VOL. 129

2012

NO. 2

FINITE GROUPS OF OTP PROJECTIVE REPRESENTATION TYPE OVER A COMPLETE DISCRETE VALUATION DOMAIN OF POSITIVE CHARACTERISTIC

BҮ

LEONID F. BARANNYK and DARIUSZ KLEIN (Słupsk)

Dedicated to the memory of Petro Mykhailovich Gudyvok^{*}

Abstract. Let *S* be a commutative complete discrete valuation domain of positive characteristic *p*, *S*^{*} the unit group of *S*, Ω a subgroup of *S*^{*} and $G = G_p \times B$ a finite group, where G_p is a *p*-group and *B* is a *p'*-group. Denote by $S^{\lambda}G$ the twisted group algebra of *G* over *S* with a 2-cocycle $\lambda \in Z^2(G, S^*)$. For Ω satisfying a specific condition, we give necessary and sufficient conditions for *G* to be of OTP projective (S, Ω) -representation type, in the sense that there exists a cocycle $\lambda \in Z^2(G, \Omega)$ such that every indecomposable $S^{\lambda}G$ -module is isomorphic to the outer tensor product V # W of an indecomposable $S^{\lambda}G_p$ -module *V* and an irreducible $S^{\lambda}B$ -module *W*.

1. Introduction. Let $p \geq 2$ be a prime, S either a field of characteristic p, or a commutative complete discrete valuation domain of characteristic p, and G a finite group. Denote by $Z^2(G, S^*)$ the group of all S^* -valued normalized 2-cocycles of the group G that acts trivially on S^* . The twisted group algebra of G over S with a 2-cocycle $\lambda \in Z^2(G, S^*)$ is the free S-algebra $S^{\lambda}G$ with an S-basis $\{u_g : g \in G\}$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in G$. The S-basis $\{u_g : g \in G\}$ of $S^{\lambda}G$ is called canonical (corresponding to λ). Assume now that $G = G_p \times B$, where G_p is a p-group, B is a p'-group and $|G_p| > 1$, |B| > 1. Given $\mu \in Z^2(G_p, S^*)$ and $\nu \in Z^2(B, S^*)$, the map $\mu \times \nu : G \times G \to S^*$ defined by the formula

(1.1)
$$(\mu \times \nu)_{x_1 b_1, x_2 b_2} = \mu_{x_1, x_2} \cdot \nu_{b_1, b_2},$$

for all $x_1, x_2 \in G_p$, $b_1, b_2 \in B$, is a 2-cocycle in $Z^2(G, S^*)$. Every cocycle $\lambda \in Z^2(G, S^*)$ is cohomologous to $\mu \times \nu$, where μ is the restriction of λ to $G_p \times G_p$ and ν is the restriction of λ to $B \times B$.

²⁰¹⁰ Mathematics Subject Classification: Primary 16G60; Secondary 20C20, 20C25.

Key words and phrases: modular representation, outer tensor product, projective representation, representation type, twisted group algebra.

 $^{^{*}\}mathrm{Professor}$ P. M. Gudyvok died on 11 June 2012 in Uzhgorod, Ukraine. He was born in 1936.

From now on, we assume that every cocycle $\lambda \in Z^2(G, S^*)$ under consideration satisfies the condition $\lambda = \mu \times \nu$, and all $S^{\lambda}G$ -modules are assumed to be finitely generated left $S^{\lambda}G$ -modules which are S-free. We recall that the study of $S^{\lambda}G$ -modules is essentially equivalent to the study of projective S-representations of G with the 2-cocycle λ .

Let $\lambda = \mu \times \nu \in Z^2(G, S^*)$ and $\{u_g : g \in G\}$ be a canonical S-basis of $S^{\lambda}G$. Then $\{u_h : h \in G_p\}$ is a canonical S-basis of $S^{\mu}G_p$ and $\{u_b : b \in B\}$ is a canonical S-basis of $S^{\nu}B$. Moreover, if g = hb, where $g \in G$, $h \in G_p$, $b \in B$, then $u_g = u_h u_b = u_b u_h$. It follows that $S^{\lambda}G \cong S^{\mu}G_p \otimes_S S^{\nu}B$.

Given an $S^{\mu}G_p$ -module V and an $S^{\nu}B$ -module W, we denote by V # Wthe $S^{\lambda}G$ -module whose underlying S-module is $V \otimes_S W$, the $S^{\lambda}G$ -module structure is given by

$$u_{hb}(v \otimes w) = u_h v \otimes u_b w$$

for all $h \in G_p$, $b \in B$, $v \in V$, $w \in W$, and it is extended to $S^{\lambda}G$ and $V \otimes_S W$ by S-linearity. Following [19, p. 122], we call the module V # W the outer tensor product of V and W.

Throughout, Ω is a fixed subgroup of S^* . We recall from [5, p. 10] the following definitions.

DEFINITION 1.1. Assume that S, G, Ω are as fixed above and $\lambda = \mu \times \nu \in Z^2(G, S^*)$ is a 2-cocycle as in (1.1).

(a) We set

(1.2)
$$Z^2(G, \Omega) = \{\lambda \in Z^2(G, S^*) \colon \operatorname{Im} \lambda \subset \Omega\}.$$

- (b) The algebra $S^{\lambda}G$ is defined to be of *OTP representation type* if every indecomposable $S^{\lambda}G$ -module is isomorphic to the outer tensor product V # W, where V is an indecomposable $S^{\mu}G_{p}$ -module and W is an irreducible $S^{\nu}B$ -module.
- (c) The group $G = G_p \times B$ is defined to be of *OTP projective* (S, Ω) representation type if there exists a cocycle $\lambda \in Z^2(G, \Omega)$ such that the algebra $S^{\lambda}G$ is of OTP representation type.
- (d) The group $G = G_p \times B$ is said to be of *purely OTP projective* (S, Ω) representation type if $S^{\lambda}G$ is of OTP representation type for any $\lambda \in Z^2(G, \Omega)$.

If $\Omega = S^*$, we write "S-representation type" instead of " (S, Ω) -representation type".

In [8], Brauer and Feit proved that if S is an algebraically closed field of characteristic p, then the group algebra SG is of OTP representation type.

