions of the Bessel equation

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0, ν ∈ R.

The Wronskian of the pair (Jν(z), Yν(z)) is equal to 2/(πz) (see [19, p. 113]).
The derivatives of the Bessel functions can be expressed by these functions
in the following way:

J ′ν(x) = Jν−1(x)−
ν

x
Jν(x), x > 0,(6.1)

Y ′ν(x) = Yν−1(x)−
ν

x
Yν(x), x > 0.(6.2)

For every ν > 0 we have (see [19, 5.16, pp. 134–135])

Jν(x) ∼
xν

2νΓ (ν + 1)
, Yν(x) ∼ −

2νΓ (ν)

π

1

xν
, x→ 0+,(6.3)

Jν(x) ∼
√

2

xπ
cos

(
x− νπ

2
− π

4

)
,(6.4)

Yν(x) ∼
√

2

xπ
sin

(
x− νπ

2
− π

4

)
, x→∞.

The modified Bessel functions Kν(z) are independent solutions to the mod-
ified Bessel equation

(6.5) z2y′′(z) + zy′(z)− (ν2 + z2)y(z) = 0.

The following asymptotic expansion holds (see [15, 8.451, (6)]):

(6.6) Kν(z) =

√
π

2z
e−z(1 + E(z)), |E(z)| = O(|z|−1) as |z| → ∞,

whenever |arg z| ≤ 3π/2 . The behavior of Kν near zero is described by (see
[1, 9.6.9])

(6.7) Kν(z) ≈
2ν−1Γ (ν)

zν
, Re z > 0.

The connection between modified Bessel functions of purely imaginary ar-
gument and Bessel functions is given by

(6.8) Kν(ix) = −
iπ

2
e−iνπ/2(Jν(x)− iYν(x)), x > 0.
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Finally, we recall the integral representation of Kν (see [15, 8.432, (7)]):

(6.9) Kϑ(z) =
zϑ

2

∞�

0

exp

(
− t+ z2/t

2

)
t−ϑ−1dt, z > 0, ϑ ∈ R,

as well as the formula ([15, 6.561, formula 16, p. 676] )

(6.10)
∞�

0

xµKν(x) dx = 2µ−1Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
,

where µ+ 1 > ν > 0.

For every ν > 1/2 we introduce the following function of two variables:

gν(x, t) =
1

t2ν(x− 1)

Jν(t)Yν(tx)− Jν(tx)Yν(t)
J2
ν (t) + Y 2

ν (t)
, x > 1, t > 0.

It is obvious that gν is a continuous function on (1,∞) × R+. However,
most crucial for the considerations in Section 3 are the following asymptotic
properties of gν .

Lemma 6.1. Fix x0 ≥ 1, t0 > 0. Then

lim
(x,t)→(x0,0)

gν(x, t) =
π
∑n−2

k=0 x
k
0

22νΓ (ν)Γ (ν + 1)xν0
,(6.11)

lim
(x,t)→(1,t0)

gν(x, t) =
2

πt2ν0 (J2
ν (t0) + Y 2

ν (t0))
.(6.12)

Proof. From the Lagrange theorem, there exist θ1, θ2 ∈ (1, x), depending
on x and such that
Jν(t)Yν(tx)− Jν(tx)Yν(t)

tx− t
= Jν(t)

Yν(tx)− Yν(t)
tx− t

− Yν(t)
Jν(tx)− Jν(t)

tx− t
= Jν(t)Y

′
ν(tθ1)− J ′ν(tθ2)Yν(t).

Obviously, if x→ 1 then θ1, θ2 also tend to 1. Furthermore, since the Wron-
skian of (Jν(z), Yν(z)) is 2/(πz) we get

lim
(x,t)→(1,t0)

Jν(t)Yν(tx)− Jν(tx)Yν(t)
tx− t

= Jν(t0)Y
′
ν(t0)− J ′ν(t0)Yν(t0) =

2

πt0
,

which proves (6.12). If we use the recurrent formulas for the Bessel function
derivatives (6.1) and (6.2) we deduce that Jν(t)Y ′ν(tθ1)−J ′ν(tθ2)Yν(t) equals

Jν(t)Yν−1(tθ1)−
ν

t

(
Jν(t)Yν(tθ1)

θ1
− Jν(tθ1)Yν(t)

θ2

)
− Jν−1(tθ2)Yν(t).

Multiplying the last expression by t, letting (x, t)→ (1, 0) and using (6.3) it
is easy to see that the first two summands tend to zero and the last one tends
to 2/π. Since, by (6.3), we have limt→0+ t

2ν(J2
ν (t) + Y 2

ν (t)) = 22νΓ 2(ν)/π2,
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it follows that
lim

(x,t)→(1,0)
gν(x, t) =

π

22ν−1Γ 2(ν)
,

which is (6.11) for x0 = 1. For x0 > 1 relation (6.11) follows directly from
(6.3):

lim
(x,t)→(x0,0)

gν(x, t) =
π(xν0 − x

−ν
0 )

ν22νΓ 2(ν)
=

π
∑n−2

k=0 x
k
0

22νΓ (ν)Γ (ν + 1)xν0
.

Note that Lemma 6.1 together with (6.3) and (6.4) implies that the func-
tion gν can be extended to a continuous function on [1,∞)× [0,∞) which is
bounded whenever x is bounded, i.e. for every R > 1 there exists C(R) > 0
such that

(6.13) |gν(x, t)| ≤ C(R), (x, t) ∈ [1, R]× [0,∞).

