EXPLICIT FUNDAMENTAL SOLUTIONS OF SOME SECOND ORDER DIFFERENTIAL OPERATORS ON HEISENBERG GROUPS

BY
ISOLDA CARDOSO (Rosario) and LINDA SAAL (Córdoba)

Abstract

Let p, q, n be natural numbers such that $p+q=n$. Let \mathbb{F} be either \mathbb{C}, the complex numbers field, or \mathbb{H}, the quaternionic division algebra. We consider the Heisenberg group $N(p, q, \mathbb{F})$ defined $\mathbb{F}^{n} \times \mathfrak{I m} \mathbb{F}$, with group law given by $$
(v, \zeta)\left(v^{\prime}, \zeta^{\prime}\right)=\left(v+v^{\prime}, \zeta+\zeta^{\prime}-\frac{1}{2} \mathfrak{I m} B\left(v, v^{\prime}\right)\right)
$$ where $B(v, w)=\sum_{j=1}^{p} v_{j} \overline{w_{j}}-\sum_{j=p+1}^{n} v_{j} \overline{w_{j}}$. Let $U(p, q, \mathbb{F})$ be the group of $n \times n$ matrices with coefficients in \mathbb{F} that leave the form B invariant. We compute explicit fundamental solutions of some second order differential operators on $N(p, q, \mathbb{F})$ which are canonically associated to the action of $U(p, q, \mathbb{F})$.

1. Introduction. In $M-\mathrm{R} 2$ the authors exhaustively discussed the problem of invertibility for the class of second order, homogeneous left invariant differential operators on the Heisenberg group, which in addition are formally selfadjoint, modulo a derivative in the central direction.

The best known examples of this class are of the form $L+i \alpha U$, where L is the sublaplacian, U generates the centre of the Lie algebra, and α is a complex number. For $\alpha \neq 2 k+n, k$ a nonnegative integer, an explicit fundamental solution was given in [F-S]. It is also mentioned in M-R2] that these operators are essentially the only ones, in the class considered, which admit simple expressions for their fundamental solutions.

Moreover, in [K] the groups of Heisenberg type were introduced with the purpose, in part, of giving explicit fundamental solutions for some second order differential operators on two-step nilpotent Lie groups.

In [B-D-R] the authors considered the Heisenberg group under the action of $U(n)$, and used the spherical analysis of the associated Gelfand pair in order to obtain a fundamental solution for any power of the sublaplacian. Inspired by this work, the same was done in G-S2 for a second order homogeneous differential operator canonically associated to the action of $U(p, q)$. The computation used the spherical distributions of the corresponding generalized Gelfand pair.

The aim of this paper is to continue this research. More precisely, let p, q, n be natural numbers such that $p+q=n$. Let \mathbb{F} be either \mathbb{C}, the complex field, or \mathbb{H}, the quaternionic division algebra. We consider the Heisenberg $\operatorname{group} N(p, q, \mathbb{F})=\mathbb{F}^{n} \times \mathfrak{I m} \mathbb{F}$, with group law given by

$$
(v, \zeta)\left(v^{\prime}, \zeta^{\prime}\right)=\left(v+v^{\prime}, \zeta+\zeta^{\prime}-\frac{1}{2} \mathfrak{I m} B\left(v, v^{\prime}\right)\right)
$$

where $B(v, w)=\sum_{j=1}^{p} v_{j} \overline{w_{j}}-\sum_{j=p+1}^{n} v_{j} \overline{w_{j}}$. The associated Lie algebra is $\eta(p, q, \mathbb{F})=\mathbb{F}^{n} \oplus \mathfrak{I m}(\mathbb{F})$, with Lie bracket given by

$$
\left[(v, \zeta),\left(v^{\prime}, \zeta^{\prime}\right)\right]=\left(0,-\mathfrak{I m} B\left(v, v^{\prime}\right)\right)
$$

Let $U(p, q, \mathbb{H})$ be the group of $n \times n$ matrices with coefficients in \mathbb{F} that leave the form B invariant. Then $U(p, q, \mathbb{F})$ acts by automorphisms on $N(p, q, \mathbb{F})$ by

$$
g \cdot(v, \zeta)=(g v, \zeta)
$$

In D-M it is proved that $(U(p, q, \mathbb{F}) \ltimes N(p, q, \mathbb{F}), N(p, q, \mathbb{F}))$, where \ltimes denotes semidirect product, is a generalized Gelfand pair, and thus the algebra $\mathcal{D}(N(p, q, \mathbb{F}))$ of left invariant and $U(p, q, \mathbb{F})$-invariant differential operators on $N(p, q, \mathbb{F})$ is commutative (see [D]).

In this paper we obtain explicit fundamental solutions for some generators of this algebra. Recall that a fundamental solution for a differential operator \mathcal{L} is a distribution Φ such that for all test functions f, we have $\mathcal{L}(f * \Phi)=(\mathcal{L} f) * \Phi=f * \mathcal{L}(\Phi)=f$. So the operator K defined by $K f=f * \Phi$ satisfies $K \circ \mathcal{L} f=\mathcal{L} \circ K f=f$.

If $\mathbb{F}=\mathbb{C}$ and $\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, U\right\}$ denotes the standard basis of the Heisenberg Lie algebra with $\left[X_{i}, Y_{j}\right]=\delta_{i j} U$ and all the other brackets zero, then $\mathcal{D}(N(p, q, \mathbb{C}))$ is generated by U and

$$
L=\sum_{j=1}^{p}\left(X_{j}^{2}+Y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

A complete description of the spherical distributions associated to this pair is given in [D-M] and G-S1]. Moreover, for $\lambda \in \mathbb{R}, \lambda \neq 0$ and $k \in \mathbb{Z}$, there exists a $U(p, q, \mathbb{C})$-invariant tempered distribution $S_{\lambda, k}$ on $N(p, q, \mathbb{C})$ satisfying

$$
\begin{equation*}
L S_{\lambda, k}=-|\lambda|(2 k+p-q) S_{\lambda, k}, \quad i U S_{\lambda, k}=\lambda S_{\lambda, k} \tag{1.1}
\end{equation*}
$$

Let us consider the operator $\mathcal{L}_{\alpha}=L+i \alpha U$, where α is a noninteger complex number. To obtain a fundamental solution Φ_{α} for \mathcal{L}_{α} we will strongly use the expression of the inversion formula for Schwartz functions f on the Heisenberg group, which is given by

$$
\begin{equation*}
f(z, t)=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} f * S_{\lambda, k}|\lambda|^{n} d \lambda, \quad(z, t) \in N(p, q, \mathbb{C}) \tag{1.2}
\end{equation*}
$$

Because of 1.1 and $(1.2$ it is natural to propose as a fundamental solution of \mathcal{L}_{α},

$$
\begin{equation*}
\left\langle\Phi_{\alpha}, f\right\rangle=\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} \frac{1}{-|\lambda|(2 k+p-q-\alpha \operatorname{sgn} \lambda)}\left\langle S_{\lambda, k}, f\right\rangle|\lambda|^{n} d \lambda \tag{1.3}
\end{equation*}
$$

We will see in Theorem 3.1 that Φ_{α} is a tempered distribution and its expression is obtained in Theorem 3.9. The strategy for the computation is the use of explicit formulas for $S_{\lambda, k}$.

If $\mathbb{F}=\mathbb{H}$ we take $\left\{X_{1}^{0}, X_{1}^{1}, X_{1}^{2}, X_{1}^{3}, \ldots, X_{n}^{0}, X_{n}^{1}, X_{n}^{2}, X_{n}^{3}, Z_{1}, Z_{2}, Z_{3}\right\}$ the canonical basis for the Lie algebra, where Z_{1}, Z_{2}, Z_{3} generate the center of $\eta(p, q, \mathbb{H})$. Here, the operators

$$
L=\sum_{r=1}^{p} \sum_{l=0}^{3}\left(X_{r}^{l}\right)^{2}-\sum_{r=p+1}^{n} \sum_{l=0}^{3}\left(X_{r}^{l}\right)^{2}, \quad U=\sum_{l=1}^{3} Z_{l}^{2}
$$

generate the algebra $\mathcal{D}(N(p, q, \mathbb{H}))$.
In this case, the spherical distributions $\varphi_{w, k}, w \in \mathbb{R}^{3}, k \in \mathbb{Z}$, were computed in [V] and they satisfy

$$
\begin{equation*}
L \varphi_{w, k}=-|w|(2 k+2(p-q)) \varphi_{w, k}, \quad U \varphi_{w, k}=-\lambda^{2} \varphi_{w, k} \tag{1.4}
\end{equation*}
$$

Since L has a nontrivial kernel, we can only hope to find a relative fundamental solution for L. We recall that if π denotes the orthogonal projection onto the kernel of a differential operator \mathcal{L}, a relative fundamental solution for \mathcal{L} is a distribution Φ such that

$$
\mathcal{L}(f * \Phi)=(\mathcal{L} f) * \Phi=f * \mathcal{L}(\Phi)=f-\pi(f)
$$

for all test functions f.
In order to obtain a (relative) fundamental solution Φ for the operator L we will use the fact that the family $\left\{\varphi_{w, k}\right\}$ also provides an inversion formula (see [R]): for all $f \in \mathcal{S}(N(p, q, \mathbb{H}))$ we have

$$
\begin{equation*}
f(\alpha, z)=\sum_{k \in \mathbb{Z}} \int_{\mathbb{R}^{3}}\left(f * \varphi_{w, k}\right)(\alpha, z)|w|^{2 n} d w, \quad(\alpha, z) \in N(p, q, \mathbb{H}) \tag{1.5}
\end{equation*}
$$

Because of (1.4) and 1.5 we propose as a relative fundamental solution of L,

$$
\begin{equation*}
\langle\Phi, f\rangle=\sum_{k \in \mathbb{Z}, k \neq(q-p)} \int_{\mathbb{R}^{3}} \frac{1}{-|w|(2 k+2(p-q))}\left\langle\varphi_{w, k}, f\right\rangle|w|^{2 n} d w \tag{1.6}
\end{equation*}
$$

The explicit form of Φ is given in Theorem 4.1, and for its computation we use the Radon transform in order to reduce this case to the classical one.

We remark that for $q=0, \mathbb{F}=\mathbb{C}$ we recover the fundamental solution for the operator \mathcal{L}_{α} given in $[\mathrm{F}-\mathrm{S}]$, and for $q=0, \mathbb{F}=\mathbb{H}$ we recover Kaplan's fundamental solution for the operator L given in $[\mathrm{K}$. The case $q \neq 0, \alpha=0$ was obtained in G-S2.
2. Preliminaries. In order to describe both families of eigendistributions $\left\{S_{\lambda, k}\right\}$ and $\left\{\varphi_{w, k}\right\}$ we need to adapt a result by Tengstrand [T]. We describe the elements for $\mathbb{F}=\mathbb{C}$, the other case being similar. First of all we take bipolar coordinates on \mathbb{C}^{n} : for $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ we set

$$
\begin{aligned}
\tau & =\sum_{j=1}^{p}\left(x_{j}^{2}+y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(x_{j}^{2}+y_{j}^{2}\right), \quad \rho=\sum_{j=1}^{n}\left(x_{j}^{2}+y_{j}^{2}\right) \\
u & =\left(x_{1}, y_{1}, \ldots, x_{p}, y_{p}\right), \quad v=\left(x_{p+1}, y_{p+1}, \ldots, x_{n}, y_{n}\right)
\end{aligned}
$$

Hence $u=\left(\frac{\rho+\tau}{2}\right)^{1 / 2} \omega_{u}$ with $\omega_{u} \in S^{2 p-1}$, and $v=\left(\frac{\rho-\tau}{2}\right)^{1 / 2} \omega_{v}$ with $\omega_{v} \in$ $S^{2 q-1}$. It is easy to see by changing variables that

$$
\begin{aligned}
\int_{\mathbb{C}^{n}} f(z) d z=\int_{-\infty}^{\infty} \iint_{\rho>|\tau|} f\left(\left(\frac{\rho+\tau}{2}\right)^{1 / 2}\right. & \left.\omega_{u},\left(\frac{\rho-\tau}{2}\right)^{1 / 2} \omega_{v}\right) d \omega_{u} d \omega_{v} \\
& \times(\rho+\tau)^{p-1}(\rho-\tau)^{q-1} d \rho d \tau
\end{aligned}
$$

Then for $f \in \mathcal{S}\left(\mathbb{R}^{2 n}\right)$ we define

$$
M f(\rho, \tau)=\int_{S^{2 p-1} \times S^{2 q-1}} f\left(\left(\frac{\rho+\tau}{2}\right)^{1 / 2} \omega_{u},\left(\frac{\rho-\tau}{2}\right)^{1 / 2} \omega_{v}\right) d \omega_{u} d \omega_{v}
$$

and also

$$
N f(\tau)=\int_{|\tau|}^{\infty} M f(\rho, \tau)(\rho+\tau)^{p-1}(\rho-\tau)^{q-1} d \rho
$$

Let us now define \mathcal{H}_{n} to be the space of functions $\varphi: \mathbb{R} \rightarrow \mathbb{C}$ such that $\varphi(\tau)=\varphi_{1}(\tau)+\tau^{n-1} \varphi_{2}(\tau) H(\tau)$ for $\varphi_{1}, \varphi_{2} \in \mathcal{S}(\mathbb{R})$, where H denotes the Heaviside function. In [T] it is proved that \mathcal{H}_{n} with a suitable topology is a Fréchet space, and following the same lines we can see that the linear $\operatorname{maps} N: \mathcal{S}\left(\mathbb{R}^{2 n}-\{0\}\right) \rightarrow \mathcal{S}(\mathbb{R})$ and $N: \mathcal{S}\left(\mathbb{R}^{2 n}\right) \rightarrow \mathcal{H}$ are continuous and surjective.