Blau [7] and Gudyvok [15, 16] independently showed that if S is an arbitrary field of characteristic p, then SG is of OTP representation type if and only if G_p is cyclic or S is a splitting field for B. In [17, 18], Gudyvok also investigated a similar problem for the group algebra SG, where S is a

commutative complete discrete valuation domain. In particular, he proved that if S is of characteristic p and T is the quotient field of S, then SG is of OTP representation type if and only if $|G_p| = 2$ or T is a splitting field for B.

In [2]–[6], the results of Blau and Gudyvok were generalized to twisted group algebras $S^{\lambda}G$, where $G = G_p \times B$, S is either a field of characteristic p, or a commutative complete discrete valuation domain of characteristic p, and $\lambda \in Z^2(G, S^*)$ satisfies a specific condition. The main theorem in [3] asserts that if S is a field of characteristic p, then, under suitable assumptions, an algebra $S^{\lambda}G$ is of OTP representation type if and only if $S^{\lambda}G_p$ is a uniserial algebra or S is a splitting field for $S^{\lambda}B$.

In [4], necessary and sufficient conditions on G and a field S were given for G to be of OTP projective S-representation type and of purely OTP projective S-representation type. Let K be a field of characteristic p and S := K[[X]] the ring of formal power series in the indeterminate X with coefficients in K.

The groups $G = G_p \times B$ of OTP projective (S, K^*) -representation type and of purely OTP projective S-representation type were described in [5].

Denote by T the quotient field of S and by Ω the subgroup of S^* generated by K^* and f(X), where $f(X) \equiv 1 \pmod{X}$ and $f(X) \not\equiv 1 \pmod{X^2}$. Let $G = G_p \times B$, $|G'_p| \neq 2$, $\mu \in Z^2(G_p, \Omega)$, $\nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$. We recall from [6] that $S^{\lambda}G$ is of OTP representation type if and only if one of the following three conditions is satisfied:

- (i) G_p is abelian and $T^{\mu}G_p$ is a field;
- (ii) $p = 2, G_2$ is abelian and $\dim_T(T^{\mu}G_2/\operatorname{rad} T^{\mu}G_2) = |G_2|/2;$
- (iii) K is a splitting field for $K^{\nu}B$.

In the present article we describe the groups $G = G_p \times B$ of OTP projective (S, Ω) -representation type, where S is a commutative complete discrete valuation domain of positive characteristic p and $\Omega \subset S^*$ satisfies specific conditions (see Theorem 3.1, (1.4) and (1.5)).

In view of the Cohen Theorem [25, p. 304], S is isomorphic to the algebra K[[X]], where K is a field of characteristic p.

Throughout this paper, S = K[[X]] denotes the power series algebra and T = K((X)) the quotient field of S. For simplicity of presentation, we set

(1.3)
$$i(K) = \begin{cases} t & \text{if } [K \colon K^p] = p^t, \\ \infty & \text{if } [K \colon K^p] = \infty \end{cases}$$

Assume that G_p is an abelian *p*-group, *m* is the number of invariants of G_p and $G = G_p \times B$. Let Ω be the subgroup of S^* generated by K^* and $(S^*)^p$. We prove in Theorem 3.1 that *G* is of OTP projective (S, Ω) -representation type if and only if one of the following conditions is satisfied:

- (i) $m \leq i(K);$
- (ii) p = 2 and m = i(K) + 1;

(iii) K is a splitting field for some K-algebra $K^{\nu}B$.

Let $p \geq 3$ be a prime and let

(1.4)
$$\Omega = \langle K^*, (S^*)^p, f(X) \rangle \subset S$$

be the subgroup of S^* generated by K^* , $(S^*)^p$ and f(X), where $f(X) \equiv 1 \pmod{X}$ and $f(X) \not\equiv 1 \pmod{X^2}$. We prove in Theorem 3.2 that G is of OTP projective (S, Ω) -representation type if and only if $m \leq i(K) + 1$ or K is a splitting field for some K-algebra $K^{\nu}B$.

Suppose now that p = 2 and

(1.5)
$$\Omega = \langle K^*, (S^*)^4, f(X) \rangle \subset S^*$$

is a subgroup of S^* generated by K^* , $(S^*)^4$ and f(X), where $f(X) \equiv 1 \pmod{X}$ and $f(X) \not\equiv 1 \pmod{X^2}$. We show in Theorem 3.4 that G is of OTP projective (S, Ω) -representation type if and only if one of the following conditions is satisfied:

(i)
$$m \le i(K) + 1;$$

- (ii) m = i(K) + 2 and G_2 has at least one invariant equal to 2;
- (iii) K is a splitting field for some K-algebra $K^{\nu}B$.

Moreover we establish in Theorem 4.2 that the finite group $G = G_p \times B$, where G_p is an arbitrary *p*-group and *B* is a *p'*-group, is of purely OTP projective *S*-representation type if and only if one of the following conditions is satisfied:

- (i) p = 2 and $|G_2| = 2$.
- (ii) There exists a finite central group extension $1 \to A \to \hat{B} \to B \to 1$ such that any projective K-representation of B lifts projectively to an ordinary K-representation of \hat{B} and K is a splitting field for \hat{B} .

Throughout the paper, we use the standard group representation theory notation and terminology introduced in the monographs by Curtis and Reiner [9, 10, 11], and Karpilovsky [19]. The monograph by Karpilovsky gives a systematic account of the projective representation theory. For problems of the representation theory of orders in finite-dimensional algebras, we refer to the books by Curtis and Reiner.

A background of the representation theory of finite-dimensional algebras can be found in the monographs by Assem, Simson and Skowroński [1], Drozd and Kirichenko [14], Simson [21], and Simson and Skowroński [24], where among other things the representation types (finite, tame, wild) of finite groups and algebras are discussed. Various aspects of the representation types are considered also by Dowbor and Simson [12, 13], Simson [22], and Simson and Skowroński [23]. 2. On twisted group algebras of OTP representation type. Throughout this paper, we use the following notations: $p \ge 2$ is a prime; K is a field of characteristic p; K^* is the multiplicative group of K; S = K[[X]] is the ring of formal power series in the indeterminate X with coefficients in K, $S^l = \{a^l : a \in S\}$; S^* is the unit group of S, $(S^*)^l = \{a^l : a \in S^*\}$; T is the quotient field of S; $G = G_p \times B$ is a finite group, where G_p is a Sylow p-subgroup; H' is the commutator subgroup of a group H, e is the identity element of H, |h| is the order of $h \in H$. We assume that $|G_p| > 1$ and |B| > 1.

