
COLLOQU IUM MATHEMAT ICUM
VOL. 130 2013 NO. 1

ON SQUARE VALUES OF THE PRODUCT OF THE EULER
TOTIENT AND SUM OF DIVISORS FUNCTIONS

BY

KEVIN BROUGHAN (Hamilton), KEVIN FORD (Champaign, IL),
and FLORIAN LUCA (México)

Abstract. If n is a positive integer such that φ(n)σ(n) = m2 for some positive integer
m, then m ≤ n. We put m = n − a and we study the positive integers a arising in this
way.

1. Introduction. It is known (e.g. [2] and [8]), and we will revisit this
argument shortly, that there are infinitely many positive integers n such that
φ(n)σ(n) = � (1). Here, we look at such positive integers n. Clearly, n = 1
has the property. Suppose that n > 1 and write its prime factorization as

(1.1) n =

k∏
i=1

pαii .

Then

(1.2)
φ(n)σ(n)

n2
=

k∏
i=1

(
1− 1

pαi+1
i

)
.

Thus, if n > 1 and φ(n)σ(n) = m2 for some positive integer m, then m < n,
so we can write m = n−a for some positive integer a. In this paper, we look
at the positive integers a arising in this way. First, we fix such a number a
and study the set

Na := {n : n > a and φ(n)σ(n) = (n− a)2}.
It is easy to see that each n ∈ Na has the same parity as a. Our first result
shows that Na is a finite set.

Theorem 1. All elements n in Na have ω(n) > 1 and n ≤ 2a3.

We conjecture that Theorem 1 is best possible. Indeed, if p is prime and
2p2 − 1 is also prime, then for n = p(2p2 − 1), σ(n)φ(n) = (n − p)2 and
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(1) We use � to denote the square of a positive integer.
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n ∼ 2p3. It is conjectured that there are infinitely many such primes (this
is a special case of Schinzel’s Hypothesis H).

Next, we look at the set

A = {a ≥ 1 : Na 6= ∅}
= {2, 3, 6, 7, 8, 9, 11, 13, 17, 19, 23, 24, 26, 28, 32, 35,

37, 40, 41, 43, 45, 47, 53, . . .}.

Clearly,A is infinite because on the one hand there are infinitely many n such
that φ(n)σ(n) = �, while on the other hand for each a the set Na is finite
by Theorem 1. Our next result gives a lower bound for A(x) = A ∩ [1, x].

Theorem 2. The estimate #A(x) ≥ x1/8+o(1) holds as x→∞.

In light of the examples given above (n = p(2p2− 1)) and the Bateman–
Horn conjectures [3], it is likely that A(x)� x/ log2 x.

Throughout the paper, we use the Landau symbols O and o and the
Vinogradov symbols �, � and � with their usual meaning. We recall that
A = O(B), A � B and B � A are all equivalent and mean that the
inequality |A| ≤ cB holds with some positive constant c. Further, A � B
means that both estimates A� B and B � A hold, while A = o(B) means
that A/B → 0. The symbols p, q always represent primes.

2. Background on solutions of Pell-type equations. Let d > 1 be
a positive integer which is not a square. For k ≥ 1, let (Xk, Yk) be the kth
positive solution of the Pell equation X2 − dY 2 = 1. Recall that

Xk +
√
d Yk = (X1 +

√
d Y1)

k for all k = 1, 2, . . . .

We shall use some basic facts about the sequences (Xk)k≥1, such as relations
of the type

Xm+n = XmXn + dYmYn for all positive integers m, n,

as well as the fact that Xm |Xn whenever m |n and n/m is odd. We need
the following easy result concerning the indices k such that Xk is an odd
prime power.

Lemma 3. If Xk = pα for some odd prime p and positive integer α, then
k is a power of 2.

Proof. Suppose that k is not a power of 2. Let h ≥ 3 be an odd divisor
of k and put r = k/h. Since Xr |Xk, we have Xr = pβ for some integer
1 ≤ β < α. From

Xk +
√
d Yk = (Xr +

√
d Yr)

h,
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we get

(2.1) Xk =

(h−1)/2∑
i=0

(
h

2i+ 1

)
X2i+1
r (X2

r − 1)(h−1)/2−i.

