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Abstract. It is shown that if G is a weakly amenable unimodular group then the
Banach algebra Arp(G) = Ap ∩ Lr(G), where Ap(G) is the Figà-Talamanca–Herz Banach
algebra of G, is a dual Banach space with the Radon–Nikodym property if 1 ≤ r ≤
max(p, p′). This does not hold if p = 2 and r > 2.

Let G be a locally compact group and let Ap(G) denote the Figà-Tala-
manca–Herz Banach algebra of G as defined in [Hz1], thus generated by
Lp
′ ∗ Ľp(G). Hence A2(G) is the Fourier algebra of G as defined and studied

in Eymard [Ey1]. If G is abelian then A2(G) = L1(Ĝ)̂ .

Denote Arp(G) = Ap ∩ Lr(G) for 1 ≤ r ≤ ∞, 1 < p < ∞, equipped

with the norm ‖u‖Arp = ‖u‖Ap + ‖u‖Lr . If G is abelian then Ar2(Ĝ) = {f ∈
L1(G) : f̂ ∈ Lr(Ĝ)}, with the norm ‖u‖ = ‖f‖L1(G) + ‖f̂‖Lr(Ĝ) if u = f̂ .

A Banach space has the RNP if its unit ball wants to be weakly compact
but just cannot make it, as beautifully put by Jerry Uhl.

A Banach space X has the Krein–Milman Property (KMP) [Radon
Nikodym Property (RNP)] if each closed convex bounded subset is the norm
closed convex hull of its extreme points [strongly exposed points] (see [DU,
p. 138]). If X is a dual Banach space, then the RNP and KMP are equiv-
alent (see [DU, p. 190 and p. 218]).

Strongly exposed points are extreme points which are very “smooth”
(they are certainly weak-to-norm continuity points), and the fact that we
can take the above as the definition of the RNP, is owed to the valiant
efforts of many mathematicians (see [DU]).

The Fourier algebra of the torus, A2(T), which is in fact `1(Z), has the
RNP, a property possessed by any Banach space which is isomorphic to an
`1 space (see [DU]), while A2(R) does not possess the RNP.
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And yet, for any compact subset K of R, A2
K(R) = {u ∈ A2(R) : sptu

⊂ K} does have the RNP (and R can be replaced by any abelian G; here
spt denotes support).

We have proved in [Gr1] that for any G and any compact K ⊂ G and
any 1 < p <∞, ApK(G) = {u ∈ Ap(G) : sptu ⊂ K} has the RNP. Tools in
abelian harmonic analysis are not available to prove this latter result.

It has been proved by W. Braun in an unpublished preprint [Br] that
if G is amenable then A1

p(G) is a dual Banach space with the RNP. The
result in [Br] uses the method in [Gr1] and the involved machinery of [BrF],
which is avoided below and in [Gr3]. We have proved in [Gr3] the following

Theorem 0.1.

(A) Let G be unimodular and 1 < p <∞. If G is amenable then Arp(G)
is a dual Banach space with the RNP for all 1 ≤ r ≤ max(p, p′).

(B) Let G be unimodular and A2(G) have a multiplier bounded approx-
imate identity. Then Ar2(G) is a dual Banach space with the RNP
for all 1 ≤ r ≤ 2.

(C) If G is SL(2,R) or SL(2,C) then, for any 2 < r ≤ ∞, Ar2(G) does
not have the RNP (see [Gr3, p. 4382]), even though these groups are
unimodular, weakly amenable (and nonamenable; see [DCH, Thm.
3.7 and Remark 3.8(b)]). Hence the above interval for r is the best
possible.

A group G is weakly amenable if A2(G) has an approximate identity
bounded in the (Herz–Schur multiplier) B2(G) norm (see below).

It is the main purpose of this paper to show that Theorem 0.1(A) is true
if G is merely weakly amenable.

It has been proved by De Cannière and Haagerup [DCH, pp. 481–486]
that any closed subgroup G of any finite extension of the general Lorenz
group SO0(n, 1) for all n ≥ 2 (hence in particular G = FN , the free group
on N > 1 generators) is weakly amenable. Thus there exists a multitude of
nonamenable groups which are weakly amenable. And yet, Haagerup [Ha]
has proved that G = SL(2,R) oR2 is not weakly amenable (see also [Do]).

One will note that, in proving the main result, some difficulties need to
be overcome to prove that W r

p (G) is a dual Banach space for all r ≥ 1. This
is done in Section 1.

The main result is proved in Section 2.
In Section 3 we prove that the Banach algebras Arp(G) do not factorise

for any noncompact G and 1 ≤ r <∞, a result announced earlier.