Let us now consider $\mu \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2 n}\right)^{U(p, q)}$; then it is easy to see that there exists a unique $T \in \mathcal{S}^{\prime}(\mathbb{R})$ such that $\langle\mu, f\rangle=\langle T, N f\rangle$ for all $f \in \mathcal{S}\left(\mathbb{R}^{2 n}-\{0\}\right)$. Moreover, if $N^{\prime}: \mathcal{H}^{\prime} \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{2 n}\right)$ is the adjoint map, by following again the arguments of $\left[\mathrm{T}\right.$ we can see that N^{\prime} is a homeomorphism. Finally, for a function $f \in \mathcal{S}(N(p, q, \mathbb{C}))$, we write $N f(\tau, t)$ for $N(f(\cdot, t))(\tau)$.

The distributions $S_{\lambda, k}$ are defined as follows:

$$
\begin{equation*}
S_{\lambda, k}=\sum_{m \in \mathbb{N}_{0}^{n}, B(m)=k} E_{\lambda}\left(h_{m}, h_{m}\right) \tag{2.1}
\end{equation*}
$$

where $B(m)=\sum_{j=1}^{p} m_{j}-\sum_{j=p+1}^{n} m_{j}$, the set of functions $\left\{h_{m}\right\} \subset L^{2}\left(\mathbb{R}^{n}\right)$ is the normalized Hermite basis, and $E_{\lambda}\left(h, h^{\prime}\right)(z, t)=\left\langle\pi_{\lambda}(z, t) h, h^{\prime}\right\rangle$ are the matrix entries of the Schrödinger representation π_{λ}. Also, $S_{\lambda, k}=e^{-i \lambda t} \otimes F_{\lambda, k}$, where each $F_{\lambda, k} \in \mathcal{S}^{\prime}\left(\mathbb{C}^{n}\right)^{U(p, q)}$ is a tempered distribution defined in terms
of the Laguerre polynomials L_{k}^{m} and the map N as follows: for $g \in \mathcal{S}\left(\mathbb{C}^{n}\right)$, $\lambda \neq 0$, and $k \in \mathbb{Z}$, if $k \geq 0$ then

$$
\begin{equation*}
\left\langle F_{\lambda, k}, g\right\rangle=\left\langle\left(L_{k-q+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto \frac{2}{|\lambda|} e^{-\tau / 2} N g\left(\frac{2}{|\lambda|} \tau\right)\right\rangle, \tag{2.2}
\end{equation*}
$$

and if $k<0$ then

$$
\begin{equation*}
\left\langle F_{\lambda, k}, g\right\rangle=\left\langle\left(L_{-k-p+n-1}^{0} H\right)^{(n-1)}, \tau \mapsto \frac{2}{|\lambda|} e^{-\tau / 2} N g\left(-\frac{2}{|\lambda|} \tau\right)\right\rangle . \tag{2.3}
\end{equation*}
$$

For the quaternionic case we consider the Schrödinger representation π_{w} as given in (R (see also $\mathrm{K}-\mathrm{R}$):

$$
\begin{equation*}
\pi_{w}(\alpha, z)=\pi_{|w|}(\alpha,\langle z, w /| w| \rangle), \tag{2.4}
\end{equation*}
$$

where $\pi_{|w|}$ is the Schrödinger representation for the classical Heisenberg group $N(2 p, 2 q, \mathbb{C})$. Analogously, the distributions $\varphi_{w, k}$ are defined by

$$
\begin{equation*}
\varphi_{w, k}=\sum_{m \in \mathbb{N}_{0}^{2 n}, B(m)=k} E_{w}\left(h_{m}, h_{m}\right), \tag{2.5}
\end{equation*}
$$

where $B(m)=\sum_{j=1}^{2 p} m_{j}-\sum_{j=2 p+1}^{2 n} m_{j}$, and $E_{w}\left(h, h^{\prime}\right)(\alpha, z)=\left\langle\pi_{w}(\alpha, z) h, h^{\prime}\right\rangle$ are the matrix entries of the Schrödinger representation π_{w}. Moreover, we have $\varphi_{w, k}=e^{i\langle w, z\rangle} \otimes \theta_{w, k}$, where $\theta_{w, k}$ is a tempered distribution such that $\theta_{w, k}=N^{\prime} T_{|w|, k}$, where if we set $\lambda=|w|$, we have $T_{|w|, k}=F_{\lambda, k}$, replacing n, p, q by $2 n, 2 p, 2 q$, respectively, in (2.2) and 2.3). Observe that if we define

$$
\begin{equation*}
\varphi_{\lambda, k}(\alpha, z)=\int_{S^{2}} e^{i\langle z, \lambda \xi\rangle} d \xi \theta_{\lambda, k}(\alpha), \tag{2.6}
\end{equation*}
$$

these distributions are $\operatorname{Spin}(3) \otimes U(p, q, \mathbb{H})$-invariant.
3. A fundamental solution for the operator \mathcal{L}_{α}. We know that Φ_{α} defined as in (1.3) is a well defined tempered distribution, and a fundamental solution for \mathcal{L}_{α}. We include the proof since a misprint in Lemma 1 of [M-R1] is used in the proof of Lemma 2.10 of B-D-R].

We will consider $\alpha \in \mathbb{C}$ such that $2 k+p-q \pm \alpha \neq 0$ for all $k \in \mathbb{Z}$.
Theorem 3.1. Φ_{α} defined as in (1.3) is a well defined tempered distribution and it is a fundamental solution for the operator \mathcal{L}_{α}.

Proof. From (1.3) and (2.1) we can write

$$
\begin{aligned}
\left|\left\langle\Phi_{\alpha}, f\right\rangle\right| & \leq \sum_{k \in \mathbb{Z}} \int_{0}^{\infty}\left(\left|\frac{\left\langle S_{-\lambda, k}, f\right\rangle}{2 k+p-q+\alpha}\right|+\left|\frac{\left\langle S_{\lambda, k}, f\right\rangle}{2 k+p-q-\alpha}\right|\right)|\lambda|^{n-1} d \lambda \\
& \leq \sum_{k \in \mathbb{Z}} \int_{0}^{\infty} \sum_{\substack{\beta \in \mathbb{N}_{0}^{n} \\
B(\beta)=k}}\left(\left|\frac{\left\langle E_{-\lambda}\left(h_{\beta}, h_{\beta}\right), f\right\rangle}{2 k+p-q+\alpha}\right|+\left|\frac{\left\langle E_{\lambda}\left(h_{\beta}, h_{\beta}\right), f\right\rangle}{2 k+p-q-\alpha}\right|\right)|\lambda|^{n-1} d \lambda .
\end{aligned}
$$

From the known facts that

$$
\begin{gathered}
\sum_{k \in \mathbb{Z}} \sum_{\substack{\beta \in \mathbb{N}_{0}^{n} \\
B(\beta)=k}} p(\beta)=\sum_{k \geq 0}\binom{k+n-1}{n-1} p(k) \\
\left|\left\langle E_{\lambda}\left(h_{\beta}, h_{\beta}\right), f\right\rangle\right|=\left|\left\langle\pi_{\lambda}(f) h_{\beta}, h_{\beta}\right\rangle\right| \leq\|f\|_{L^{1}(N(p, q, \mathbb{C}))},
\end{gathered}
$$

and that for $m \in \mathbb{N}$,

$$
\pi_{\lambda}(f) h_{\beta}=\frac{1}{(-1)^{m}|\lambda|^{m}(2 B(\beta)+p-q+\alpha \operatorname{sgn}(\lambda))^{m}} \pi_{\lambda}\left(L^{m} f\right) h_{\beta}
$$

we get

$$
\begin{aligned}
& \left|\left\langle\Phi_{\alpha}, f\right\rangle\right| \leq\left\|L^{m} f\right\|_{L^{1}(N(p, q, \mathbb{C}))} \\
& \quad \times \sum_{k \geq 0} \int_{0}^{\infty}\binom{k+n-1}{k}\left(\frac{|\lambda|^{n-1-m}}{|2 k+p-q+\alpha|^{m+1}}+\frac{|\lambda|^{n-1-m}}{|2 k+p-q-\alpha|^{m+1}}\right) d \lambda .
\end{aligned}
$$

Let us consider the first term, the second one being analogous. We split the integral between $|\lambda||2 k+p-q+\alpha| \geq 1$ and $0 \leq|\lambda||2 k+p-q+\alpha| \leq 1$. Now

$$
\sum_{k \geq 0}\binom{k+n-1}{k} \int_{|\lambda||2 k+p-q+\alpha| \geq 1} \frac{1}{|2 k+p-q+\alpha|^{m+1}}|\lambda|^{n-1-m} d \lambda
$$

is finite if we take $m>n$, and

$$
\sum_{k \geq 0}\binom{k+n-1}{k} \int_{0 \leq|\lambda||2 k+p-q+\alpha| \leq 1} \frac{1}{|2 k+p-q+\alpha|^{m+1}}|\lambda|^{n-1-m} d \lambda
$$

is finite for any natural number m. From the above computations it also follows that Φ_{α} is a tempered distribution. Next we see that it is a fundamental solution by writing $L=L_{0}+L_{1}$, where in coordinates

$$
\begin{aligned}
L_{0}= & \frac{1}{4}\left(\sum_{j=1}^{p}\left(x_{j}^{2}+y_{j}^{2}\right)-\sum_{j=p+1}^{n}\left(x_{j}^{2}+y_{j}^{2}\right)\right) \frac{\partial^{2}}{\partial t^{2}} \\
& +\sum_{j=1}^{p}\left(\frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{\partial^{2}}{\partial y_{j}^{2}}\right)-\sum_{j=p+1}^{n}\left(\frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{\partial^{2}}{\partial y_{j}^{2}}\right), \\
L_{1}= & \frac{\partial}{\partial t} \sum_{j=1}^{n}\left(x_{j} \frac{\partial}{\partial y_{j}}-y_{j} \frac{\partial}{\partial x_{j}}\right) .
\end{aligned}
$$