Unless stated otherwise, we suppose that if G_p is non-abelian; then $[K(\xi): K]$ is not divisible by p, where ξ is a primitive (exp B)th root of 1. Given a subgroup Ω of S^* , we denote by $Z^2(H, \Omega)$ the group of all Ω -valued normalized 2-cocycles of the group H, where we assume that H acts trivially on Ω (see (1.2)).

A basis $\{u_h : h \in H\}$ of $S^{\lambda}H$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in H$ is called *canonical* (corresponding to $\lambda \in Z^2(H, S^*)$). We often identify γu_e with $\gamma \in S$. If D is a subgroup of H, then the restriction of $\lambda \in Z^2(H, S^*)$ to $D \times D$ will also be denoted by λ . We assume that in this case $S^{\lambda}D$ is the S-subalgebra of $S^{\lambda}H$ consisting of all S-linear combinations of elements $\{u_d : d \in D\}$, where $\{u_h : h \in H\}$ is a canonical S-basis of $S^{\lambda}H$ corresponding to λ . Given an $S^{\lambda}H$ -module V, we write $\operatorname{End}_{S^{\lambda}H}(V)$ for the ring of all $S^{\lambda}H$ -endomorphisms of V, rad $\operatorname{End}_{S^{\lambda}H}(V)$ for the Jacobson radical of $\operatorname{End}_{S^{\lambda}H}(V)$, and we set

$$\overline{\operatorname{End}_{S^{\lambda}H}(V)} = \operatorname{End}_{S^{\lambda}H}(V)/\operatorname{rad}\operatorname{End}_{S^{\lambda}H}(V).$$

Given $\lambda \in Z^2(H, K^*)$, $K^{\lambda}H$ denotes the twisted group algebra of H over K and $\overline{K^{\lambda}H}$ the quotient algebra of $K^{\lambda}H$ by the radical rad $K^{\lambda}H$.

By a principal unit in S we understand an element $f(X) \in S$ such that $f(X) \equiv 1 \pmod{X}$. Denote by S_0^* the group of principal units of S. Then $S^* = K^* \times S_0^*$. Let q be a prime and $q \neq p$. Then $(S_0^*)^q = S_0^*$. Moreover S_0^* contains no primitive qth root of 1. By Theorem 1.7 in [19, p. 11], every 2-cocycle $\sigma \in Z^2(B, S_0^*)$ is a coboundary. Hence each 2-cocycle $\tau \in Z^2(B, S^*)$ is cohomologous to a 2-cocycle $\nu \in Z^2(B, K^*)$.

Let $G_p = \langle a_1 \rangle \times \cdots \times \langle a_m \rangle$ be an abelian *p*-group of type $(p^{n_1}, \ldots, p^{n_m})$. For any cocycle $\mu \in Z^2(G_p, S^*)$, the algebra $S^{\mu}G_p$ is commutative. The algebra $S^{\mu}G_p$ has a canonical *S*-basis $\{v_g : g \in G_p\}$ satisfying the following conditions:

1) if
$$g = a_1^{j_1} \dots a_m^{j_m}$$
 and $0 \le j_i < p^{n_i}$ for each $i \in \{1, \dots, m\}$, then
 $v_g = v_{a_1}^{j_1} \dots v_{a_m}^{j_m};$

2)
$$v_{a_i}^{p^{r_i}} = \gamma_i v_e$$
, where $\gamma_i = \mu_{a_i, a_i} \mu_{a_i, a_i^2} \dots \mu_{a_i, a_i^{r_i}}, r_i = p^{n_i} - 1$.

n

We denote the algebra $S^{\mu}G_p$ also by $[G_p, S, \gamma_1, \ldots, \gamma_m]$. Similarly if $\mu \in Z^2(G_p, K^*)$, then we denote the algebra $K^{\mu}G_p$ by $[G_p, K, \gamma_1, \ldots, \gamma_m]$ as well. Now we collect several facts we apply later.

LEMMA 2.1. Let R be either a field of characteristic p, or a commutative complete discrete valuation domain of characteristic p, $G = G_p \times B$, $\mu \in Z^2(G_p, R^*), \nu \in Z^2(B, R^*)$ and $\lambda = \mu \times \nu$ be as in (1.1). The algebra $R^{\lambda}G$ is of OTP representation type if and only if the outer tensor product of any indecomposable $R^{\mu}G_p$ -module and any irreducible $R^{\nu}B$ -module is an indecomposable $R^{\lambda}G$ -module.

The proof is similar to that of the corresponding fact for a group algebra (see [7, p. 41], [18, p. 68]).

LEMMA 2.2. Let R be either a field of characteristic p, or a commutative complete discrete valuation domain of characteristic p, $G = G_p \times B$, $\mu \in Z^2(G_p, R^*), \nu \in Z^2(B, R^*)$ and $\lambda = \mu \times \nu$ be as in (1.1). If V is an indecomposable $R^{\mu}G_p$ -module and W is an irreducible $R^{\nu}B$ -module, then

 $\overline{\operatorname{End}_{R^{\lambda}G}(V \ \# \ W)} \cong \overline{\operatorname{End}_{R^{\mu}G_{p}}(V)} \otimes_{\overline{R}} \overline{\operatorname{End}_{R^{\nu}B}(W)},$

where \overline{R} is the residue class field of R.

Proof. See [5, p. 15].

LEMMA 2.3. Let K be an arbitrary field of characteristic p, S = K[[X]], $G = G_p \times B, \ \mu \in Z^2(G_p, S^*), \ \nu \in Z^2(B, K^*) \ and \ \lambda = \mu \times \nu \ be \ as \ in$ (1.1). If K is a splitting field for the K-algebra $K^{\nu}B$, then $S^{\lambda}B$ is of OTP representation type.

Proof. See [5, p. 15]. ■

LEMMA 2.4. Let K be an arbitrary field of characteristic p, S = K[[X]], $G = G_p \times B$, $\mu \in Z^2(G_p, S^*)$, $\nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$ be as in (1.1). Assume that V is an indecomposable $S^{\mu}G_p$ -module and $\overline{\operatorname{End}}_{S^{\mu}G_p}(V)$ is isomorphic to a field that is a finite purely inseparable field extension of K. Then the $S^{\lambda}G$ -module V # W is indecomposable for any irreducible $S^{\nu}B$ -module W.