1. Definitions and notations. Denote by PMp(G) = Ap(G)∗ the Ba-
nach space dual of Ap(G). We will omit G at times and write Ap, L

r, PMp,
etc., instead of Ap(G), Lr(G), PMp(G), etc.
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Let PFp denote the norm closure of L1 in PMp and set Wp(G) =
PFp(G)∗. Then Wp is a Banach algebra of bounded continuous functions
on G, studied by M. Cowling [Co1].

Define W r
p (G) = Wp ∩ Lr(G), with the norm ‖w‖W r

p
= ‖w‖Wp + ‖w‖Lr .

Denote by M(Ap) the set of multipliers of Ap with the norm

‖u‖M(Ap) = sup{‖uv‖Ap ; v ∈ Ap, ‖v‖Ap ≤ 1}, u ∈M(Ap).

If v ∈ Ap, let ‖v‖Wp be the norm of v as an element of PFp(G)∗ = Wp(G).
If u ∈ M(A2) let mu : A2 → A2 be given by muv = uv. Let Mu =

m∗u : PM2 → PM2 denote the adjoint of mu. The multiplier u ∈ M(A2)
is completely bounded (and M0(A2) is the algebra of all such multipliers) if
the operator Mu : PM2 → PM2 is completely bounded on the W ∗ algebra
PM2. The set M0(A2) is equipped with the norm ‖u‖M0(A2) = ‖Mu‖cb, the
completely bounded norm of the operator Mu (see [DCH], [CH], [Jo], where
all the above notions are defined).

It has been proved by Bożejko and Fendler [BF] that M0(A2) coincides
with the space B2 = B2(G) of Herz–Schur multipliers and ‖u‖M0(A2) =
‖u‖B2 .

A group G is weakly amenable if A2(G) has an approximate identity
(A.I.) bounded in the ‖ ‖B2(G) norm.

In an important ground-breaking paper [DCH], De Cannière and Haage-
rup have studied weakly amenable groups G.

2. Wp(G) ∩ Lr(G) is a dual Banach space for all r ≥ 1. We have
proved this result, for any group G, in [Gr3, Prop. 2.1] only for r > 1. The
proof there fails in case r = 1. This case requires an entirely different proof,
which is given below.

The result in the title of this section is needed to prove that for all,
1 ≤ r ≤ max(p, p′), Arp is a dual Banach space if G is unimodular and
weakly amenable.

Remark (for r = 1). Let Z = X × Y , X = PFp, Y = L∞, with norm
‖(x, y)‖ = max(‖x‖, ‖y‖). Hence Z∗ = X∗ × Y ∗ = Wp × L∞∗, with norm
‖(x∗, y∗)‖ = ‖x∗‖ + ‖y∗‖. Let D = {(w,w); w ∈ Wp ∩ L1} ⊂ Wp ∩ L∞∗.
Let U = w∗- clD ⊂ Z∗. If U0 [(U0)

0] is the annihilator of U [U0] in Z [Z∗],
respectively, then, since U is w∗-closed, U = (U0)

0 = (Z/U0)
∗ (see [Da,

p. 822]). Thus U is a dual Banach space.
Let now P : X → X×Y be given by Px = (x, 0). Then P ∗ : X∗×Y ∗ →

X∗ = Wp is onto, in fact P ∗(x∗, y∗) = x∗.

Lemma 2.1.

(a) Wp ∩ L∞∗ = Wp ∩ L1.
(b) P ∗U = Wp ∩ L1.
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Proof. Let w ∈ Wp ∩ L∞∗. Clearly Wp = PF ∗p and L1 ⊂ PFp. If

f ∈ L1 then w(f) =
	
wf dx. If f ∈ L1 ∩ L∞ then |w(f)| = |

	
wf dx| ≤

‖w‖L∞∗‖f‖L∞ . Hence if ‖f‖L∞ ≤ 1 then |
	
wf dx| ≤ ‖w‖L∞∗ . Let now

K ⊂ G be compact and f = (w/|w|)1K ; then
	
K

∣∣w∣∣ dx ≤ ‖w‖L∞∗ . Hence
w ∈ L1, which proves (a).

(b) Let (wα, wα) ∈ D ⊂ Wp × L∞∗ satisfy w∗- lim(wα, wα) = (w, z) ∈
Wp × L∞∗. Then for f ∈ L1 ⊂ PFp one has

	
wαf dx = wα(f) →

	
wf dx.

And for f ∈ L∞,
	
wαf dx = wα(f) → z(f). Thus w(f) = z(f) for all

f ∈ L1 ∩L∞. Hence by (a), w ∈ L1. Thus U = w∗- clD ⊂
(
Wp ∩L1

)
×L∞∗.