6.2. Hypergeometric functions and Legendre functions. For γ 6=
−1,−2, . . . the hypergeometric function is defined by

2F1(α, β; γ; z) =

∞∑
k=0

(α)k(βk)

(γk)k!
zk, |z| < 1.

Here (a)k = Γ (a+ k)/Γ (a). The function 2F1 is a solution of the hypergeo-
metric equation

(6.14) z(1− z)u′′(z) + [γ − (α+ β + 1)z]u′(z)− αβu(z) = 0

regular at z = 0. Whenever Re(γ − α − β) > 0 we have (see [12, Vol. 1,
p. 104, 2.8(46)])

(6.15) 2F1(α, β; γ; 1) =
Γ (γ)Γ (γ − α− β)
Γ (γ − α)Γ (γ − β)

.

The derivative of 2F1 is given by (see [12, Vol. 1, p. 102, 2.8(20)])

(6.16)
d

dz
2F1(α, β; γ; z) =

αβ

γ
2F1(α+ 1, β + 1; γ + 1; z),

and the following elementary relation holds (see [12, Vol. 1, p. 105, 2.9(2)])

(6.17) 2F1(α, β; γ; z) = (1− z)γ−α−β 2F1(γ − α, γ − β; γ; z).

The Legendre functions are solutions of Legendre’s differential equation

(6.18) (1− z2)u′′(z)− 2zu′(z) + [a(a+ 1)− b2(1− z2)−1]u(z) = 0.

By making an appropriate substitution it can be reduced to the hypergeo-
metric equation (6.14) and consequently its solutions are given in terms of
the hypergeometric function. More precisely, the Legendre functions of the
first and second kind are defined by (see [12, Vol. 1, p. 122, 3.2(3) and p. 143,
3.4(6)])
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P ba(x) =
1

Γ (1− b)

(
1 + x

|1− x|

)b/2
(6.19)

× 2F1

(
−a, a+ 1; 1− b; 1− x

2

)
, x > −1,

Qba(x) =
ebiππ1/2

2a+1xa+b+1

Γ (a+ b+ 1)

Γ (a+ 3/2)
(x2 − 1)b/2(6.20)

× 2F1

(
a+ b

2
+ 1,

a+ b+ 1

2
; a+ 3/2;

1

x2

)
, x > 1,

respectively. The functions P ba and Qba are independent solutions of (6.18).

6.3. Skew-product representation of Brownian motion. We now
introduce the spherical Brownian motion on the unit sphere Sn−11 ⊆ Rn as
a diffusion on Sn−11 with generator being one-half of the Laplace–Beltrami
operator ∆Sn−1

1
of the manifold Sn−11 . It is well-known that

∆Sn−1
1

= (sinφ)2−n
∂

∂φ

[
(sinφ)n−2

∂

∂φ

]
+ (sinφ)−2∆Sn−2

1
,

where φ is the angle between the pole and the given point on the sphere and
∆S1

1
= ∂2

∂φ2
. Now, if we consider the action of ∆Sn−1

1
on functions depending

only on φ, this reduces to the generator of the Legendre process LEG(d):

1

2
∆Sn−1

1
=

1

2
(sinφ)2−n

∂

∂φ

[
(sinφ)n−2

∂

∂φ

]
=

1

2

∂2

∂φ2
+
n− 2

2
cotφ

∂

∂φ
.

Changing variable cosφ = t we obtain

1− t2

2

∂2

∂t2
− n− 1

2
t
∂

∂t
.

We now invoke the classical skew-product representation of the n-dimen-
sional Brownian motion (see e.g. [18, (7.15)] stating that it can be represented
as the product of R(ν) = {R(ν)

t ; t ≥ 0}, the Bessel process BES(n), ν =
n/2− 1, with generator

(6.21)
1

2

∂2

∂r2
+
n− 1

2r

∂

∂r
,

and an independent spherical Brownian motion Θ = {Θ(t) : t ≥ 0} on Sn−11

with time changed according to the formula

A(ν)(t) =

t�

0

ds

(R(ν)(s))2
.

Moreover, for x 6= 0, we introduce a process S = {S(t) : t ≥ 0} defined
by S(t) = 〈x,Θ(t)〉/|x|. The process S describes the cosine of the angle
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between the starting point x and the spherical Brownian motion Θ. Conse-
quently, the cosine between the starting point x and W (t) is just S(A(t)).
The skew-product representation and the previous considerations imply that
S is independent of the Bessel process R(ν), and the generator of S is given
by

(6.22) G =
1− t2

2

∂2

∂t2
− n− 1

2
t
∂

∂t

with domain DG = {u ∈ C2[−1, 1] : u′(−1) = u′(1) = 0}. Three basic
characteristics of the diffusion: the speed measure, the scale function and
the killing measure are described by the relations (see also [6]) m(dx) =
2(1− x2)(n−3)/2dx, s′(x) = (1− x2)(1−n)/2, k(dx) = 0. Moreover, the points
−1 and 1 are non-singular reflecting points. We denote by pSt (x, y) the tran-
sition density function with respect to the speed measure, i.e.

(6.23) P x(S(t) ∈ A) =
�

A

pSt (x, y)m(dx), A ∈ B[−1, 1].
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