Proof. Suppose that L is a finite purely inseparable field extension of K and L is K-isomorphic to $\operatorname{End}_{S^{\mu}G_p}(V)$. Denote by Δ the K-algebra $\operatorname{End}_{S^{\nu}B}(W)$. Then $\Delta \cong \operatorname{End}_{K^{\nu}B}(\widetilde{W})$, where \widetilde{W} is the quotient module W/XW. Since $K^{\nu}B$ is a separable algebra, the center of the division K-algebra Δ is a finite separable field extension of K (see [9, p. 485]). The index of Δ is not divisible by p [20]. It follows that $L \otimes_K \Delta$ is a skew field. By Proposition 6.10 in [10, p. 125] and Lemma 2.2, V # W is an indecomposable $S^{\lambda}G$ -module.

PROPOSITION 2.5. Assume that G_p is an abelian group, $G = G_p \times B$, $\mu \in Z^2(G_p, K^*), \nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$ be as in (1.1). If the K-algebra $K^{\mu}G_p$ is a field then the algebra $S^{\lambda}G$ is of OTP representation type.

Proof. Let $L := K^{\mu}G_p$. Then $S^{\mu}G_p = L[[X]]$ is a principal ideal ring. Every indecomposable $S^{\mu}G_p$ -module is isomorphic to $S^{\mu}G_p$. We have

$$\operatorname{End}_{S^{\mu}G_p}(S^{\mu}G_p) \cong S^{\mu}G_p/XS^{\mu}G_p \cong L.$$

The field L is a finite purely inseparable field extension of K (see [19, p. 74]). Applying Lemmas 2.1 and 2.4, we conclude that $S^{\lambda}G$ is of OTP representation type.

PROPOSITION 2.6. Let $G_p = \langle a_1 \rangle \times \cdots \times \langle a_m \rangle$, $m \geq 2$, $G = G_p \times B$, $\mu \in Z^2(G_p, S^*)$, $\nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$ be as in (1.1). Assume that $S^{\mu}G_p = [G_p, S, \gamma_1, \dots, \gamma_{m-1}, 1 + X]$, where $\gamma_1, \dots, \gamma_{m-1} \in K^*$. If $[K(\sqrt[p]{\gamma_1}, \dots, \sqrt[p]{\gamma_{m-1}}): K] = p^{m-1}$, then $S^{\lambda}G$ is of OTP representation type.

Proof. The *T*-algebra $T^{\mu}G_p$ is a field and $S^{\mu}G_p$ is the valuation domain in $T^{\mu}G_p$. Any indecomposable $S^{\mu}G_p$ -module is isomorphic to the regular $S^{\mu}G_p$ -module. Let $\sigma \in Z^2(G_p, K^*)$ and $\sigma_{a,b} \equiv \mu_{a,b} \pmod{X}$ for all $a, b \in G_p$. Then $S^{\mu}G_p/XS^{\mu}G_p \cong K^{\sigma}G_p$. Since $\operatorname{End}_{S^{\mu}G_p}(S^{\mu}G_p) \cong S^{\mu}G_p$, we conclude, by Proposition 5.22 in [10, p. 112], that

$$\overline{\operatorname{End}_{S^{\mu}G_p}(S^{\mu}G_p)} \cong (S^{\mu}G_p/XS^{\mu}G_p)/\operatorname{rad}(S^{\mu}G_p/XS^{\mu}G_p) \cong \overline{K^{\sigma}G_p}.$$

The K-algebra $\overline{K^{\sigma}G_p}$ is isomorphic to a field that is a finite purely inseparable field extension of K. By Lemmas 2.1 and 2.4, $S^{\lambda}G$ is of OTP representation type.

Assume that S = K[[X]], H is a subgroup of G_p , $\mu \in Z^2(G_p, S^*)$ and $\tau \in Z^2(H, S^*)$. Suppose also that $S^{\tau}H$ is an S-subalgebra of the algebra $S^{\mu}G_p$. We say that $S^{\tau}H$ is a μ -extended algebra if there exists a subgroup D of G_p and a cocycle $\sigma \in Z^2(D, S^*)$ such that $H \subset D$, $S^{\mu}D = S^{\sigma}D$ as S-algebras and the restriction of σ to $H \times H$ is equal to τ .

LEMMA 2.7 (see [6]). Let G_p be an abelian p-group, $G = G_p \times B$, $\mu \in Z^2(G_p, S^*)$, $\nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$ be as in (1.1). Assume that $S^{\mu}G_p$ contains a μ -extended group algebra of a group of order greater than two over S. Then $S^{\lambda}G$ is of OTP representation type if and only if K is a splitting field for $K^{\nu}B$.

Assume now that F is a field of characteristic 2 complete with respect to a discrete valuation, R is the valuation domain in F, $G_2 = \langle a \rangle$ is a cyclic group of order 2^n $(n \ge 1)$ and $R^{\mu}G_2 = [G_2, R, \gamma^{2^l}]$, where $l \in \{0, 1\}, \gamma \in R^*$ and $\gamma \notin R^2$ if $n \ge 2$. Denote by ξ a root of the polynomial

$$Y^{2^n} - \gamma^{2^l}.$$

Let $G = G_2 \times B$, $\nu \in Z^2(B, \mathbb{R}^*)$ and $\lambda = \mu \times \nu$. The following fact is also proved in [6].

PROPOSITION 2.8. If $R[\xi]$ is the valuation domain in $F(\xi)$, then $R^{\lambda}G$ is of OTP representation type.

3. On groups of OTP projective representation type. We recall that $G = G_p \times B$, S = K[[X]], T is the quotient field of S, and i(K) is as in (1.3). Let $|G'_p| > 2$, $\mu \in Z^2(G_p, S^*)$, $\nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$. By the corollary to Theorem 1 in [5, p. 16], the algebra $S^{\lambda}G$ is of OTP representation type if and only if K is a splitting field for $K^{\nu}B$. Therefore, unless stated otherwise, we assume that G_p is an abelian p-group. Denote by m the number of invariants of G_p . In view of Theorem 2 in [5, p. 19], the group G is of OTP projective (S, K^*) -representation type if and only if one of the following conditions is satisfied:

1) $m \leq i(K);$

- 2) p = 2, m = i(K) + 1 and G_2 has at least one invariant equal to 2;
- 3) K is a splitting field for $K^{\sigma}B$ for some $\sigma \in Z^2(B, K^*)$.