In particular,
pα = Xk > Xh

r = (pβ)h = phβ,

therefore β < α/h. Let j be the largest integer with pjβ |h. If j ≤ h − 2,
we reduce equation (2.1) modulo p(j+2)β. Upon observing that j + 2 ≤ h,
therefore (j + 2)β ≤ hβ < α, we infer that p(j+2)β |Xk. Thus,

(2.2) 0 ≡
∑

0≤i≤j/2

(
h

2i+ 1

)
p(2i+1)β(p2β − 1)(h−1)/2−i (mod p(j+2)β).

We now show that p(j+2)β |
(

h
2i+1

)
p(2i+1)β for all 1 ≤ i ≤ j/2. Indeed, let

pλ ‖ 2i+ 1. Since 2i+ 1 ≤ p2i−1, it follows that λ ≤ 2i− 1. Using Kummer’s
theorem concerning the power of a prime dividing a binomial coefficient and
denoting by νp(m) the exponent of p in the factorization of m, we then have

νp

((
h

2i+ 1

))
≥ νp(h)− νp(2i+ 1) ≥ 2jβ − λ,

so

(j + 2)β ≤ νp
((

h

2i+ 1

))
+ λ+ 2β ≤ νp

((
h

2i+ 1

))
+ (2i− 1) + 2β

≤ νp
((

h

2i+ 1

)
p(2i+1)β

)
.

Thus, p(j+2)β |
(

h
2i+1

)
p(2i+1)β. The congruence (2.2) then implies

0 ≡ hpβ(p2β − 1)(h−1)/2 (mod p(j+2)β),

which implies p(j+1)β |h, a contradiction. Hence, j ≥ h− 1, so h is divisible
by ph−1 > h, a contradiction.

Let a, b > 1 be coprime square free integers such that the Diophantine
equation

aU2 − bV 2 = 1

has a positive integer solution (U, V ). It is well-known that it then has
infinitely many positive integer solutions (U, V ). Further, writing (U1, V1)
for the smallest such solution, all solutions of the above equation are of the
form (U2j+1, V2j+1) for some j ≥ 0, where

√
aU2j+1 +

√
b V2j+1 = γ2j+1 where γ =

√
aU1 +

√
b V1.

Furthermore, if we put

γ2j = U2j +
√
ab V2j for j ≥ 1,
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then the pairs (X,Y ) = (U2j , V2j) for j ≥ 1 form all the positive integer
solutions of the Pell equation X2 − (ab)Y 2 = 1. All these facts follow from
Theorem 3 of [10].

We need the following result which is similar to Lemma 3.

Lemma 4. With the above notation, let a = p be an odd prime and let
h be an odd positive integer. If Uh = pα for some α ≥ 0, then h = 1 or
(a, b, h) = (3, 2, 3).

Proof. If α = 0, then there is nothing to prove. So, assume that α > 0
and h > 1. Write h = rs with 1 ≤ r < h. Since Ur |Uh, it follows that
Ur = pβ, where 0 ≤ β < α. Write

(2.3) pα = Uh =

(s−1)/2∑
i=0

(
s

2i+ 1

)
U2i+1
r pi(bV 2

r )(s−1)/2−i.

Let pj ‖ s and assume that j < α− β. As in the previous proof, for i ≥ 1 let
pλ ‖ 2i+ 1. Observe that λ ≤ i and in fact λ ≤ i− 1 except when p = 3 and
i = 1. Then

νp

((
s

2i+ 1

))
≥ νp(s)− νp(2i+ 1) = j − λ,

therefore

νp

((
h

2i+ 1

)
U2i+1
r pi

)
≥ j + (2i+ 1)β + i− λ.

If λ ≤ i− 1 or if β > 0, the right hand side above is at least j+ 1 +β. Thus,
in (2.3) all terms with i ≥ 1 are divisible by pj+1+β. This implies

0 ≡ spβ(bV 2
1 )(s−1)/2 (mod pj+1+β),

so pj+1 | s, a contradiction. Thus, we have j ≥ α − β and hence Uh/Ur | s.
This is impossible, as (2.3) implies

Uh
Ur

> p(s−1)/2 ≥ s.

It remains to treat the exceptional case i = 1, β = 0, p = 3 for which
U1 = 1, b = 2, V1 = 1. Note that in this case U3 = 9 = 32. No other odd
numbers h give Uh = 3α, however. To see this, apply (2.3) with r = 1, s = h
and deduce that 3 |h. If h > 3, we apply the above argument with r = 3,
s = h/3 and β = 2, and deduce a contradiction as before.