Then, as L_{0}, L_{1} and T commute with left translations and also $L_{0}\left(g^{\vee}\right)=$ $\left(L_{0} g\right)^{\vee}, L_{1}\left(g^{\vee}\right)=-\left(L_{1} g\right)^{\vee}$ and $T\left(g^{\vee}\right)=-(T g)^{\vee}$, we get

$$
\left(\mathcal{L} f * \Phi_{\alpha}\right)(z, t)=\left\langle\Phi_{\alpha},\left(L_{(z, t)^{-1}} \mathcal{L} f\right)^{\vee}\right\rangle=\left\langle\Phi_{\alpha},\left(L_{0}-i \alpha\right)\left(L_{(z, t)^{-1}} f\right)^{\vee}\right\rangle
$$

because $L_{1} \Phi_{\alpha}=0$. Hence,

$$
\begin{aligned}
\left(\mathcal{L}_{\alpha} f * \Phi\right)(z, t) & =\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} \frac{\left\langle S_{\lambda, k},\left(L_{0}-i \alpha T\right)\left(L_{(z, t)^{-1}} f\right)^{\vee}\right\rangle}{-|\lambda|(2 k+p-q-\alpha \operatorname{sgn} \lambda)}|\lambda|^{n-1} d \lambda \\
& =\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty} \frac{\left\langle\left(L_{0}+i \alpha T\right) S_{\lambda, k},\left(L_{(z, t)^{-1}} f\right)^{\vee}\right\rangle}{-|\lambda|(2 k+p-q-\alpha \operatorname{sgn} \lambda)}|\lambda|^{n-1} d \lambda \\
& =\sum_{k \in \mathbb{Z}} \int_{-\infty}^{\infty}\left\langle S_{\lambda, k},\left(L_{(z, t)^{-1}} f\right)^{\vee}\right\rangle|\lambda|^{n-1} d \lambda=f(z, t)
\end{aligned}
$$

by the inversion formula. The other equality, $f * \mathcal{L}_{\alpha}(f)=f$, is immediate.
Now we proceed with the computation of Φ_{α}. Since the series 1.3 defining Φ_{α} converges absolutely, we can split the sum over $k \in \mathbb{Z}$ into the sums for $k \geq q$, for $k \leq-p$ and for $-p<k<q$. In the first case we change the summation index writing $k=k^{\prime}+q$, and in the second we write $k=k^{\prime}-p$. So we get

$$
\begin{aligned}
\left\langle\Phi_{\alpha}, f\right\rangle= & (-1) \sum_{k^{\prime} \geq 0} \frac{1}{2 k^{\prime}+n-\alpha} \int_{0}^{\infty}\left[\left\langle S_{\lambda, k^{\prime}+q}, f\right\rangle-\left\langle S_{\lambda,-k^{\prime}-p}, f\right\rangle\right]|\lambda|^{n-1} d \lambda \\
& +(-1) \sum_{k^{\prime} \geq 0} \frac{1}{2 k^{\prime}+n+\alpha} \int_{0}^{\infty}\left[\left\langle S_{-\lambda, k^{\prime}+q}, f\right\rangle-\left\langle S_{-\lambda,-k^{\prime}-p}, f\right\rangle\right]|\lambda|^{n-1} d \lambda \\
& +(-1) \sum_{-p<k<q} \int_{0}^{\infty}\left(\frac{\left\langle S_{-\lambda, k}, f\right\rangle}{2 k+p-q+\alpha}+\frac{\left\langle S_{\lambda, k}, f\right\rangle}{2 k+p-q-\alpha}\right)|\lambda|^{n-1} d \lambda .
\end{aligned}
$$

By Abel's Lemma and the Lebesgue Dominated Convergence Theorem we can write $\Phi_{\alpha}=\Phi_{1}+\Phi_{2}$ where

$$
\begin{align*}
\left\langle\Phi_{1}, f\right\rangle= & \lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}}(-1) \sum_{k^{\prime} \geq 0}
\end{aligned} \begin{aligned}
& 2 k^{2 k^{\prime}+n-\alpha} \tag{3.1}\\
& 2 k^{\prime}+n-\alpha \int_{0}^{\infty} e^{-\epsilon|\lambda|} \\
& \times\left[\left\langle S_{\lambda, k^{\prime}+q}, f\right\rangle-\left\langle S_{\lambda,-k^{\prime}-p}, f\right\rangle\right]|\lambda|^{n-1} d \lambda \\
&+ \lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}}(-1)
\end{align*}
$$

$$
\begin{align*}
\left\langle\Phi_{2}, f\right\rangle=\lim _{\epsilon \rightarrow 0^{+}}(-1) & \sum_{-p<k<q} \int_{0}^{\infty} e^{-\epsilon|\lambda|} \tag{3.2}\\
& \times\left(\frac{\left\langle S_{-\lambda, k}, f\right\rangle}{2 k+p-q+\alpha}+\frac{\left\langle S_{\lambda, k}, f\right\rangle}{2 k+p-q-\alpha}\right)|\lambda|^{n-1} d \lambda
\end{align*}
$$

Using that $S_{\lambda, k}=e^{-i \lambda t} \otimes F_{\lambda, k}$ and the computations from [G-S2, (2.6) to (2.9)], we get

$$
\begin{aligned}
& \left\langle\Phi_{1}, f\right\rangle=\lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}}(-1) \sum_{k \geq 0} \frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} \int_{0}^{\infty} e^{-\epsilon|\lambda|} \int_{-\infty}^{\infty} e^{-i \lambda t} \\
& \quad \times\left\langle\left(L_{k+n-1}^{0} H\right)^{(n-1)}, \frac{2}{|\lambda|} e^{-\tau / 2}\left[N f\left(\frac{2}{|\lambda|} \tau, t\right)-N f\left(-\frac{2}{|\lambda|} \tau, t\right)\right]\right\rangle d t d \lambda \\
& +\lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}}(-1) \sum_{k \geq 0} \frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} \int_{0}^{\infty} e^{-\epsilon|\lambda|} \int_{-\infty}^{\infty} e^{i \lambda t} \\
& \quad \times\left\langle\left(L_{k+n-1}^{0} H\right)^{(n-1)}, \frac{2}{|\lambda|} e^{-\tau / 2}\left[N f\left(\frac{2}{|\lambda|} \tau, t\right)-N f\left(-\frac{2}{|\lambda|} \tau, t\right)\right]\right\rangle d t d \lambda
\end{aligned}
$$

Thus setting

$$
\begin{equation*}
b_{k, l}=\sum_{j=l}^{n-2}\binom{j}{l}\left(\frac{1}{2}\right)^{2-l}(-1)^{n-j}\binom{k+n-1}{n-j-2} \tag{3.3}
\end{equation*}
$$

we have

$$
\begin{aligned}
\left\langle\Phi_{1}, f\right\rangle= & \lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{k \geq 0} \frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} \int_{0}^{\infty} e^{-\epsilon|\lambda|} \int_{-\infty}^{\infty} e^{-i \lambda t} \\
& \times\left[(-1)^{n} \int_{-\infty}^{\infty} L_{k}^{n-1}\left(\frac{|\lambda|}{2}|s|\right) e^{-\frac{|\lambda|}{4}|s|} \operatorname{sgn}(s) N f(s, t) d s\right. \\
& -2 \sum_{\left.l_{l=0}^{n-2}\left(\frac{2}{|\lambda|}\right)^{l+1} b_{k, l} \frac{\partial^{l} N f}{\partial \tau^{l}}(0, t)\right] d t d \lambda}+\lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{k \geq 0} \frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} \int_{0}^{\infty} e^{-\epsilon|\lambda|} \int_{-\infty}^{\infty} e^{i \lambda t} \\
& \times\left[(-1)^{n} \int_{-\infty}^{\infty} L_{k}^{n-1}\left(\frac{|\lambda|}{2}|s|\right) e^{-\frac{|\lambda|}{4}|s|} \operatorname{sgn}(s) N f(s, t) d s\right. \\
& \left.-2 \sum_{l=0}^{n-2}\left(\frac{2}{|\lambda|}\right)^{l+1} b_{k, l} \frac{\partial^{l} N f}{\partial \tau^{l}}(0, t)\right] d t d \lambda .
\end{aligned}
$$

Now we define

$$
\begin{equation*}
G_{f}(\tau, t)=N f(\tau, t)-\sum_{j=0}^{n-2} \frac{\partial^{j} N f}{\partial \tau^{j}}(0, t) \frac{\tau^{j}}{j!}, \tag{3.4}
\end{equation*}
$$

and we split $\Phi_{1}=\Phi_{11}+\Phi_{12}$, where

$$
\begin{align*}
&\left\langle\Phi_{11}, f\right\rangle= \lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{k \geq 0}(-1)^{n} \frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} \int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-\epsilon|\lambda|} e^{-i \lambda t}|\lambda|^{n-1} \tag{3.5}\\
& \times \int_{-\infty}^{\infty} L_{k}^{n-1}\left(\frac{|\lambda|}{2}|\tau|\right) e^{-\frac{|\lambda|}{4}|\tau|} \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t d \lambda \\
&+\lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{k \geq 0}(-1)^{n} \frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} \int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-\epsilon|\lambda|} e^{i \lambda t}|\lambda|^{n-1} \\
& \times \int_{-\infty}^{\infty} L_{k}^{n-1}\left(\frac{|\lambda|}{2}|\tau|\right) e^{-\frac{|\lambda|}{4}|\tau|} \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t d \lambda
\end{align*}
$$

and
with

$$
\begin{align*}
&\left\langle\Phi_{12}, f\right\rangle= \lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{k \geq 0} \frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} \int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-\epsilon|\lambda|} e^{-i \lambda t}|\lambda|^{n-1} \tag{3.6}\\
& \times 2 \sum_{\substack{l=0 \\
l \text { odd }}}^{n-2}\left(\frac{2}{|\lambda|}\right)^{l+1}\left(a_{k, l}+b_{k, l}\right) \frac{\partial^{l} N f}{\partial \tau^{l}}(0, t) d t d \lambda \\
&+\lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{k \geq 0} \frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} \int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-\epsilon|\lambda|} e^{i \lambda t}|\lambda|^{n-1} \\
& \times 2 \sum_{\substack{l=0 \\
l \text { odd }}}^{n-2}\left(\frac{2}{|\lambda|}\right)^{l+1}\left(a_{k, l}+b_{k, l}\right) \frac{\partial^{l} N f}{\partial \tau^{l}}(0, t) d t d \lambda
\end{align*}
$$

$$
\begin{equation*}
a_{k, l}=(-1)^{n} \frac{1}{l!} \int_{0}^{\infty} L_{k}^{n-1}(s) e^{-s / 2} s^{l} d s \tag{3.7}
\end{equation*}
$$

We will show that Φ_{11} is well defined. We have proved that the series (1.3) defining Φ_{α} converges and, as Φ_{2} is a finite sum, we will deduce that Φ_{12} is also well defined.

Proposition 3.2. The following identities hold:

$$
\begin{align*}
\int_{-\infty}^{\infty} e^{-\epsilon|\lambda|} e^{-i \lambda t} L_{k}^{n-1} & \left(\frac{|\lambda|}{2}|\tau|\right) e^{-\frac{|\lambda|}{4}|\tau|}|\lambda|^{n-1} d \lambda \tag{i}\\
& =4^{n}(n-1)!(-1)^{n}\binom{k+n-1}{k} \frac{(|\tau|-4 \epsilon-4 i t)^{k}}{(|\tau|+4 \epsilon+4 i t)^{k+n}}
\end{align*}
$$

(ii) $\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2}}\left(\frac{(|\tau|-4 i t-4 \epsilon)^{k}}{(|\tau|+4 i t+4 \epsilon)^{k+n}}\right) \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t$

$$
\begin{aligned}
=\int_{\mathbb{R}^{2}} \frac{1}{(|\tau|-4 i t)^{n / 2-\alpha / 2}} \frac{1}{(|\tau|+4 i t)^{n / 2+\alpha / 2}}\left(\frac{|\tau|-4 i t}{\tau^{2}+16 t^{2}}\right)^{2 k+n-\alpha} \\
\times \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t
\end{aligned}
$$

(iii) $\lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{2}}\left(\frac{(|\tau|+4 i t-4 \epsilon)^{k}}{(|\tau|-4 i t+4 \epsilon)^{k+n}}\right) \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t$

$$
\left.\begin{array}{rl}
=\int_{\mathbb{R}^{2}} \frac{1}{(|\tau|-4 i t)^{n / 2-\alpha / 2}} \frac{1}{(|\tau|+4 i t)^{n / 2+\alpha / 2}}\left(\frac{|\tau|}{\tau^{2}+4 i t}+16 t^{2}\right.
\end{array}\right)^{2 k+n+\alpha}, \quad \times \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t .
$$

Proof. From (4.9) of [G-S2] we deduce that (i) follows from the generating identity for the Laguerre polynomials,

$$
\begin{equation*}
\sum_{k \geq 0} L_{k}^{n-1}(t) z^{k}=\frac{1}{(1-z)^{n}} e^{-\frac{z t}{1-z}} \tag{3.8}
\end{equation*}
$$

From Lemma 2.2 of G-S2], which states that the function $\frac{G_{f}(\tau, t)}{\left(\tau^{2}+16 t^{2}\right)^{n / 2}}$ is integrable in \mathbb{R}^{2}, and from the fact that

$$
\left|\frac{1}{(|\tau|-4 i t)^{-\alpha / 2}}\right|\left|\frac{1}{(|\tau|+4 i t)^{\alpha / 2}}\right|=1
$$

it follows that the function

$$
\frac{1}{(|\tau|-4 i t)^{n / 2-\alpha / 2}} \frac{1}{(|\tau|+4 i t)^{n / 2+\alpha / 2}} G_{f}(\tau, t)
$$

is integrable in \mathbb{R}^{2}. So we get (ii). For (iii) we just change $e^{-i \lambda t}$ to $e^{i \lambda t}$ and argue as for (ii).