In this section, we describe the groups $G = G_p \times B$ of OTP projective (S, Ω) -representation type, where G_p is abelian and $\Omega \neq K^*$.

THEOREM 3.1. Let Ω be the subgroup of S^* generated by K^* and $(S^*)^p$. The group $G = G_p \times B$ is of OTP projective (S, Ω) -representation type if and only if one of the following conditions is satisfied:

(i) $m \leq i(K);$

(ii) p = 2 and m = i(K) + 1;

(iii) K is a splitting field for some K-algebra $K^{\nu}B$.

Proof. Let $\mu \in Z^2(G_p, \Omega)$, $\nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$. Suppose that $S^{\mu}G_p = [G_p, S, \gamma_1 f_1(X)^p, \dots, \gamma_m f_m(X)^p],$

where $\gamma_1, \ldots, \gamma_m \in K^*$ and $f_1(X), \ldots, f_m(X)$ are principal units in S. If $p \neq 2$ and m > i(K) then $S^{\mu}G_p$ contains a μ -extended group algebra of a group of order $p \geq 3$ over S. If p = 2 and m > i(K) + 1 then $S^{\mu}G_2$ contains a μ -extended group algebra of an abelian group of type (2, 2) over S. In these cases, by Lemma 2.7, $S^{\lambda}G$ is of OTP representation type if and only if K is a splitting field for $K^{\nu}B$. The necessity is proved.

To prove the sufficiency, assume that $m \leq i(K)$. Then there exists $\sigma \in Z^2(G_p, K^*)$ such that $K^{\sigma}G_p$ is a field. By Proposition 2.5, the algebra $S^{\lambda}G$ with $\lambda = \sigma \times \nu$ is of OTP representation type for each $\nu \in Z^2(B, K^*)$. Assume now that p = 2, $i(K) \neq 0$ and m = i(K) + 1. There exist $\gamma_1, \ldots, \gamma_{m-1} \in K^*$ such that $\left[K\left(\sqrt{\gamma_1}, \ldots, \sqrt{\gamma_{m-1}}\right): K\right] = 2^{m-1}$. Let $G_2 = \langle a_1 \rangle \times \cdots \times \langle a_m \rangle$,

 $A = \langle a_1 \rangle \times \cdots \times \langle a_{m-1} \rangle$ and $H = \langle a_m \rangle$. We put

 $S^{\mu}G_2 = [G_2, S, \gamma_1, \dots, \gamma_{m-1}, (1+X)^2]$ and $S^{\lambda}G = S^{\mu}G_2 \otimes_S S^{\nu}B_2$

where $\nu \in Z^2(B, K^*)$ is an arbitrary cocycle. Denote by τ the restriction of μ to $A \times A$. Then $\tau \in Z^2(A, K^*)$ and $L := K^{\tau}A$ is a field. It follows that $F := T^{\tau}A$ is also a field and $R := S^{\tau}A$ is the valuation domain in F. Moreover $R \cong L[[X]]$. Let $D = H \times B$. The algebra $S^{\lambda}G$ is a twisted group algebra of D over R. If we denote it by $R^{\sigma}D$, we have an algebra isomorphism $R^{\sigma}D \cong R^{\mu}H \otimes_R R^{\nu}B$.

Let M be an $S^{\lambda}G$ -module. Then M is a finitely generated R-module. Denote by 2^n the exponent of A. We have $r^{2^n} \in S$ for any $r \in R$. Suppose that $r \in R$, $v \in M$, $v \neq 0$ and rv = 0. Then $r^{2^n} \cdot v = 0$. Since M is a free S-module, $r^{2^n} = 0$, and consequently r = 0. This means that M is a torsion-free R-module. Since R is a principal ideal ring, M is a free R-module, i.e. M is an $R^{\sigma}D$ -module. Conversely, if M is an $R^{\sigma}D$ -module then M is an $S^{\lambda}G$ -module. Note also that M is an indecomposable $S^{\lambda}G$ -module if and only if M is an indecomposable $R^{\sigma}D$ -module.

By Proposition 2.8, $R^{\sigma}D$ is of OTP *R*-representation type. Assume that V is an indecomposable $S^{\mu}G_{p}$ -module and W is an irreducible $S^{\nu}B$ -module. In view of Proposition 2.5, $U := R \otimes_{S} W$ is an irreducible $R^{\nu}B$ -module. Because V is an indecomposable $R^{\mu}H$ -module then, by Lemma 2.1, the $R^{\sigma}D$ -module $V \otimes_{R} U$ is indecomposable. Since $V \otimes_{R} U$ is also an indecomposable $S^{\lambda}G$ -module and

$$V \otimes_R U \cong (V \otimes_R R) \otimes_S W \cong V \otimes_S W,$$

we conclude that $V \otimes_S W$ is an indecomposable $S^{\lambda}G$ -module. Consequently, in view of Lemma 2.1, $S^{\lambda}G$ is of OTP *S*-representation type and therefore the group *G* is of OTP projective (S, Ω) -representation type.

In the case when p = 2, i(K) = 0 and m = 1, we set $S^{\mu}G_2 = [G_2, S, (1+X)^2]$. By Proposition 2.8, the algebra $S^{\lambda}G := S^{\mu}G_2 \otimes_S S^{\nu}B$ is of OTP representation type for any $\nu \in Z^2(B, K^*)$. Hence G is of OTP projective (S, Ω) -representation type.

THEOREM 3.2. Let $p \neq 2$ and Ω be the subgroup of S^* generated by K^* , $(S^*)^p$ and f(X), where $f(X) \equiv 1 \pmod{X}$ and $f(X) \not\equiv 1 \pmod{X^2}$. The group $G = G_p \times B$ is of OTP projective (S, Ω) -representation type if and only if $m \leq i(K) + 1$ or K is a splitting field for some K-algebra $K^{\nu}B$.