The proofs of Lemmas 3 and 4 can be simplified by invoking the Primitive
Divisor Theorem for Lucas and Lehmer sequences (see [5], [11] and [4]).
We gave the current proofs in order to make the proof of Theorem 1 self-
contained.
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3. The proof of Theorem 1. Suppose that n ∈ Na, let k = ω(n) and
factor n canonically as n = pα1

1 · · · p
αk
k . If k = 1, then n = pα1

1 and

φ(n)σ(n) = pα1−1
1 (pα1+1

1 − 1) = �.

Since the two factors pα1+1
1 − 1 and pα1−1

1 are coprime and their product is
a square, it follows that each of them is a square. So, α1 − 1 = 2β1 is even,
and pα1+1

1 − 1 = p2β1+2
1 − 1 = �, which is impossible because there are no

two consecutive perfect squares. Hence, k ≥ 2.

We apply the AGM-inequality to the right side of (1.2) to get(
1− 1

k

k∑
i=1

1

pαi+1
i

)2

≥
(

1− 1

k

k∑
i=1

1

pαi+1
i

)k
≥

k∏
i=1

(
1− 1

pαi+1
i

)

=
σ(n)φ(n)

n2
=

(
1− a

n

)2

.

Taking square roots and rearranging gives

(3.1) ak ≥ n
k∑
i=1

1

pαi+1
i

.

Applying again the AGM-inequality to the right-hand side of (3.1), we get

ak ≥ kn
k∏
i=1

p
−(αi+1)/k
i = k

k∏
i=1

p
αi−(αi+1)/k
i .

If k ≥ 3, then since αi − (αi + 1)/k ≥ αi − (αi + 1)/3 = (2αi − 1)/3 ≥ αi/3
for all i = 1, . . . , k, we get

a ≥
k∏
i=1

p
αi/3
i = n1/3.

Thus, if k ≥ 3, then n ≤ a3.
Next, suppose k = 2 and rewrite (1.2) as

2∏
i=1

pαi−1i (pαi+1
i − 1) =

( 2∏
i=1

pαii − a
)2
.

If αi ≥ 2, then pαi−1i | a2, therefore pi | a, and then pαii | a3. In particular, if
α1, α2>1, then n=pα1

1 pα2
2 | a3, so that n≤a3. The next case is when α1=1

and α2 ≥ 2. If α2 = 2, then p2 | a, hence p1 < p2 ≤ a and n = p1p
2
2 < a3. If

α2 ≥ 3, (3.1) implies that 2a ≥ n/p21 ≥ p
α2−1
2 ≥ n1/2, so that n ≤ 4a2 ≤ 2a3

(recall that a = 1 is not possible).
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The final case is when k = 2 and α2 = 1. Assume first that p1 = 2. Then
p22 − 1 ≡ 0 (mod 8), therefore 2α1+2 |φ(n)σ(n) = (2α1p2 − a)2, showing that
2α1+1 | a2. Thus, by (3.1), we get

n ≤ 2α1+1(2a) ≤ 2a3.

From now on, we suppose that p1 is odd. We break the argument into
two subcases depending on whether α1 is odd or even. First, suppose α1 is
odd and write α1 = 2β − 1, where β ≥ 1. Here we have pβ−11 | a, so we may

write a = pβ−11 b for a positive integer b. Then our equation becomes

(p2β1 − 1)(p22 − 1) = (pβ1p2 − b)
2.

Consequently, there exists a square free number d and integers u, v such that
p2β1 −1 = du2 and p22−1 = dv2. Let (X1, Y1) be the minimal positive solution
to the Pell equation X2−dY 2 = 1 and let (Xj , Yj) be its jth solution. Since

pβ1 = X` and p2 = Xm for some positive integers `,m, it follows by Lemma 3
that both ` and m are powers of 2. Further, since

(X`Xm − b)2 = (pβ1p2 − a)2 = (p2β1 − 1)(p22 − 1) = (dY`Ym)2,

it follows that

b = X`Xm − dY`Ym = X|m−`|.

Suppose β ≤ 2. If m < ` then pβ1 = X` = 2X2
`/2−1 ≥ 2p22−1 > p22, a contra-

diction. Hence, m ≥ 2` and pβ1 = X` ≤ b, which implies a = pβ−11 b ≥ p2β−11 .
We also have p2 = Xm = 2X2

m/2 − 1 < 2b2 ≤ 2a2 and consequently

n = p2β−11 p2 < 2a3.