Then, by Proposition 3.2, we obtain

$$
\begin{aligned}
\left\langle\Phi_{11}, f\right\rangle= & \beta_{n} \lim _{r \rightarrow 1^{-}} \sum_{k \geq 0} \frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} \alpha_{k} \\
& \times \int_{\mathbb{R}^{2}}\left(\frac{|\tau|-4 i t}{\tau^{2}+16 t^{2}}\right)^{2 k+n-\alpha} \frac{\operatorname{sgn}(\tau) G_{f}(\tau, t)}{(|\tau|-4 i t)^{n / 2-\alpha / 2}(|\tau|+4 i t)^{n / 2+\alpha / 2}} d \tau d t \\
+ & \beta_{n} \lim _{r \rightarrow 1^{-}} \sum_{k \geq 0} \frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} \alpha_{k} \\
& \times \int_{\mathbb{R}^{2}}\left(\frac{|\tau|+4 i t}{\tau^{2}+16 t^{2}}\right)^{2 k+n+\alpha} \frac{\operatorname{sgn}(\tau) G_{f}(\tau, t)}{(|\tau|+4 i t)^{n / 2+\alpha / 2}(|\tau|-4 i t)^{n / 2-\alpha / 2}} d \tau d t
\end{aligned}
$$

where $\beta_{n}=4^{n}(n-1)!(-1)^{n}$ and $\alpha_{k}=\binom{k+n-1}{k}(-1)^{k}$.
To study $\left\langle\Phi_{11}, f\right\rangle$ we split each integral into integrals over the left and right halfplanes and take polar coordinates $\tau-4 i t=\rho e^{i \theta}$ to obtain

$$
\begin{aligned}
\left\langle\Phi_{11}, f\right\rangle= & \beta_{n} \lim _{r \rightarrow 1^{-}} \sum_{k \geq 0} \alpha_{k} \frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} \\
\times & \int_{0}^{\infty}\left[\int_{-\pi / 2}^{\pi / 2} e^{i(2 k+n-\alpha) \theta} \frac{1}{4 \rho^{n-1}} e^{i \alpha \theta} \operatorname{sgn}(\cos \theta) G_{f}\left(\rho \cos \theta,-\frac{\rho}{4} \sin \theta\right) d \theta\right. \\
& \left.+\int_{\pi / 2}^{3 \pi / 2} \frac{e^{-i(2 k+n-\alpha) \theta} e^{-i \alpha \theta}}{(-1)^{n} 4 \rho^{n-1}} \operatorname{sgn}(\cos \theta) G_{f}\left(\rho \cos \theta,-\frac{\rho}{4} \sin \theta\right) d \theta\right] d \rho \\
+ & \beta_{n} \lim _{r \rightarrow 1^{-}} \sum_{k \geq 0} \alpha_{k} \frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} \\
\times & \int_{0}^{\infty}\left[\int_{-\pi / 2}^{\pi / 2} e^{-i(2 k+n+\alpha) \theta} \frac{1}{4 \rho^{n-1}} e^{i \alpha \theta} \operatorname{sgn}(\cos \theta) G_{f}\left(\rho \cos \theta,-\frac{\rho}{4} \sin \theta\right) d \theta\right. \\
& \left.+\int_{\pi / 2}^{3 \pi / 2} \frac{e^{i(2 k+n+\alpha) \theta} e^{-i \alpha \theta}}{(-1)^{n} 4 \rho^{n-1}} \operatorname{sgn}(\cos \theta) G_{f}\left(\rho \cos \theta,-\frac{\rho}{4} \sin \theta\right) d \theta\right] d \rho
\end{aligned}
$$

Now we change variables in the second and fourth terms via $\theta \leftrightarrow-\theta$. Then, in the fourth term we change variables again according to $\theta \leftrightarrow \theta+2 \pi$. By Proposition 3.2 we can change the integration order, so we can write

$$
\begin{aligned}
\left\langle\Phi_{11}, f\right\rangle= & \beta_{n} \lim _{r \rightarrow 1^{-}} \int_{0}^{\infty} \int_{-\pi / 2}^{\pi / 2} e^{i \alpha \theta} \\
& \times\left[\sum_{k \geq 0} \alpha_{k}\left(\frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} e^{i(2 k+n-\alpha) \theta}+\frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} e^{-i(2 k+n+\alpha) \theta}\right)\right] \\
& \times \frac{1}{\rho^{n-1}} \operatorname{sgn}(\cos \theta) G_{f}\left(\rho \cos \theta,-\frac{\rho}{4} \sin \theta\right) d \theta d \rho \\
+ & \frac{(-1)^{n}}{4} \beta_{n} \lim _{r \rightarrow 1^{-}} \int_{0}^{\infty} \int_{\pi / 2}^{3 \pi / 2} e^{i \alpha \theta} \\
& \times\left[\sum_{k \geq 0} \alpha_{k}\left(\frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} e^{i(2 k+n-\alpha) \theta}+\frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} e^{-i(2 k+n+\alpha) \theta}\right)\right] \\
& \times \frac{1}{\rho^{n-1}} \operatorname{sgn}(\cos \theta) G_{f}\left(\rho \cos \theta, \frac{\rho}{4} \sin \theta\right) d \theta d \rho
\end{aligned}
$$

Let I denote the real interval $[-\pi / 2, \pi / 2]$. Consider the vector space

$$
\mathcal{X}=\left\{g \in C^{n-2}(I): g^{(j)}(\pm \pi / 2)=0,0 \leq j \leq n-2, g^{(n-1)} \in L^{\infty}(I)\right\}
$$

We identify each function $g \in \mathcal{X}$ with a function \widetilde{g} on $S^{1}=\mathbb{R} / \mathbb{Z}$, defined to be equal to 0 outside $\operatorname{supp}(g)$, and we make no distinction between g and \widetilde{g}. Thus, if $g \in \mathcal{X}$ then $g \in C^{n-2}\left(S^{1}\right)$ with $g^{(n-1)} \in L^{\infty}\left(S^{1}\right)$. Observe that if $g \in \mathcal{X}$, then also $e^{i \alpha \theta} g \in \mathcal{X}$. The topology on \mathcal{X} is given by $\|g\|_{\mathcal{X}}=$ $\max _{0 \leq j \leq n-1}\left\|g^{(j)}\right\|_{\infty}$.

For $k \in \mathbb{Z}$ we set $\alpha_{k}=\binom{k+n-1}{k}(-1)^{k}$. Now let us define

$$
\begin{align*}
\Psi_{r, \alpha}(\theta) & =\sum_{k \geq 0} \alpha_{k}\left(\frac{r^{2 k+n-\alpha} e^{i(2 k+n-\alpha) \theta}}{2 k+n-\alpha}+\frac{r^{2 k+n+\alpha} e^{-i(2 k+n+\alpha) \theta}}{2 k+n+\alpha}\right) \tag{3.9}\\
\left\langle\Psi_{\alpha}, g\right\rangle & =\left\langle\sum_{k \geq 0} \alpha_{k}\left(\frac{e^{i(2 k+n-\alpha) \theta}}{2 k+n-\alpha}+\frac{e^{-i(2 k+n+\alpha) \theta}}{2 k+n+\alpha}\right), g\right\rangle \tag{3.10}
\end{align*}
$$

We prove that $\Psi_{\alpha} \in \mathcal{X}^{\prime}$, the dual space of \mathcal{X}. Indeed,

$$
\begin{equation*}
\left|\left\langle\Psi_{\alpha}, g\right\rangle\right| \leq\left|e^{i \alpha \theta}\right| \sum_{k \geq 0}\binom{k+n-1}{k}\left(\frac{\left|\left\langle e^{i(2 k+n) \theta}, g\right\rangle\right|}{|2 k+n-\alpha|}+\frac{\left\langle e^{-i(2 k+n) \theta}, g\right\rangle \mid}{|2 k+n+\alpha|}\right) \tag{3.11}
\end{equation*}
$$

If $\widehat{g}(n)=\left\langle g, e^{i n \theta}\right\rangle$ denotes the nth Fourier coefficient of g, then

$$
\begin{aligned}
\left|\left\langle\Psi_{\alpha}, g\right\rangle\right| & \leq c \sum_{k \geq 0} \frac{k^{n-1}}{|2 k+n|^{n-1}}\left(\frac{\left|\widehat{g^{(n-1)}}(2 k+n)\right|}{|2 k+n-\alpha|}+\frac{\left|\widehat{g^{(n-1)}}(-2 k-n)\right|}{|2 k+n+\alpha|}\right) \\
& \leq c \sum_{k \geq 0} \frac{1}{k}\left|\widehat{g^{(n-1)}}(2 k+n)\right|+\frac{1}{k}\left|\widehat{g^{(n-1)}}(-2 k-n)\right| \\
& \leq c\left(\sum_{k \geq 0} \frac{1}{k^{2}}\right)^{1 / 2}\left\|\widehat{g^{(n-1)}}\right\|_{L^{2}},
\end{aligned}
$$

by the Cauchy-Schwarz inequality. Observe that the constants c are not the same in each expression. By Abel's Lemma, $\lim _{r \rightarrow 1^{-}} \Psi_{r, \alpha}=\Psi_{\alpha}$ in \mathcal{X}^{\prime}, that is, with respect to the weak convergence topology. Similarly, if J denotes the real interval $[\pi / 2,3 \pi / 2]$, we define the space

$$
\begin{aligned}
& \mathcal{Y}=\left\{g \in C^{n-2}(J): g^{(j)}(\pi / 2)=g^{(j)}(3 \pi / 2)=0,0 \leq j \leq n-2\right. \\
&\left.g^{(n-1)} \in L^{\infty}(J)\right\}
\end{aligned}
$$

and find that Ψ_{α} is well defined in \mathcal{Y}^{\prime} and $\lim _{r \rightarrow 1^{-}} \Psi_{r, \alpha}=\Psi_{\alpha}$ in \mathcal{Y}^{\prime}.
Our aim now is to compute Ψ_{α}. From Proposition 3.7 of [G-S2] we know that if $\Theta \in \mathcal{D}^{\prime}\left(S^{1}\right)$ is defined by

$$
\begin{equation*}
\Theta(\theta)=i \sum_{k \geq 0}\binom{k+n-1}{k}(-1)^{k} e^{i(2 k+n) \theta} \tag{3.12}
\end{equation*}
$$

then for n even we have

$$
\begin{equation*}
\mathfrak{R e} \Theta(\theta)=\frac{d}{d \theta} Q_{n-2}\left(\frac{d}{d \theta}\right)\left(\delta_{\pi / 2}+\delta_{-\pi / 2}\right)=\sum_{j=0}^{n-2} c_{j}\left(\delta_{\pi / 2}^{(j+1)}+\delta_{-\pi / 2}^{(j+1)}\right), \tag{3.13}
\end{equation*}
$$

where Q_{n-2} is a polynomial of degree $n-2$; and for n odd we have

$$
\begin{align*}
\mathfrak{R e} \Theta(\theta) & =d_{0} \frac{d}{d \theta} \widetilde{H}+\frac{d}{d \theta} Q_{n-2}\left(\frac{d}{d \theta}\right)\left(\delta_{\pi / 2}-\delta_{-\pi / 2}\right) \tag{3.14}\\
& =d_{0}\left(\delta_{-\pi / 2}-\delta_{\pi / 2}\right)+\sum_{j=0}^{n-2} c_{j}\left(\delta_{\pi / 2}^{(j+1)}-\delta_{-\pi / 2}^{(j+1)}\right)
\end{align*}
$$

where Q_{n-2} is a polynomial of degree $n-2$, and $\widetilde{H}(\theta)=H(\cos \theta)$. Let us recall the generating identity for the Laguerre polynomials (3.8), and take $t=0$ and $z=-r^{2} e^{2 i \theta}$. We get

$$
\begin{equation*}
\sum_{k \geq 0}\binom{k+n-1}{k}(-1)^{k} r^{2 k+n} e^{i(2 k+n) \theta}=\left(\frac{r e^{i \theta}}{1+r^{2} e^{2 i \theta}}\right)^{n} . \tag{3.15}
\end{equation*}
$$

We also need a couple of results:
Lemma 3.3. For a fixed $r>1$ the functions $\alpha \mapsto \Psi_{r, \alpha}(0)$ and $\alpha \mapsto$ $\lim _{r \rightarrow 1^{-}} \Psi_{r, \alpha}(0)$ are analytic on $\Omega=\mathbb{C} \backslash F$, where $F=\{2 k+n: k \in \mathbb{Z}\}$.