Proof. Since (f(X)-1)S = XS, we may assume that f(X) = 1+X. Let $\mu \in Z^2(G_p, \Omega), \nu \in Z^2(B, K^*)$ and $\lambda = \mu \times \nu$. Choose a canonical S-basis of $S^{\mu}G_p$ such that

$$S^{\mu}G_{p} = [G_{p}, S, \gamma_{1}(1+X)^{i}f_{1}(X)^{p}, \gamma_{2}f_{2}(X)^{p}, \dots, \gamma_{m}f_{m}(X)^{p}]$$

where $\gamma_1, \ldots, \gamma_m \in K^*$ and $f_1(X), \ldots, f_m(X)$ are principal units of S. If

m-1 > i(K) then $S^{\mu}G_p$ contains a μ -extended group algebra of a group of order p over S. By Lemma 2.7, $S^{\lambda}G$ is of OTP representation type if and only if K is a splitting field for $K^{\nu}B$. The necessity of the theorem is proved.

To prove the sufficiency, assume that $m \leq i(K)$. Then there exists $\sigma \in Z^2(G_p, K^*)$ such that $K^{\sigma}G_p$ is a field. By Proposition 2.5, $S^{\lambda}G := S^{\sigma}G_p \otimes_S S^{\nu}B$ is of OTP representation type for each $\nu \in Z^2(B, K^*)$. If m = i(K) + 1, $i(K) \neq 0$, then there exist elements $\gamma_1, \ldots, \gamma_{m-1} \in K^*$ such that $S^{\mu}G_p := [G_p, S, \gamma_1, \ldots, \gamma_{m-1}, 1 + X]$ is the valuation domain in the field $T^{\mu}G_p$. By Proposition 2.6, the algebra $S^{\lambda}G := S^{\mu}G_p \otimes_S S^{\nu}B$ is of OTP representation type, for any $\nu \in Z^2(B, K^*)$. If K is a splitting field for some K-algebra $K^{\nu}B$ then, by Lemma 2.3, the algebra $S^{\lambda}G := S^{\mu}G_p \otimes_S S^{\nu}B$ is of OTP representation type for every $\mu \in Z^2(G_p, \Omega)$.

PROPOSITION 3.3. Let p = 2 and Ω be a subgroup of S^* generated by K^* , $(S^*)^2$ and f(X), where $f(X) \equiv 1 \pmod{X}$ and $f(X) \not\equiv 1 \pmod{X^2}$. If $G = G_2 \times B$ is of OTP projective (S, Ω) -representation type then $m \leq i(K) + 2$ or K is a splitting field for some K-algebra $K^{\nu}B$.

Proof. Apply the arguments used in the proof of Theorem 3.2.

THEOREM 3.4. Let p = 2, $G = G_2 \times B$ and Ω be the subgroup of S^* generated by K^* , $(S^*)^4$ and f(X), where $f(X) \equiv 1 \pmod{X}$ and $f(X) \not\equiv 1 \pmod{X^2}$. The group G is of OTP projective (S, Ω) -representation type if and only if one of the following conditions is satisfied:

- (i) $m \le i(K) + 1;$
- (ii) m = i(K) + 2 and G_2 has at least one invariant equal to 2;
- (iii) K is a splitting field for some K-algebra $K^{\nu}B$.

Proof. We may assume that f(X) = 1 + X. Let $G_2 = \langle a_1 \rangle \times \cdots \times \langle a_m \rangle$, $H = \{g \in G : g^4 = e\}, H = \langle h_1 \rangle \times \cdots \times \langle h_m \rangle$, where $h_i \in \langle a_i \rangle$ for every $i \in \{1, \ldots, m\}; \mu \in Z^2(G_2, \Omega), \nu \in Z^2(B, K^*) \text{ and } \lambda = \mu \times \nu$. Let $S^{\lambda}G$ be of OTP representation type and assume that K is not a splitting field for the K-algebra $K^{\nu}B$. By Theorem 3.1, we may suppose that

$$S^{\mu}G_{2} = [G_{2}, S, \gamma_{1}(1+X)f_{1}(X)^{4}, \gamma_{2}(1+X)^{i}f_{2}(X)^{4}, \dots, \gamma_{m}f_{m}(X)^{4}],$$

where $\gamma_1, \ldots, \gamma_m \in K^*$, $i \in \{0, 2\}$ and $f_1(X), \ldots, f_m(X)$ are principal units in S. Therefore

$$S^{\mu}H = [H, S, \gamma_1(1+X), \gamma_2(1+X)^i, \gamma_3, \dots, \gamma_m],$$

where i = 0 if $|h_1| \ge |h_2|$, and $i \in \{0, 2\}$ if $|h_1| = 2$, $|h_2| = 4$. Denote by $\{v_h : h \in H\}$ a canonical S-basis of $S^{\mu}H$. If

$$v_{h_1}^2 = \gamma_1(1+X)v_e, \quad v_{h_2}^4 = \gamma_2(1+X)^2v_e,$$

then $(v_{h_1}^{-1}v_{h_2})^4 = (\gamma_1^{-2}\gamma_2)v_e$. Since $\langle h_1 \rangle \times \langle h_2 \rangle = \langle h_1 \rangle \times \langle h_1 h_2 \rangle$, we shall assume that i = 0. By Lemma 2.7, $m - 1 \leq i(K) + 1$, hence $m \leq i(K) + 2$.

Let m = i(K) + 2, $i(K) \neq 0$ and H be a direct product of m cyclic subgroups of order 4 each. Suppose that $L := K[v_{h_2}, \ldots, v_{h_{m-1}}]$ is a field. Let $F := K[v_{h_2}^2, \ldots, v_{h_{m-1}}^2]$. For each $\alpha \in K$ there exists $\beta \in F$ such that $\alpha = \beta^2$. The element β is uniquely expressible as

$$\beta = \sum_{i_2,\dots,i_{m-1}} \delta_{i_2,\dots,i_{m-1}} v_{h_2}^{2i_2} \dots v_{h_{m-1}}^{2i_{m-1}},$$

where $i_j = 0, 1$ and $\delta_{i_2,...,i_{m-1}} \in K$. However, $\delta_{i_2,...,i_{m-1}} = \eta_{i_2,...,i_{m-1}}^2$ for some $\eta_{i_2,...,i_{m-1}} \in F$. This implies $\beta = \rho^2$ for $\rho \in L$, and hence $\alpha = \rho^4$. It follows that $S^{\mu}H$ contains the μ -extended group algebra of a group of order 4 over S. By Lemma 2.7, K is a splitting field for $K^{\nu}B$, a contradiction. Consequently, G_2 has at least one invariant equal to 2. The necessity is proved.