Now suppose β ≥ 3. If m ≥ 2`, then we get b ≥ X` = pβ1 as before.
Otherwise, m ≤ `/2, 2 | ` (because both ` and m are powers of 2) and

b ≥ X`/2 =

√
X` + 1

2
≥

√
pβ1
2
.

In both cases,

a = pβ−11 b ≥ p
β−1+(β/2)
1 √

2
,

hence p1 ≤ (a
√

2)2/(3β−2). Using (3.1), we get p2 ≤ 2ap1 ≤ 2a(a
√

2)2/(3β−2)

and we conclude that

n ≤ 2a(a
√

2)
4β

3β−2 = 2
1+ 2β

3β−2a
7β−2
3β−2 < 4a19/7 ≤ 2a3,

the final inequality holding for a ≥ 12 (for a ≤ 11, a quick search yields no
solutions in the interval [2a3, 4a19/7]). This concludes the proof when α1 is
odd.
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Finally, suppose α1 is even and write α1 = 2β. Then pβ1 | a and p1 | p22−1.

Writing a = pβ1a1, we get

(p2β+1
1 − 1)

(
p22 − 1

p1

)
= (pβ1p2 − a1)

2.

In particular, there exists a square free number d and integers u and v such
that

p2β+1
1 − 1 = du2 and p22 − 1 = p1dv

2.

If d = 1, then the first equation above becomes p2β+1
1 − u2 = 1, which has

no solutions by known results on Catalan’s equation (this particular case of
Catalan’s equation was solved by Lebesgue [9] more than 160 years ago).

Thus, d > 1. Putting x = pβ1 and y = p2, we get

p1x
2 − du2 = 1, y2 − (p1d)v2 = 1.

With the notation from the previous section, let γ = U1
√
p1 + V1

√
d and

δ = U1
√
p1 − V1

√
d. Then

pβ1 = U` and p2 = Um

for some positive integers ` odd and m even. By Lemma 4, we have ` = 1 or
(p, x) = (3, 9). In the latter case, using (3.1) gives n = 34p2 ≤ 34(6a) ≤ 2a3

for a ≥ 16 (for a ≤ 15, there are no solutions n ∈ [2a3, 486a]). Now suppose
` = 1. By Lemma 3, m is a power of 2 and we get

a1 = pβ1p2 − duv =

(
γ + δ

2
√
p1

)(
γm + δm

2

)
−
(
γ − δ

2

)(
γm − δm

2
√
p1

)
=
γm−1 + δm−1

2
√
p1

= Um−1 ≥ U1 = pβ1 .

Hence, a ≥ p2β1 and we conclude that

n = p2β1 p2 ≤ ap2 ≤ a(2ap1) ≤ 2a2+1/(2β) ≤ 2a5/2.

4. The proof of Theorem 2

4.1. Preliminary results. For an integerm we use P (m) for the largest
prime factor of m with the convention that P (0) = P (±1) = 1. If m satisfies
P (m) ≤ y, then m is called y-smooth.

We follow [8]. Given a polynomial F (X) ∈ Z[X] put

πF (x, y) = #{p ≤ x : P (F (p)) ≤ y}.

The following result appears in [6].
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Lemma 5. Let g be the largest of the degrees of the irreducible factors
of F (X) and let k be the number of irreducible factors of F (X) of degree g.
Assume that F (0) 6= 0 if g = k = 1, and let ε be any positive number. Then
the estimate

πF (x, y) � x

log x

holds for all sufficiently large x provided that y ≥ xg+ε−1/2k.

In the remainder of this section, G is a finite abelian group. Let n(G)
be length of the longest sequence of elements of G (not necessarily distinct)
such that no nonempty subsequence of it has a zero sum. The following
result is from [7].

Lemma 6. If m is the maximal order of an element of G, then

n(G) < m(1 + log(#G/m)).

The following result is from [1].

Lemma 7. Assume that r > k > n = n(G) are integers. Then any
sequence of r elements of G contains at least

(
r
k

)
/
(
r
n

)
distinct subsequences

of length between k − n and k having zero sum.

4.2. The proof of Theorem 2. Let x be large, and let ε ∈ (0, 1/5),
x1 = x1/2−ε and

y =
log x1

log log x1
.

Let t = π(y) and G = (Z/2Z)t, so by Lemma 6,

(4.1) n(G) < 2(1 + (π(y)− 1) log 2).

Let u = (3/4 + ε)−1. Applying Lemma 5 to the polynomial F (X) = X2 − 1
for which g = 1 and k = 2, we get

πF (yu, y)� yu

log yu
.