Proof. Let $K \subset \Omega$ be a compact set. It is easy to see that for fixed r the series (3.9) converges uniformly, since

$$
\left|\Psi_{r, \alpha}(0)\right| \leq \max _{\alpha \in K}\left|r^{\alpha}\right|\left(\frac{r}{1+r^{2}}\right)^{n} d(K, F) .
$$

Also, for $\alpha \in \Omega$ the limit $\lim _{r \rightarrow 1^{-}} \Psi_{r, \alpha}(0)$ exists. Indeed, if $0 \leq r_{1}<r<$ $r_{2}<1$, from the Mean Value Theorem we deduce that for some $\xi \in\left(r_{1}, r_{2}\right)$,

$$
\begin{aligned}
\Psi_{r_{1}, \alpha}(0)-\Psi_{r_{2}, \alpha}(0) & =\frac{d}{d r} \Psi_{\xi, \alpha}(0)\left(r_{2}-r_{1}\right) \\
& =\left(\xi^{-\alpha-1}+\xi^{\alpha-1}\right) \sum_{k \geq 0} \alpha_{k} \xi^{2 k+n}\left(r_{2}-r_{1}\right) \\
& =\left(\xi^{-\alpha-1}+\xi^{\alpha-1}\right)\left(\frac{\xi}{1+\xi^{2}}\right)^{n}\left(r_{2}-r_{1}\right),
\end{aligned}
$$

where the last equality holds by (3.15). Hence

$$
\left|\Psi_{r_{1}, \alpha}(0)-\Psi_{r_{2}, \alpha}(0)\right| \leq c(\xi)\left|r_{2}-r_{1}\right|,
$$

where $c(\xi)$ is a constant which depends on ξ. Moreover, for $\alpha \in K$ and $\xi \in[1 / 2,1], \xi^{n-\alpha-1}+\xi^{n+\alpha-1}$ is bounded in $K \times[1 / 2,1]$, so the convergence is uniform, hence $\alpha \mapsto \lim _{r \rightarrow 1^{-}} \Psi_{r, \alpha}(0)$ is an analytic function.

Lemma 3.4. Let $0<\delta<\pi / 4$. For $0<r<1$ and $0 \leq|\theta|<\delta$ we have

$$
\left|\Psi_{r, \alpha}(\theta)-\Psi_{r, \alpha}(0)\right| \leq\left(\max _{0 \leq|\theta|<\delta} e^{|\widetilde{\jmath m} \alpha||\theta|}\right)\left(a\left|r^{-\alpha}-r^{\alpha}\right|+b\left|r^{\alpha}\right|(1-r)\right)|\theta|
$$

with a, b positive constants. Also for $0 \leq|\theta-\pi|<\delta<\pi / 4$, $\left|\Psi_{r, \alpha}(\theta)-\Psi_{r, \alpha}(\pi)\right| \leq\left(\max _{0 \leq|\theta-\pi|<\delta} e^{|\mathfrak{I m} \alpha||\theta|}\right)\left(a\left|r^{-\alpha}-r^{\alpha}\right|+b\left|r^{\alpha}\right|(1-r)\right)|\theta-\pi|$, with a, b positive constants.

Proof. We will estimate $\left|\Psi_{r, \alpha}(\theta)-\Psi_{r, \alpha}(0)\right|$ for $0<|\theta|<\delta<\pi / 4$, the other case being similar. We have

$$
\begin{aligned}
& \frac{d}{d \theta} \Psi_{r, \alpha}(\theta) \\
& \quad=i e^{-i \alpha \theta} \sum_{k \geq 0} \alpha_{k} r^{2 k+n}\left(\left(r^{-\alpha}-r^{\alpha}\right) e^{i(2 k+n) \theta}+\left(e^{i(2 k+n) \theta}-e^{-i(2 k+n) \theta}\right) r^{\alpha}\right) \\
& \quad=i e^{-i \alpha \theta}\left(\left(r^{-\alpha}-r^{\alpha}\right)\left(\frac{r e^{i \theta}}{1+r^{2} e^{2 i \theta}}\right)^{n}+2 i r^{\alpha} \mathfrak{I m}\left(\frac{r e^{i \theta}}{1+r^{2} e^{i 2 \theta}}\right)^{n}\right)
\end{aligned}
$$

because of 3.15 . We have

$$
\begin{align*}
& \left|\frac{d}{d \theta} \Psi_{r, \alpha}(\theta)\right| \tag{3.16}\\
\leq & e^{|\mathfrak{J m} \alpha||\theta|}\left(\left|r^{-\alpha}-r^{\alpha}\right|\left|\left(\frac{r e^{i \theta}}{1+r^{2} e^{i 2 \theta}}\right)^{n}\right|+2\left|r^{\alpha}\right|\left|\mathfrak{I m}\left(\frac{r e^{i \theta}}{1+r^{2} e^{i 2 \theta}}\right)^{n}\right|\right)
\end{align*}
$$

From Proposition 3.1 of [G-S2] we know that

$$
\left|\mathfrak{I m}\left(\frac{r e^{i \theta}}{1+r^{2} e^{i 2 \theta}}\right)^{n}\right| \rightarrow 0 \quad \text { as } r \rightarrow 1^{-}
$$

uniformly for $|\theta|<\pi / 4,|\theta-\pi|<\pi / 4$. Also,

$$
\left|\left(\frac{r e^{i \theta}}{1+r^{2} e^{i 2 \theta}}\right)^{n}\right| \leq c
$$

for a constant c. Then $\left|\frac{d}{d \theta} \Psi_{r, \alpha}(\theta)\right| \rightarrow 0$ uniformly on $|\theta|<\pi / 4$ as $r \rightarrow 1^{-}$, and we get the desired inequality by applying the Mean Value Theorem around 0 .

Now we can state the following
Proposition 3.5. For $f \in \mathcal{X}$ we have

$$
\left\langle\Psi_{\alpha}, f\right\rangle=C_{\alpha}\langle 1, f\rangle, \quad \text { where } \quad C_{\alpha}=\frac{\Gamma\left(\frac{n+\alpha}{2}\right) \Gamma\left(\frac{n-\alpha}{2}\right)}{(n-1)!}
$$

and for $f \in \mathcal{Y}$ we have

$$
\left\langle\Psi_{\alpha}, f\right\rangle=\widetilde{C}_{\alpha}\langle 1, f\rangle, \quad \text { where } \quad \widetilde{C}_{\alpha}=(-1)^{n} e^{-i \alpha \pi} C_{\alpha}
$$

Proof. First we consider $f \in \mathcal{X}$ such that $\int_{-\pi / 2}^{\pi / 2} f(t) d t=0$ and we define $F(\theta)=\int_{-\pi / 2}^{\theta} f(t) d t$. It is easy to see that $F \in \mathcal{X}$ and $F^{\prime}=f$. By integration by parts,

$$
\begin{aligned}
\left\langle\Psi_{\alpha}, f\right\rangle & =\left\langle\Psi_{\alpha}, F^{\prime}\right\rangle=\int_{-\pi / 2}^{\pi / 2} \sum_{k \geq 0} \alpha_{k}\left(\frac{e^{i(2 k+n-\alpha) \theta}}{2 k+n-\alpha}+\frac{e^{-i(2 k+n+\alpha) \theta}}{2 k+n+\alpha}\right) F^{\prime}(\theta) d \theta \\
& =-\left\langle\Theta, e^{-i \alpha \theta} F\right\rangle-\left\langle\bar{\Theta}, e^{-i \alpha \theta} F\right\rangle
\end{aligned}
$$

where $\bar{\Theta}=\sum_{k \geq 0}\binom{k+n-1}{k}(-1)^{k} e^{-i(2 k+n) \theta}$. So, if n is even, from 3.13 we get

$$
\left\langle\Psi_{\alpha}, f\right\rangle=-\sum_{j=0}^{n-2} c_{j}\left\langle\delta_{\pi / 2}^{(j+1)}+\delta_{-\pi / 2}^{(j+1)}, e^{-i \alpha \theta} F\right\rangle-\sum_{j=0}^{n-2} \overline{c_{j}}\left\langle\overline{\delta_{\pi / 2}^{(j+1)}}+\overline{\delta_{-\pi / 2}^{(j+1)}}, e^{-i \alpha \theta} F\right\rangle,
$$

and because $\left\langle\delta_{ \pm \pi / 2}^{(j+1)}, e^{-i \alpha \theta} F\right\rangle=0$ we conclude that $\left\langle\Psi_{\alpha}, f\right\rangle=0$. If n is odd we use (3.14 to conclude that $\left\langle\Psi_{\alpha}, f\right\rangle=0$. For a general $f \in \mathcal{X}$ we consider $h \in \mathcal{X}$ such that $\int_{-\pi / 2}^{\pi / 2} h(t) d t=1$ and define

$$
g(\theta)=f(\theta)-\left(\int_{-\pi / 2}^{\pi / 2} f(t) d t\right) h(\theta)
$$

So we can apply the above result to g and get $\left\langle\Psi_{\alpha}, g\right\rangle=0$. Then

$$
\left\langle\Psi_{\alpha}, f\right\rangle=\left\langle\Psi_{\alpha}, g\right\rangle+\left\langle\Psi_{\alpha}, h\right\rangle\langle 1, f\rangle=\left\langle\Psi_{\alpha}, h\right\rangle\langle 1, f\rangle
$$

Let $C_{\alpha}=\left\langle\Psi_{\alpha}, h\right\rangle$. In order to compute C_{α}, consider $g \in \mathcal{X}$ such that $\operatorname{supp}(g) \subset(-\pi / 4, \pi / 4), \int_{-\pi / 4}^{\pi / 4} g(t) d t=1$ and $g \geq 0$. We have

$$
\left\langle e^{i \alpha \theta} \Psi_{\alpha}, g\right\rangle=C_{\alpha} \int_{-\pi / 2}^{\pi / 2} e^{i \alpha \theta} g(\theta) d \theta
$$

and also

$$
\begin{aligned}
& \left\langle e^{i \alpha \theta} \Psi_{\alpha}, g\right\rangle \\
& \quad=\lim _{r \rightarrow 1^{-}}\left(\int_{-\pi / 2}^{\pi / 2}\left(\Psi_{r, \alpha}(\theta)-\Psi_{r, \alpha}(0)\right) e^{i \alpha \theta} g(\theta) d \theta+\Psi_{r, \alpha}(0) \int_{-\pi / 2}^{\pi / 2} e^{i \alpha \theta} g(\theta) d \theta\right)
\end{aligned}
$$

From Lemmas 3.3 and 3.4 we deduce that

$$
C_{\alpha}=\lim _{r \rightarrow 1^{-}} \Psi_{r, \alpha}(0)
$$

and also that C_{α} is an analytic function of α. Since $\Psi_{0, \alpha}(0)=0$, we can
write

$$
C_{\alpha}=\lim _{r \rightarrow 1^{-}} \Psi_{r, \alpha}(0)=\Psi_{1, \alpha}(0)-\Psi_{0, \alpha}(0)=\int_{0}^{1} w_{\alpha}^{\prime}(s) d s
$$

where

$$
w_{\alpha}(r)=\Psi_{r, \alpha}(0)=r^{-\alpha} \sum_{k \geq 0} \alpha_{k} \frac{r^{2 k+n}}{2 k+n-\alpha}+r^{\alpha} \sum_{k \geq 0} \alpha_{k} \frac{r^{2 k+n}}{2 k+n+\alpha}
$$

Applying (3.8) with $\theta=0$ we obtain

$$
w_{\alpha}^{\prime}(r)=\left(r^{-\alpha-1}+r^{\alpha-1}\right) \sum_{k \geq 0} \alpha_{k} r^{2 k+n}=\left(r^{-\alpha-1}+r^{\alpha-1}\right)\left(\frac{r}{1+r^{2}}\right)^{n}
$$

and we can compute the integral for $\mathfrak{R e}(n+\alpha)>0, \mathfrak{R e}(n-\alpha)>0$, obtaining

$$
\begin{equation*}
C_{\alpha}=B\left(\frac{n+\alpha}{2}, \frac{n-\alpha}{2}\right)=\frac{\Gamma\left(\frac{n+\alpha}{2}\right) \Gamma\left(\frac{n-\alpha}{2}\right)}{(n-1)!} \tag{3.17}
\end{equation*}
$$

where B is the Beta function and Γ is the Gamma function. By Lemma 3.3 , (3.17) holds for $\alpha \in \Omega$ by analytic continuation. In a completely analogous way we conclude that $\widetilde{C}_{\alpha}=(-1)^{n} e^{-i \alpha \pi} C_{\alpha}$.