To prove the sufficiency, we assume that $m \leq i(K) + 1$ and we set

 $S^{\mu}G_2 = [G_2, S, \gamma_1, \dots, \gamma_{m-1}, 1+X],$

where $\gamma_1, \ldots, \gamma_{m-1} \in K^*$ and $[K(\sqrt{\gamma_1}, \ldots, \sqrt{\gamma_{m-1}}): K] = 2^{m-1}$. If m = i(K) + 2 and $|a_m| = 2$, we put $S^{\mu}G_2 = [G_2, S, \gamma_1, \ldots, \gamma_{m-2}, 1+X, 1]$, where $\gamma_1, \ldots, \gamma_{m-2} \in K^*$ and $[K(\sqrt{\gamma_1}, \ldots, \sqrt{\gamma_{m-2}}): K] = 2^{m-2}$. Arguing as in the proof of Theorem 3.1, we conclude that the algebra

$$S^{\lambda}G := S^{\mu}G_2 \otimes_S S^{\nu}B$$

is of OTP representation type for any $\nu \in Z^2(B, K^*)$.

PROPOSITION 3.5. Let K be an arbitrary field of characteristic $p, S = K[[X]], G_p$ a finite p-group and $G = G_p \times B$. The group G is of OTP projective $(S, (S^*)^p)$ -representation type if and only if one of the following conditions is satisfied:

- (i) p = 2 and G_2 is cyclic;
- (ii) K is a splitting field for some K-algebra $K^{\nu}B$, where $\nu \in Z^2(B, (K^*)^p)$.

Proof. Let $\mu \in Z^2(G_p, (S^*)^p)$, $\nu \in Z^2(B, (K^*)^p)$ and $\lambda = \mu \times \nu$. Assume that p = 2 and G_2 is non-cyclic. Then $\hat{G}_2 := G_2/G'_2$ is non-cyclic. The restriction of μ to $G'_2 \times G'_2$ is a coboundary [19, p. 42]. We may assume that $\mu_{h_1,h_2} = 1$ for all $h_1, h_2 \in G'_2$. Denote $\hat{G} = \hat{G}_2 \times B$, let $\{u_h : h \in G_2\}$ be a canonical S-basis of $S^{\mu}G_2$ corresponding to μ , and set

$$U = \bigoplus_{h \in G'_2 \setminus \{e\}} S^{\mu} G_2(u_h - u_e)$$

and $S^{\hat{\mu}}\hat{G}_2 = S^{\mu}G_2/U$. By Lemma 2.7, the algebra $S^{\hat{\lambda}}\hat{G} := S^{\hat{\mu}}\hat{G}_2 \otimes_S S^{\nu}B$ is of OTP representation type if and only if K is a splitting field for $K^{\nu}B$. If $p \neq 2$, we argue as in the case p = 2. This completes the proof of the necessity. To prove the sufficiency, assume that p = 2, G_2 is cyclic, and put $S^{\mu}G_2 = [G_2, S, (1 + X)^2]$, $S^{\lambda}G = S^{\mu}G_2 \otimes_S S^{\nu}B$, where $\nu \in Z^2(B, (K^*)^2)$ is an arbitrary cocycle. By Proposition 2.8, $S^{\lambda}G$ is of OTP representation type. If the condition (ii) holds, apply Lemma 2.3.

PROPOSITION 3.6. Let p = 2, K be an arbitrary field of characteristic 2, S = K[[X]], G_2 a finite 2-group, and $G = G_2 \times B$. The group G is of OTP projective $(S, (S^*)^4)$ -representation type if and only if $|G_2| = 2$ or K is a splitting field for some K-algebra $K^{\nu}B$, where $\nu \in Z^2(B, (K^*)^4)$.

Proof. Apply Proposition 3.5 and Lemma 2.7.

PROPOSITION 3.7. Let K be an arbitrary field of characteristic $p, S = K[[X]], G_p$ a finite p-group, and $G = G_p \times B$. The group G is of OTP projective $(S, (K^*)^p)$ -representation type if and only if one of the following conditions is satisfied:

- (i) p = 2, K is a perfect field and $|G_2| = 2$;
- (ii) p = 2, K is a non-perfect field and G_2 is a cyclic group;
- (iii) K is a splitting field for some K-algebra $K^{\nu}B$, where $\nu \in Z^2(B, (K^*)^p)$.

Proof. Apply Propositions 3.5, 2.8 and Lemma 2.7.

4. On groups of purely OTP projective representation type. In this section, K is an arbitrary field of characteristic p, $t(K^*)$ is the torsion subgroup of K^* , S = K[[X]] and $G = G_p \times B$ is a finite group, where G_p is a p-group, B is a p'-group and $|G_p| > 1$, |B| > 1.

A short exact sequence of groups

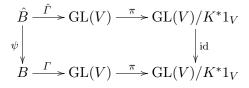
$$E\colon 1\to D\xrightarrow{\varphi} \hat{B}\to B\to 1$$

is called an *extension* of D by B. If $\varphi(D)$ is contained in the center of B, then E is called a *central extension*. If \hat{B} is a finite group, then E is a *finite extension*.

Let V be a finite-dimensional vector space over K, GL(V) the group of all automorphisms of V, 1_V the identity automorphism of V, and let

$$1 \to D \to \hat{B} \xrightarrow{\psi} B \to 1$$

be a finite central group extension. Denote by π : $\operatorname{GL}(V) \to \operatorname{GL}(V)/K^* 1_V$ the canonical group epimorphism. Let $\hat{\Gamma}$ be an ordinary K-representation of \hat{B} in V such that $\hat{\Gamma}(d) \in K^* 1_V$ for any $d \in D$. There is a projective K-representation Γ of B in V such that the diagram



is commutative. We say that Γ lifts projectively to the ordinary K-representation $\hat{\Gamma}$ of \hat{B} . If $|D| = |H^2(B, K^*)|$ and any projective K-representation of B lifts projectively to an ordinary K-representation of \hat{B} , then \hat{B} is called a covering group of B over K (see [19, p. 138]).