In particular, by the Prime Number Theorem, there exists c1 ∈ (0, 1) such
that if we put

S1(y) = {p : c1y
u < p ≤ yu, P (p2 − 1) ≤ y},

then

(4.2) #S1(y)� yu

log yu
for x > x0.

Applying the above argument with y replaced by c1y, we also see that if we
put

S2(y) = S1(c1y) = {p : cu+1
1 yu < p ≤ cu1yu, P (p2 − 1) ≤ c1y},
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then

(4.3) #S2(y)� (c1y)u

log((c1y)u)
� yu

log yu
for x > x0.

We put

k =

⌊
log x1
log yu

⌋
.

The argument from the proof of Theorem 1.1 in [8] shows that if we put

F(y) = {` < x1 : φ(`)σ(`) = � and p ∈ S1(y) for all p | `},
then

T = #F(y) = x
1−1/u+o(1)
1 > x1/8−ε

for large x. Now take

(4.4) M =

⌊
log x1

log(cu+1
1 yu)

⌋
+ n(G) + 2.

Note that

M � log x1
log y

+ 2π(y)� y,

so in particular 2M < #S2(y) for large x by (4.3). Choose q1, . . . , q2M
in S2(y) and write q2i − 1 = ai�, where ai is square free and P (ai) ≤ y
for i = 1, . . . , 2M . We think of ai as elements of G where in the location
corresponding to a prime p ≤ y we assign the value 1 or 0 according to
whether p divides ai or not. We apply Lemma 7 with r = 2M, k = M to
deduce the existence of at least

(
2M
M

)
/
(
2M
n(G)

)
≥ 1 subsequences of length at

most M and at least M − n(G) with a zero sum. Fix one such subsequence
{qi}i∈I and put

w =
∏
i∈I

qi.

Then φ(w)σ(w) = v2 for some integer v. Furthermore, since⌊
log x1

log(cu+1
1 yu)

⌋
+ 2 ≤ #I ≤M ≤

⌊
log x1

log(cu+1
1 yu)

⌋
+ n(G) + 2,

we get

(4.5) w ≥ (cu+1
1 yu)#I ≥ (cu+1

1 yu)
b log x1

log(cu+1
1 yu)

c+2
> 2x1 > 2`

for all ` ∈ F(y) when x > x0, and

w < (cu1y
u)
b log x1

log(cu+1
1 yu)

c+O(π(y))
= x

1+o(1)
1 < x1/2+ε

for all sufficiently large x, where we used the fact that (see (4.1))

n(G)� π(y) = o(y) = o

(
log x

log(cu+1
1 yu)

)
(x→∞).
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Now consider

N (y) = {w` : ` ∈ F(y)}.
Clearly, n < x1w < x for all n ∈ N (y). Let `1, . . . , `T be all the elements
of F(y). Let ni = `iw for i = 1, . . . , T . Then

σ(ni)φ(ni) = (ni − ai)2.
Clearly, ai < ni < x. Let us show that these ai’s are distinct. Put φ(ni)σ(ni)
= m2

i for i = 1, . . . , T . If ai = aj (= a) for some i 6= j, then

mi = ni − a and mj = nj − a,
so

(4.6) mi −mj = ni − nj = (`i − `j)w.
Observe that w is built with primes p ≤ cu1y

u < c1y
u and the numbers `s

are built with primes p > c1y
u for s = 1, . . . , T , so gcd(`s, w) = 1. Hence,

ms is a multiple of v for all s = 1, . . . , T . Thus, the left-hand side in (4.6) is
a multiple of v. Clearly,

v =
√
φ(w)σ(w) = w

∏
q |w

(
1− 1

q2

)1/2

>
w√
ζ(2)

>
w

2

> max{`i, `j} > |`i − `j |,
by inequality (4.5). Furthermore, v is divisible only by primes p < y, whereas
w is divisible only by primes q > cu+1

1 yu > y for x sufficiently large, so that
gcd(v, w) = 1. Now equation (4.6) implies that v | (`i − `j), hence `i = `j .
So, a1, . . . , aT are distinct, therefore

#A(x) ≥ T = #F(y) ≥ x1/8−ε+o(1)

as x→∞. Letting ε tend to zero, we obtain the desired estimate.

Remark. If, as widely believed, πF (x, xε)� x/log x for any ε > 0, then
the above argument implies that #A(x) > x1/2−o(1) as x→∞.
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