Let us now define

$$
\begin{equation*}
K_{1 f}(\rho, \theta)=\frac{1}{\rho^{n-1}} \operatorname{sgn}(\cos \theta) G_{f}\left(\rho \cos \theta,-\frac{\rho}{4} \sin \theta\right) \tag{3.18}
\end{equation*}
$$

for $\theta \in[-\pi / 2, \pi / 2], 0<\rho<\infty$, where G_{f} is the function defined in (3.4); and

$$
\begin{equation*}
K_{2 f}(\rho, \theta)=\frac{1}{\rho^{n-1}} \operatorname{sgn}(\cos \theta) G_{f}\left(\rho \cos \theta, \frac{\rho}{4} \sin \theta\right) \tag{3.19}
\end{equation*}
$$

for $\theta \in[\pi / 2,3 \pi / 2], 0<\rho<\infty$.
It is easy to check that $K_{1 f}(\rho, \cdot) \in \mathcal{X}$. Recall that we replaced $\tau-4 i t$ with $\rho e^{i \theta}$. Since $N f \in \mathcal{H}_{n}$, there exists a positive constant c such that

$$
\sup _{\tau \neq 0, t \in \mathbb{R}}\left|\left(\tau^{2}+16 t^{2}\right) N f(\tau, t)\right| \leq c
$$

that is,

$$
\left|N f\left(\rho \cos \theta,-\frac{\rho}{4} \sin \theta\right)\right| \leq \frac{c}{\rho^{2}}
$$

Also, since $N f(0, \cdot) \in \mathcal{S}(\mathbb{R})$, there exists a positive constant c_{N} such that for $t \in \mathbb{R}$,

$$
\left|t^{N} \sum_{j=0}^{n-2} \frac{\partial^{j}}{\partial \tau^{j}} N f(0, t) \frac{\tau^{j}}{j!}\right| \leq c_{N}|\tau|^{n-2}
$$

Thus, for $N \in \mathbb{N}$ there exists c_{N} such that

$$
\begin{equation*}
\left|K_{1 f}(\rho, \theta)\right| \leq \frac{a}{\rho^{n+1}}+\frac{b}{\rho^{N+1}} \frac{|\cos \theta|^{n-2}}{|\sin \theta|^{N}} \tag{3.20}
\end{equation*}
$$

Analogous observations are also true for $K_{2 f}$.
Proposition 3.6. Let C_{α} and \widetilde{C}_{α} be the constants obtained in 3.17. Let $K_{1 f}$ and $K_{2 f}$ be defined by 3.18 and (3.19), and $\alpha_{k}=\binom{k+n-1}{k}(-1)^{k}$. Then

$$
\begin{aligned}
& \lim _{r \rightarrow 1^{-}} \int_{0}^{\infty} \int_{-\pi / 2}^{\pi / 2} e^{i \alpha \theta} \sum_{k \geq 0} \alpha_{k}\left(\frac{r^{2 k+n-\alpha} e^{i(2 k+n-\alpha) \theta}}{2 k+n-\alpha}+\frac{r^{2 k+n+\alpha} e^{-i(2 k+n+\alpha) \theta}}{2 k+n+\alpha}\right) \\
& \times K_{1 f}(\rho, \theta) d \theta d \rho \\
& =4^{n-1}(n-1)!C_{\alpha} \int_{\mathbb{R}} \int_{\tau>0} \frac{1}{(\tau-4 i t)^{(n-\alpha) / 2}} \frac{1}{(\tau+4 i t)^{(n+\alpha) / 2}} \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t,
\end{aligned}
$$

and
$\lim _{r \rightarrow 1^{-}} \int_{0}^{\infty} \int_{\pi / 2}^{3 \pi / 2} e^{i \alpha \theta} \sum_{k \geq 0} \alpha_{k}\left(\frac{r^{2 k+n-\alpha} e^{i(2 k+n-\alpha) \theta}}{2 k+n-\alpha}+\frac{r^{2 k+n+\alpha} e^{-i(2 k+n+\alpha) \theta}}{2 k+n+\alpha}\right)$

$$
\times K_{2 f}(\rho, \theta) d \theta d \rho
$$

$=4^{n-1}(n-1)!\widetilde{C}_{\alpha} \int_{\mathbb{R}} \int_{\tau<0} \frac{1}{(\tau-4 i t)^{(n-\alpha) / 2}} \frac{1}{(\tau+4 i t)^{(n+\alpha) / 2}} \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t$.
Proof. The proof follows the same lines of Proposition 4.2 of [G-S2]. We sketch it for the sake of completeness.

Taking polar coordinates $\tau-4 i t=\rho e^{i \theta}$ we only need to show that

$$
\begin{equation*}
\lim _{r \rightarrow 1^{-}} \int_{0}^{\infty}\left\langle\Psi_{r, \alpha}, e^{i \alpha \theta} K_{1 f}(\rho, \theta)\right\rangle d \rho=\int_{0}^{\infty}\left\langle C_{\alpha}, e^{i \alpha \theta} K_{1 f}(\rho, \theta)\right\rangle d \rho \tag{3.21}
\end{equation*}
$$

In order to do this we split the integral into integrals over $0<\rho<1$ and $1<\rho<\infty$.

We consider first the case $1<\rho<\infty$. For $|\theta| \leq \delta<\pi / 4$, set

$$
\begin{aligned}
I & =\int_{1}^{\infty} \int_{|\theta|<\delta} e^{i \alpha \theta}\left(\Psi_{r, \alpha}(\theta)-\Psi_{r, \alpha}(0)\right) K_{1 f}(\rho, \theta) d \theta d \rho \\
I I & =\int_{1}^{\infty} \int_{|\theta|<\delta} e^{i \alpha \theta}\left(\Psi_{r, \alpha}(0)-C_{\alpha}\right) K_{1 f}(\rho, \theta) d \theta d \rho
\end{aligned}
$$

We bound I close to 0 by applying Lemma 3.4 and taking $N=1$ in (3.20). For $I I$ we just take $N=1 / 2$ in (3.20). To analyze the case $\delta \leq|\theta| \leq$ $\pi / 2$, we observe that the function $K_{1 f}^{*}(\theta)=\int_{1}^{\infty} K_{1 f}(\rho, \theta) d \rho$ defined for $\theta \in$
$[-\pi / 2,-\delta] \cup[\delta, \pi / 2]$ can be extended to an element of \mathcal{X} that we still denote by $K_{1 f}^{*}$. Then

$$
\begin{aligned}
& \int_{1}^{\infty} \int_{\delta<|\theta|<\pi / 2} e^{i \alpha \theta}\left(\Psi_{r, \alpha}(\theta)-C_{\alpha}\right) K_{1 f}(\rho, \theta) d \theta d \rho \\
& \quad=\int_{-\pi / 2}^{\pi / 2} e^{i \alpha \theta}\left(\Psi_{r, \alpha}(\theta)-C_{\alpha}\right) K_{1 f}^{*}(\theta) d \theta-\int_{|\theta|<\delta} e^{i \alpha \theta}\left(\Psi_{r, \alpha}(\theta)-C_{\alpha}\right) K_{1 f}^{*}(\theta) d \theta
\end{aligned}
$$

The first term converges to zero as $r \rightarrow 1^{-}$since $\Psi_{r, \alpha} \rightarrow C_{\alpha}$ as $r \rightarrow 1^{-}$in \mathcal{X}^{\prime}. For the second term we argue as above.

Finally, for the case $0<\rho<1$ we apply the same arguments to the function $K_{1 f}^{* *}(\theta)=\int_{0}^{1} K_{1 f}(\rho, \theta) d \rho$.

Corollary 3.7. $\left\langle\Phi_{11}, f\right\rangle$ is well defined for $f \in \mathcal{S}\left(\mathbb{H}_{n}\right)$, and $\left\langle\Phi_{11}, f\right\rangle$
$=4^{n-1}(n-1)!C_{\alpha} \int_{\mathbb{R}} \int_{\tau>0} \frac{1}{(\tau-4 i t)^{(n-\alpha) / 2}} \frac{1}{(\tau+4 i t)^{(n+\alpha) / 2}} \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t$
$+4^{n-1}(n-1)!\widetilde{C}_{\alpha} \int_{\mathbb{R}} \int_{\tau<0} \frac{1}{(\tau-4 i t)^{(n-\alpha) / 2}} \frac{1}{(\tau+4 i t)^{(n+\alpha) / 2}} \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t$.
From the corollary we also infer that $\left\langle\Phi_{12}, f\right\rangle$ is well defined. In order to explicitly compute it, we define, for $0 \leq l \leq n-2, \epsilon>0$ and $f \in \mathcal{S}\left(\mathbb{H}_{n}\right)$,

$$
\begin{align*}
& d_{\epsilon, l, f}^{-}=\int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-\epsilon|\lambda|} e^{-i \lambda t}|\lambda|^{n-l-2} \frac{\partial^{l}}{\partial \tau^{l}} N f(0, t) d t d \lambda \tag{3.22}\\
& d_{\epsilon, l, f}^{+}=\int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-\epsilon|\lambda|} e^{i \lambda t}|\lambda|^{n-l-2} \frac{\partial^{l}}{\partial \tau^{l}} N f(0, t) d t d \lambda \tag{3.23}
\end{align*}
$$

Then we can write 3.6 as
$\left\langle\Phi_{12}, f\right\rangle$

$$
=\lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{k \geq 0} \sum_{\substack{l=0 \\ l \text { odd }}}^{n-2} 2^{l+2}\left(a_{k l}+b_{k l}\right)\left[\frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} d_{\epsilon, l, f}^{-}+\frac{r^{2 k+n+\alpha}}{2 k+n+\alpha} d_{\epsilon, l, f}^{+}\right]
$$

From Lemma 4.4 in [G-S2] we deduce that

$$
a_{k l}+b_{k l}=(-1)^{k} \sum_{j=1}^{l+1} \frac{1}{2^{n-l-j-1}}\binom{n-j-1}{l-j+1}\binom{j+k-1}{k}
$$

We also have the following

Lemma 3.8. If $0 \leq l \leq n-2, \epsilon>0$ and $f \in \mathcal{S}\left(\mathbb{H}_{n}\right)$, then

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0^{+}} d_{\epsilon, l, f}^{-} & =\frac{1}{i^{n-l-2}}\left\langle\frac{\pi}{2} \delta-i \text { p.v. }\left(\frac{1}{\lambda}\right), \frac{\partial^{n-2}}{\partial \lambda^{n-l-2} \partial \tau^{l}} N f(0, \cdot)\right\rangle \\
\lim _{\epsilon \rightarrow 0^{+}} d_{\epsilon, l, f}^{+} & =i^{n-l-2}\left\langle\frac{\pi}{2} \delta+i \text { p.v. }\left(\frac{1}{\lambda}\right), \frac{\partial^{n-2}}{\partial \lambda^{n-l-2} \partial \tau^{l}} N f(0, \cdot)\right\rangle
\end{aligned}
$$

Proof. Let us consider $g(\lambda)=e^{-\epsilon|\lambda|}|\lambda|^{n-l-2}$ and $h(t)=\frac{\partial^{l}}{\partial \tau^{l}} N f(0, t)$, and observe that $\int_{-\infty}^{\infty} e^{-i \lambda t} h(t) d t=\hat{h}(\lambda)$. Then just by using the properties of the Fourier transform we get

$$
\begin{aligned}
d_{\epsilon, l, f}^{-} & =\int_{0}^{\infty} \int_{-\infty}^{\infty} g(\lambda) e^{-i \lambda t} h(t) d t d \lambda=\int_{0}^{\infty} g(\lambda) \hat{h}(\lambda) d \lambda \\
& =\frac{1}{i^{n-l-2}} \int_{-\infty}^{\infty} \frac{1}{\epsilon+i \lambda} h^{(n-l-2)}(\lambda) d \lambda .
\end{aligned}
$$

For each $\epsilon>0, \frac{1}{\epsilon+i \lambda}$ is a distribution such that the limit $\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\epsilon+i \lambda}$ exists in $\mathcal{S}^{\prime}(\mathbb{R})$. Moreover, it is easy to check that

$$
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\epsilon+i \lambda}=\frac{\pi}{2} \delta-i \text { p.v. }\left(\frac{1}{\lambda}\right)
$$

Thus the desired equality follows. For $d_{\epsilon, l, f}^{+}$we need to change variables according to $\lambda \leftrightarrow-\lambda$ after considering the Fourier transform of h.