Here $H^2(B, K^*) = Z^2(B, K^*)/B^2(B, K^*)$ is the second cohomology group of B over K^* (see [19, p. 6]).

LEMMA 4.1. The group $G = G_p \times B$ is of purely OTP projective S-representation type if and only if $|G_p| = 2$ or K is a splitting field for $K^{\nu}B$ for any $\nu \in Z^2(B, K^*)$.

Proof. See [5, p. 22].

Now we prove the main results of this section.

THEOREM 4.2. The group $G = G_p \times B$ is of purely OTP projective S-representation type if and only if one of the following two conditions is satisfied:

- (i) p = 2 and $|G_2| = 2$.
- (ii) There exists a finite central group extension 1 → A → B̂ → B → 1 such that any projective K-representation of B lifts projectively to an ordinary K-representation of B̂ and K is a splitting field for B̂.

Proof. By Proposition 2.9 in [4, p. 45], K is a splitting field for all twisted group algebras of B over K if and only if the condition (ii) holds. Hence the theorem follows by applying Lemma 4.1.

PROPOSITION 4.3. Let S_0^* be the group of principal units in S. A group $G = G_p \times B$ is of purely OTP projective (S, S_0^*) -representation type if and only if $|G_p| = 2$ or K is a splitting field for B.

Proof. By Theorem 3 in [18], the group algebra SG is of OTP representation type if and only if $|G_p| = 2$ or K is a splitting field for B. If $|G_p| = 2$ then, by Lemma 4.1, $S^{\lambda}G$ is of OTP representation type for any $\lambda \in Z^2(G, S_0^*)$. Every cocycle $\nu \in Z^2(B, S_0^*)$ is a coboundary, hence $S^{\nu}B$ is isomorphic to SB. If K is a splitting field for B, then, by Lemma 2.3, an algebra $S^{\lambda}B := S^{\mu}G_p \otimes_S SB$ is of OTP representation type for any $\mu \in Z^2(G_p, S_0^*)$.

THEOREM 4.4. Let S = K[[X]] and $G = G_p \times B$. Assume that either $t(K^*) = t(K^*)^q$ for any prime q that divides |B'|, or every prime divisor of |B'| is also a divisor of |B: B'|. Then G is of purely OTP projective

S-representation type if and only if $|G_p| = 2$ or there exists a covering group \hat{B} of B over K such that K is a splitting field for \hat{B} .

Proof. By Proposition 2.10 in [4, p. 45], K is a splitting field for any twisted group algebra of B over K if and only if there exists a covering group \hat{B} of B over K such that K is a splitting field for \hat{B} . Hence the theorem follows by applying Lemma 4.1.

REFERENCES

- I. Assem, D. Simson and A. Skowroński, *Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory*, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
- [2] L. F. Barannyk, Modular projective representations of direct products of finite groups, Publ. Math. Debrecen 63 (2003), 537–554.
- [3] L. F. Barannyk, Indecomposable projective representations of direct products of finite groups over a field of characteristic p, Comm. Algebra 40 (2012), 2540–2556.
- [4] L. F. Barannyk, Finite groups of OTP projective representation type, Colloq. Math. 126 (2012), 35–51.
- [5] L. F. Barannyk and D. Klein, Indecomposable projective representations of direct products of finite groups over a ring of formal power series, Prace Nauk. Akad. Jana Długosza Częstochowa Mat. 15 (2010), 9–24.
- [6] L. F. Barannyk and D. Klein, On twisted group algebras of OTP representation type, Colloq. Math. 127 (2012), 213–232.
- [7] H. I. Blau, Indecomposable modules for direct products of finite groups, Pacific J. Math. 54 (1974), 39–44.
- [8] R. Brauer and W. Feit, An analogue of Jordan's theorem in characteristic p, Ann. of Math. 84 (1966), 119–131.
- C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, 1962.
- [10] C. W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 1, Wiley, 1981.
- C. W. Curtis and I. Reiner, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. 2, Wiley, 1987.
- [12] P. Dowbor and D. Simson, Quasi-Artin species and rings of finite representation type, J. Algebra 63 (1980), 435–443.
- [13] P. Dowbor and D. Simson, A characterization of hereditary rings of finite representation type, Bull. Amer. Math. Soc. 2 (1980), 300–302.
- [14] Yu. A. Drozd and V. V. Kirichenko, *Finite Dimensional Algebras*, Springer, 1994.
- [15] P. M. Gudyvok, On modular and integral representations of finite groups, Dokl. Akad. Nauk SSSR 214 (1974), 993–996 (in Russian); English transl.: Soviet Math. Dokl. 15 (1974), 264–269.
- [16] P. M. Gudyvok, On modular and integral P-adic representations of a direct product of groups, Ukrain. Math. Zh. 29 (1977), 580–588 (in Russian); English transl.: Ukrain. Math. J. 29 (1977), 443–450.
- P. M. Gudyvok, On representations of a direct product of groups over complete discretely normed rings, Dokl. Akad. Nauk SSSR 237 (1977), 25–27 (in Russian); English transl.: Soviet Math. Dokl. 18 (1977), 1388–1391.

- [18] P. M. Gudyvok, On representations of a direct product of finite groups over complete discrete valuation rings, Ukrain. Mat. Visn. 2 (2005), 65–73 (in Russian); English transl.: Ukrain. Math. Bull. 2 (2005), 67–75.
- [19] G. Karpilovsky, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
- [20] H. N. Ng, Degrees of irreducible projective representations of finite groups, J. London Math. Soc. 10 (1975), 379–384.
- [21] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992.
- [22] D. Simson, On Corner type Endo-Wild algebras, J. Pure Appl. Algebra 202 (2005), 118–132.
- [23] D. Simson and A. Skowroński, The Jacobson radical power series of module categories and the representation type, Bol. Soc. Mat. Mexicana 5 (1999), 223–236.
- [24] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 3: Representation-Infinite Tilted Algebras, London Math. Soc. Student Texts 72, Cambridge Univ. Press, 2007.
- [25] O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, Springer, 1975.

Leonid F. Barannyk, Dariusz Klein Institute of Mathematics

Pomeranian University of Słupsk

Arciszewskiego 22d

76-200 Słupsk, Poland

E-mail: barannyk@apsl.edu.pl klein@apsl.edu.pl

Received 25 May 2012

(5706)