For $j \in \mathbb{N}, 0<j<n-1$, we define functions of r, with $0 \leq r<1$, by

$$
\begin{aligned}
& w_{j}^{-}(r)=\sum_{k \geq 0}(-1)^{k}\binom{j+k-1}{k} \frac{r^{2 k+n-\alpha}}{2 k+n-\alpha} \\
& w_{j}^{+}(r)=\sum_{k \geq 0}(-1)^{k}\binom{j+k-1}{k} \frac{r^{2 k+n+\alpha}}{2 k+n+\alpha}
\end{aligned}
$$

We can see, in a completely analogous way to the computations made for C_{α} and \widetilde{C}_{α}, that these functions are well defined and that

$$
\begin{align*}
& c_{j}^{-}:=\lim _{r \rightarrow 1^{-}} w_{j}^{-}(r)=\frac{1}{2} B_{1 / 2}\left(\frac{n-\alpha}{2}, j-\frac{n-\alpha}{2}\right), \tag{3.24}\\
& c_{j}^{+}:=\lim _{r \rightarrow 1^{-}} w_{j}^{+}(r)=\frac{1}{2} B_{1 / 2}\left(\frac{n+\alpha}{2}, j-\frac{n+\alpha}{2}\right),
\end{align*}
$$

where $B_{1 / 2}$ is another special function called the incomplete Beta function.

We now combine all of these definitions and results together to finally obtain an expression for Φ_{12} :

$$
\begin{aligned}
&\left\langle\Phi_{12}, f\right\rangle=\sum_{\substack{l=0 \\
l \text { odd }}}^{n-2} \sum_{j=1}^{l+1} 2^{2 l-n+j+3}\binom{n-j-1}{l-j+1} {\left[\left(\frac{1}{i^{n-l-2}} c_{j}^{-}+i^{n-l-2} c_{j}^{+}\right) \frac{\pi}{2}\right] } \\
& \times\left\langle\delta, \frac{\partial^{n-2}}{\partial \lambda^{n-l-2} \partial \tau^{l}} N f(0, \cdot)\right\rangle \\
&+(-1) \sum_{\substack{l=0 \\
l \text { odd }}}^{n-2} \sum_{j=1}^{l+1} 2^{2 l-n+j+3}\left(\begin{array}{c}
n \\
l-j-1 \\
l
\end{array}\right)\left(\frac{1}{i^{n-l+1} c_{j}^{-}+i^{n-l+1} c_{j}^{+}}\right) \\
& \times\left\langle\text {p.v. }\left(\frac{1}{\lambda}\right), \frac{\partial^{n-2}}{\partial \lambda^{n-l-2} \partial \tau^{l}} N f(0, \cdot)\right\rangle
\end{aligned}
$$

All we need to do now is to use again Lemma 3.8 to get an expression for Φ_{2}. Thus, we have proved the following

Theorem 3.9. Let C_{α} and \widetilde{C}_{α} be the constants defined as in 3.17. Then there exist constants C_{l} and $\widetilde{C}_{l}, l=0, \ldots, n-2$, such that

$$
\begin{aligned}
& \left\langle\Phi_{\alpha}, f\right\rangle \\
& =4^{n-1}(n-1)!C_{\alpha} \int_{-\infty}^{\infty} \int_{\tau>0} \frac{1}{(\tau-4 i t)^{(n-\alpha) / 2}} \frac{1}{(\tau+4 i t)^{(n+\alpha) / 2}} \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t \\
& +4^{n-1}(n-1)!\widetilde{C}_{\alpha} \int_{-\infty}^{\infty} \int_{\tau<0} \frac{1}{(\tau-4 i t)^{(n-\alpha) / 2}} \frac{1}{(\tau+4 i t)^{(n+\alpha) / 2}} \operatorname{sgn}(\tau) G_{f}(\tau, t) d \tau d t \\
& +\sum_{l=0}^{n-2} C_{l}\left\langle\delta, \frac{\partial^{n-2}}{\partial \lambda^{n-l-2} \partial \tau^{l}} N f(0, \cdot)\right\rangle \\
& +\sum_{l=0}^{n-2} \widetilde{C}_{l}\left\langle\text { p.v. }\left(\frac{1}{\lambda}\right), \frac{\partial^{n-2}}{\partial \lambda^{n-l-2} \partial \tau^{l}} N f(0, \cdot)\right\rangle .
\end{aligned}
$$

The constants C_{l} and \widetilde{C}_{l} follow from the expressions obtained for Φ_{12} and Φ_{2}.
4. A fundamental solution for L. As in the classical case, the distribution Φ defined in (1.6) is a well defined tempered distribution and it is a fundamental solution for the operator L. The proof is identical to the one of Theorem 3.1.

We will compute the fundamental solution Φ by means of the Radon transform and the fundamental solution of the operator L in the classical case $N(2 p, 2 q, \mathbb{C})$.

Let $F \in \mathcal{S}\left(\mathbb{R}^{3}\right)$. We assign to F a function $\mathcal{R} F: \mathbb{R} \times S^{2} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{R} F(t, \xi)=\int_{\mathbb{R}^{2}} F\left(t \xi+u_{1} e_{1}+u_{2} e_{2}\right) d u_{1} d u_{2}
$$

where $\left\{\xi, e_{1}, e_{2}\right\}$ is an orthonormal basis of \mathbb{R}^{3}. It is easy to see that this definition does not depend on the choice of the basis. In order to recover F from $\mathcal{R} F$, we consider the space $\mathcal{S}\left(\mathbb{R} \times S^{2}\right)$ of continuous functions $G: \mathbb{R} \times S^{2} \rightarrow \mathbb{R}$ that are infinitely differentiable in t and satisfy, for every $m, k \in \mathbb{N}_{0}$,

$$
\sup _{t \in \mathbb{R}, \xi \in S^{2}}\left|t^{m} \frac{\partial^{k}}{\partial t^{k}} G(t, \xi)\right|<\infty
$$

Now for $G \in \mathcal{S}\left(\mathbb{R} \times S^{2}\right)$ we define a function $\mathcal{R}^{*} G: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
\mathcal{R}^{*} G(z)=\int_{S^{2}} G(\langle z, \xi\rangle, \xi) d \xi
$$

Both assignments are well defined. The map $\mathcal{R}: \mathcal{S}\left(\mathbb{R}^{3}\right) \rightarrow \mathcal{S}\left(\mathbb{R} \times S^{2}\right)$ is the Radon transform, $\mathcal{R}^{*}: \mathcal{S}\left(\mathbb{R} \times S^{2}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{3}\right)$ is the dual Radon transform and they satisfy, for every $F \in \mathcal{S}\left(\mathbb{R}^{3}\right)$,

$$
\begin{equation*}
-2 \pi F=\Delta \mathcal{R}^{*} \mathcal{R} F \tag{4.1}
\end{equation*}
$$

where $\Delta=\partial^{2} / \partial z_{1}^{2}+\partial^{2} / \partial z_{2}^{2}+\partial^{2} / \partial z_{3}^{2}$ is the \mathbb{R}^{3}-Laplacian (see for Example [S-Sh]).

Now, let us consider the function ϕ defined for a fixed $\tau \neq 0$ by

$$
\phi(\tau, z)=\frac{16 n}{\pi} \frac{4^{2 n}(2 n-1)!c_{0}}{\left(\tau^{2}+16|z|^{2}\right)^{n+1}}
$$

where $c_{0}=-\int_{0}^{1} \sigma^{2 n-1}\left(1+\sigma^{2}\right)^{2 n} d \sigma$. The function $\phi(\tau, \cdot)$ is not a Schwartz function on \mathbb{R}^{3}, but we have $(1+\Delta)^{k} \phi(\tau, \cdot) \in L^{1}\left(\mathbb{R}^{3}\right)$ for all k in \mathbb{N}, hence $\left(1+|\xi|^{2}\right)^{k} \widehat{\phi(\tau, \cdot)}(\xi) \in L^{\infty}\left(\mathbb{R}^{3}\right)$. With these properties the inversion formula for the Radon transform (4.1) still holds. The proof follows straightforwardly from Theorem 5.4 of [S-Sh].

Let us now compute the Radon transform of the function ϕ :

$$
\begin{aligned}
\mathcal{R} \phi(\tau, t, \xi) & =\int_{\mathbb{R}^{2}} \frac{16 n}{\pi} \frac{4^{2 n}(2 n-1)!c_{0}}{\left(\tau^{2}+16\left(t^{2}+u_{1}^{2}+u_{2}^{2}\right)\right)^{n+1}} d u_{1} d u_{2} \\
& =\frac{16 n}{\pi} \frac{4^{2 n}(2 n-1)!c_{0}}{16^{n+1}} \int_{\mathbb{R}^{2}} \frac{1}{\left(\tau^{2} / 16+t^{2}+\left(u_{1}^{2}+u_{2}^{2}\right)\right)^{n+1}} d u_{1} d u_{2} \\
& =\frac{16 n}{\pi} \frac{4^{2 n}(2 n-1)!c_{0}}{16^{n+1}} \int_{-\pi / 2}^{3 \pi / 2} \int_{0}^{\infty} \frac{\rho}{\left(\tau^{2} / 16+t^{2}+\rho^{2}\right)^{n+1}} d \rho d \theta \\
& =\frac{4^{2 n}(2 n-1)!c_{0}}{\left(\tau^{2}+16|z|^{2}\right)^{n}}
\end{aligned}
$$

where $z=t \xi$. Let

$$
\varphi(\tau, z)=\frac{4^{2 n}(2 n-1)!c_{0}}{\left(\tau^{2}+16|z|^{2}\right)^{n}}
$$

Now from the expression of the fundamental solution of L in the classical case (see for example 4.3 of [G-S2]) we know that

$$
\varphi(\tau, t \xi)=\sum_{k \geq 0} \frac{(-1)}{2 k+2 n} \int_{-\infty}^{\infty} e^{i \lambda t} L_{k}^{2 n-1}\left(\frac{\lambda}{2}|\tau|\right) e^{-\frac{\lambda}{4}|\tau|}|\lambda|^{2 n-1} d \lambda
$$

We observe that the operator L has a nontrivial kernel, and define, for $f \in \mathcal{S}(N(p, q, \mathbb{H}))$,

$$
\mathcal{P} f=\int_{\mathbb{R}^{3}} f * \varphi_{w, q-p}|w|^{2 n} d w
$$

Then $L \mathcal{P} f=0$.
To compute Φ we express the integral in 1.6 in polar coordinates:

$$
\begin{aligned}
\langle\Phi, f\rangle & =\sum_{k \in \mathbb{Z}, k \neq q-p} \int_{\mathbb{R}^{3}} \frac{1}{-|\lambda|(2 k+2(p-q))}\left\langle\varphi_{w, k}, f\right\rangle|w|^{2 n} d w \\
& =\sum_{k \in \mathbb{Z}, k \neq q-p} \int_{S^{2}} \int_{0}^{\infty} \frac{1}{-|\lambda|(2 k+2(p-q))}\left\langle\varphi_{\lambda \xi, k}, f\right\rangle|\lambda|^{2 n+2} d \lambda d \xi
\end{aligned}
$$

By the absolute convergence of (1.6) we can interchange the summation with the integral over S^{2}. Since $\Delta e^{i \lambda\langle\xi, z\rangle}=-|\lambda|^{2} e^{i \lambda\langle\xi, z\rangle}$, integrating by parts, we obtain

$$
\begin{aligned}
\langle\Phi, f\rangle= & \int_{S^{2}} \sum_{k \in \mathbb{Z}, k \neq q-p} \frac{(-1)}{(2 k+2(p-q))} \int_{0}^{\infty} \int_{N(p, q, \mathbb{H})} e^{i \lambda\langle\xi, z\rangle} \theta_{\lambda, k}(\alpha) f(\alpha, z) d \alpha d z \\
= & \quad \int_{S^{2}} \sum_{k \in \mathbb{Z}, k \neq q-p} \frac{1}{(2 k+2(p-q))} \int_{0}^{\infty} \int_{N(p, q, \mathbb{H})} \Delta e^{i \lambda\langle\xi, z\rangle} \theta_{\lambda, k}(\alpha) f(\alpha, z) d \alpha d z \\
& \quad \times|\lambda|^{2 n-1} d \lambda d \xi
\end{aligned} \quad \begin{array}{r}
\int_{S^{2}} \sum_{k \in \mathbb{Z}, k \neq q-p} \frac{1}{(2 k+2(p-q))} \int_{0}^{\infty}\left\langle\varphi_{\lambda \xi, k}, \Delta f\right\rangle|\lambda|^{2 n-1} d \lambda d \xi .
\end{array}
$$

Next we break the summation range into three parts, for $k \geq 2 q, k \leq-2 p$ and $-2 p<k<2 q$, to get the splitting $\langle\Phi, f\rangle=\left\langle\Phi_{1}, f\right\rangle+\left\langle\Phi_{2}, f\right\rangle$, and as in Section 3 we change the summation index to make the series start from $k=0$. Using the explicit definition of $\varphi_{\lambda \xi, k}$ we can write

$$
\begin{aligned}
\left\langle\Phi_{1}, f\right\rangle=\int_{S^{2}} \sum_{k \geq 0} \frac{1}{2 k}+2 n & \int_{0}^{\infty} \int_{\mathbb{R}^{3}} e^{i \lambda\langle\xi, z\rangle} \\
& \times\left\langle T_{\lambda, k+2 q}-T_{\lambda,-k-2 p}, N \Delta f(\cdot, z)\right\rangle d z|\lambda|^{2 n-1} d \lambda d \xi
\end{aligned}
$$

where $T_{\lambda, k}=F_{\lambda, k}$ is defined by equations (2.2) and (2.3). By performing similar computations to those in Section 3 and introducing the function

$$
G_{f}(\tau, z)=N f(\tau, z)-\sum_{j=0}^{2 n-2} \frac{\partial^{j} N f}{\partial \tau^{j}}(0, z) \frac{\tau^{j}}{j!},
$$

we obtain the splitting

$$
\left\langle\Phi_{1}, f\right\rangle=\left\langle\Phi_{11}, f\right\rangle+\left\langle\Phi_{12}, f\right\rangle,
$$

where

$$
\begin{align*}
\left\langle\Phi_{11}, f\right\rangle & =\int_{S^{2}} \sum_{k \geq 0} \frac{(-1)}{2 k+2 n} \int_{0}^{\infty} \int_{\mathbb{R}^{3}} \int_{-\infty}^{\infty} e^{i \lambda\langle\xi, z\rangle} \tag{4.2}\\
& \times \operatorname{sgn}(\tau) L_{k}^{2 n-1}\left(\frac{2}{\lambda}|\tau|\right) e^{-\lambda / 4|\tau|} \Delta G_{f}(\tau, z) d \tau d z|\lambda|^{2 n-1} d \lambda d \xi
\end{align*}
$$

$$
\begin{align*}
\left\langle\Phi_{12}, f\right\rangle= & 2 \int_{S^{2}} \sum_{k \geq 0} \frac{1}{2 k+2 n} \int_{0}^{\infty} \int_{\mathbb{R}^{3}} e^{i \lambda\langle\xi, z\rangle} \tag{4.3}\\
& \times \sum_{\substack{l=0 \\
l \text { odd }}}^{2 n-2}\left(\frac{2}{\lambda}\right)^{l+1}\left(a_{k, l}+b_{k, l}\right)\left\langle\delta^{(l)}, \Delta N f(\cdot, z)\right\rangle d z|\lambda|^{2 n-1} d \xi,
\end{align*}
$$

and $a_{k l}, b_{k l}$ are the same constants defined in (3.7) and (3.3), respectively. Now we recall that

$$
\int_{S^{2}} \int_{0}^{\infty} e^{i \lambda\langle\xi, z\rangle} F(|\lambda|) d \lambda d \xi=\frac{1}{2} \int_{S^{2}} \int_{-\infty}^{\infty} e^{i \lambda\langle\xi, z\rangle} F(|\lambda|) d \lambda d \xi,
$$

and apply the dual Radon transform to 4.2).
Observe now that

$$
\int_{-\infty}^{\infty} \int_{\mathbb{R}^{3}} \frac{\operatorname{sgn}(\tau) G_{f}(\tau, z)}{\left(1+16|z|^{2}\right)^{n+1}} d z d \tau
$$

converges, which can be seen by changing to polar coordinates in \mathbb{R}^{3} and arguing as in Lemma 2.2 of [G-S2].

We finally get

$$
\begin{aligned}
\left\langle\Phi_{11}, f\right\rangle & =\frac{1}{2}\left\langle-2 \pi \frac{16 n}{\pi} \frac{4^{2 n}(2 n-1)!c_{0}}{\left(\tau^{2}+16|z|^{2}\right)^{n+1}}, \operatorname{sgn}(\tau) G_{f}(\tau, z)\right\rangle \\
& =-4^{2 n+2} n(2 n-1)!c_{0}\left\langle\frac{1}{\left(\tau^{2}+16|z|^{2}\right)^{n+1}}, \operatorname{sgn}(\tau) G_{f}(\tau, z)\right\rangle .
\end{aligned}
$$

We have thus proven that the expression defining Φ_{11} is finite. Then the expression defining Φ_{12} is also finite, and by Abel's Lemma we can write

$$
\left\langle\Phi_{12}, f\right\rangle=2 \lim _{r \rightarrow 1^{-}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{k \geq 0} \sum_{\substack{l=0 \\ l \text { odd }}}^{2 n-2} 2^{l+1}\left(a_{k, l}+b_{k, l}\right) \frac{r^{2 k+2 n}}{2 k+2 n} d_{\epsilon, l, f},
$$

where

$$
\begin{equation*}
d_{\epsilon, l, f}=\int_{S^{2}} \int_{0}^{\infty} \int_{\mathbb{R}^{3}} e^{-\epsilon \lambda} e^{i \lambda\langle\xi, z\rangle}|\lambda|^{2 n-l-2}\left\langle\delta^{(l)}, \Delta N f(\cdot, z)\right\rangle d z d \lambda d \xi . \tag{4.4}
\end{equation*}
$$

We need to compute $\lim _{\epsilon \rightarrow 0^{+}} d_{\epsilon, l, f}$. Observing that $\Delta e^{i \lambda\langle\xi, z\rangle}=-|\lambda|^{2} e^{i \lambda\langle\xi, z\rangle}$, we have

$$
\begin{aligned}
d_{\epsilon, l, f} & =(-1)^{l+1} \int_{S^{2}} \int_{0}^{\infty} \int_{\mathbb{R}^{3}} e^{-\epsilon \lambda} e^{i \lambda\langle\xi, z\rangle}|\lambda|^{2 n-l} \frac{\partial^{l}}{\partial \tau^{l}} N f(0, z) d z d \lambda d \xi \\
& =(-1)^{l+1} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} e^{-\epsilon|x|}|x|^{2 n-l-2} e^{i\langle x, z\rangle} \frac{\partial^{l}}{\partial \tau^{l}} N f(0, z) d z d x,
\end{aligned}
$$

where we have changed to cartesian coordinates in \mathbb{R}^{3}. To compute this integral let us observe that

$$
(-1)^{2 n-l-2} e^{-\epsilon|x|}|x|^{2 n-l-2}=\left(\frac{\partial^{2 n-l-2}}{\partial \epsilon^{2 n-l-2}}\right)^{\wedge} P_{\epsilon}(x),
$$

where $P_{\epsilon}(x)$ is the Poisson kernel and ${ }^{\wedge}$ denotes the Fourier transform. Let us write

$$
\begin{aligned}
d_{\epsilon, l, f} & =(-1)^{l} \int_{\mathbb{R}^{3}}\left(\frac{\partial^{2 n-l-2}}{\partial \epsilon^{2 n-l-2}}\right)^{\wedge} P_{\epsilon}(x)\left(\frac{\partial^{l}}{\partial \tau^{l}} N f(0, \cdot)\right)^{\wedge}(x) d x \\
& =(-1)^{l} \frac{\partial^{2 n-l-2}}{\partial \epsilon^{2 n-l-2}}\left(P_{\epsilon} * h\right)(0) .
\end{aligned}
$$

Taking the limit as $\epsilon \rightarrow 0^{+}$we obtain

$$
\lim _{\epsilon \rightarrow 0^{+}}=(-1)(-\Delta)^{(2 n-l-2) / 2} \frac{\partial^{l}}{\partial \tau^{l}} N f(0,0)
$$

where $(-\Delta)^{(2 n-l-2) / 2}$ is a fractional power of the Laplacian (see for example [S-Sh]), which is the operator defined for $g \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ by

$$
(-\Delta)^{(2 n-l-2) / 2} g(x)=\int_{\mathbb{R}^{3}}|\omega|^{2 n-l-2} \widehat{g}(\omega) e^{i\langle\omega, z\rangle} d \omega .
$$

By this computation together with Proposition 4.8 of [G-S2] we write

$$
\begin{aligned}
& \left\langle\Phi_{12}, f\right\rangle \\
& \quad=\sum_{\substack{l=0 \\
l \text { odd }}}^{2 n-2} \sum_{j=1}^{l+1} \frac{1}{2^{2 n-2 l-j-3}} c_{j}\binom{2 n-j-1}{l-j-1}(-1)(-\Delta)^{(2 n-l-2) / 2} \frac{\partial^{l}}{\partial \tau^{l}} N f(0,0),
\end{aligned}
$$

where each c_{j} is the constant defined in Remark 4.7 of [G-S2] as follows:

$$
c_{j}=\int_{0}^{1} \frac{r^{j-1}}{\left(1+r^{2}\right)^{j}} d r .
$$

After performing the usual computations for Φ_{2} we will have proved the main theorem of this section:

Theorem 4.1. Let c_{0} be the constant defined above. Then there exist constants $c_{l}(k), l=0, \ldots, 2 n-2$ and $-2 p<k<2 q$, such that

$$
\begin{aligned}
\langle\Phi, f\rangle= & -4^{2 n+2} n(2 n-1)!c_{0}\left\langle\frac{1}{\left(\tau^{2}+16|z|^{2}\right)^{n+1}}, \operatorname{sgn}(\tau) G_{f}(\tau, z)\right\rangle \\
& +\sum_{\substack{-2 p<k<2 q \\
k \neq q-p}} \sum_{l=0}^{2 n-2} c_{l}(k)(-\Delta)^{(2 n-l-2) / 2} \frac{\partial^{l}}{\partial \tau^{l}} N f(0,0)
\end{aligned}
$$

Remark 4.2. Let N be a group of Heisenberg type and let η be its Lie algebra. So $\eta=V \oplus \mathfrak{z}$, with $\operatorname{dim} V=2 m$ and $\operatorname{dim}_{\mathfrak{z}}=k$. Let $U(V)$ be the unitary group acting on V. Then it is known (\mathbb{R}) that ($N \ltimes U(V), U(V)$) is a Gelfand pair. In $[\mathrm{R}]$ the spherical functions were computed. We fix an orthonormal basis of $V,\left\{X_{1}, \ldots, X_{2 m}\right\}$, and consider the operator

$$
L=\sum_{j=1}^{2 m} X_{j}^{2} .
$$

With the same arguments as above, using the Radon transform in \mathbb{R}^{k} and the fundamental solution of L in the classical $2 m+1$-dimensional Heisenberg group, we can recover the fundamental solution of L (see $[\mathrm{K},[\mathrm{R}$).

Acknowledgments. This research was partly supported by research grants from SCyT-UNR and Secyt-UNC, and a fellowship from CONICET.

REFERENCES

[B-D-R] C. Benson, A. H. Dooley and G. Ratcliff, Fundamental solutions for powers of the Heisenberg sub-Laplacian, Illinois J. Math. 37 (1993), 455-476.
[D] G. van Dijk, On a class of generalized Gelfand pairs, Math. Z. 193 (1986), 581-593.
[D-M] G. Van Dijk and K. Mokni, Harmonic analysis on a class of generalized Gel'fand pairs associated with hyperbolic spaces, Russ. J. Math. Phys. 5 (1997), 167-178.
[F] G. B. Folland A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373-376.
[F-S] G. B. Folland and E. M. Stein, Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group., Comm. Pure Appl. Math. 27 (1974), 429-522.
[G-S1] T. Godoy and L. Saal, L^{2} spectral decomposition on the Heisenberg group associated to the action of $U(p, q)$, Pacific J. Math. 193 (2000), 327-353.
[G-S2] T. Godoy and L. Saal, On the relative fundamental solutions for a second order differential operator on the Heisenberg group, Studia Math. 145 (2001), 143-164.
[K] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153.
[K-R] A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, in: Lecture Notes in Math. 992, Springer, 1983, 416-435.
[M-R1] D. Müller and F. Ricci, On the Laplace-Beltrami operator on the oscillator group, J. Reine Angew. Math. 390 (1988), 193-207.
[M-R2] D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups, II, J. Funct. Anal. 108 (1992), 296-346.
[R] F. Ricci, Harmonic analysis on groups of type H, preprint.
[S-Sh] E. M. Stein and R. Shakarchi, Fourier Analysis: An Introduction, Princeton Univ. Press, 2003.
[T] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201-218.
[V] R. Vidal, Análisis armónico en el grupo de Heisenberg cuaterniónico asociado al grupo $\operatorname{Spin}(3) \times U(p, q, \mathbb{H})$, Trabajos de Matemática - FaMAF, 2009.

Isolda Cardoso	Linda Saal
ECEN-FCEIA	FAMAF
Universidad Nacional de Rosario	Universidad Nacional de Córdoba
Pellegrini 250	Ciudad Universitaria
2000 Rosario, Argentina	5000 Córdoba, Argentina
E-mail: isolda@fceia.unr.edu.ar	E-mail: saal@mate.uncor.edu

Received 2 January 2012;
revised 21 December 2012