It follows that P ∗(U) = Wp ∩ L1, since D = {(w,w); w ∈Wp ∩ L1}.
Remark. Let N = {u ∈ U ; P ∗(u) = 0} = U ∩ (0, Y ∗). Then U/N

is isomorphic to Wp ∩ L1, where U is a dual space and N is a w∗-closed
subspace.

Theorem 2.2. Wp(G)∩Lr(G) with the norm ‖w‖Wp + ‖w‖Lr is a dual
Banach space for all 1 ≤ r ≤ ∞, and for all locally compact groups G.

Proof. If r > 1 this is just our Proposition 2.1 in [Gr3]. If r = 1, then
U = X∗ for some Banach space X and N = (N0)

0. Hence by [Da, p. 822,
Theorem A.3.47(i)], U/N ≈ X∗/(N0)

0 = N∗0 . Thus Wp ∩ L1(G) is norm
isomorphic to a dual Banach space, thus is a dual space, by the use of the
main theorem of Kaijser [Ka].

Remark. Note that a dual Banach space may have two non-norm iso-
morphic preduals (see [BL]).

3. Weakly amenable groups and the RNP. It is the purpose of
this section to prove the main result of this paper, namely:

Theorem 3.1. Let G be unimodular and weakly amenable, and let 1 <
p < ∞. Then for all 1 ≤ r ≤ max(p, p′), Arp(G) is a dual Banach space
which has the RNP.

If G is SL(2,R) or SL(2,C) then Ar2(G), for any 2 < r ≤ ∞, does not
have the RNP, a fortiori is not a dual Banach space, by [Gr3].

If G is amenable this is part of [Gr3, Theorem 2.2, p. 4380].
The proofs in [Gr3] will work for proving our main result once we show

that if G is weakly amenable, the Wp norm restricted to Ap is equivalent to
the Ap norm.

It has been proved by M. Cowling [Co1] that the group SL(2,R) satisfies
the assumption of the next result.

Proposition 3.2. Assume that Ap(G) has an approximate identity {uα}
such that ‖uα‖M(Ap)

≤ K. Then

∀u ∈ Ap, ‖u‖Ap ≤ (1 +K)‖u‖Wp ≤ (1 +K)‖u‖Ap .
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Remark. It has been proved by Haagerup [Ha] (see [Do] for a different
proof) that if G = SL(2,R) o R2, then A2(G) has no multiplier bounded
approximate identity. It is not clear to us if Theorem 3.1 holds for this group.

Proof of Proposition 3.2. Clearly ‖u‖Wp ≤ ‖u‖Ap for all u ∈ Ap by the
definition of these norms, hence only the left hand inequality needs proof.

Let eα ∈ Ap ∩ Cc satisfy ‖eα − uα‖Ap → 0. As is readily seen, {eα} is
an A.I. for Ap and for some α0, ‖eα‖M(Ap) ≤ 1 + K if α > α0. Hence for
any T ∈ PMp, ‖eαT‖PMp ≤ 1 + K if ‖T‖PMp ≤ 1. And if v ∈ Ap then
|(eαT, v) − (T, v)| = |(T, eαv − v)| → 0, thus eαT → T in σ(PMp, Ap), i.e.
in w∗. Also spt eαT ⊂ spt eα, which is compact.

Hence if u0 ∈ Ap then

‖u0‖Ap ≤ sup{|(u0, T )|; ‖T‖ ≤ 1 +K, sptT is compact}.

However if sptT is compact there exists a net fα ∈ Cc(G) such that ‖λpfα‖
≤ ‖T‖ and λpfα → T ultrastrongly by [Hz1, Prop. 9, p. 117]. Hence

‖u0‖Ap ≤ sup{|(u0, λpf)|; f ∈ Cc, ‖λpf‖ ≤ 1 +K} = (1 +K)‖u0‖Wp .

The algebra Bp(G) of Herz–Schur multipliers of G, for 1 < p < ∞, has
been investigated by Eymard [Ey1] and Herz [Hz1]–[Hz3]. As shown in these
papers (see also [Fu, p. 581])

Ap(G) ⊂Wp(G) ⊂ Bp(G) ⊂MAp(G)

and each imbedding is contractive.

Definition 3.3. G is p-weakly amenable if Ap(G) has an A.I. bounded
in the ‖ ‖Bp(G) norm. Thus 2-weak amenability and weak amenability are
identical.

We need the fact that 2-weak amenability implies p-weak amenability for
all p. This is hinted in [Fu, p. 586], in different terminology, without proof.
We give a proof based on Furuta’s useful theorem [Fu, Theorem 2.4]:

Theorem 3.4. For any 1 < p <∞, B2(G) ⊂ Bp(G) and ‖u‖Bp ≤ ‖u‖B2

for all u ∈ B2(G).

Furuta’s proof of this theorem is based on an unpublished theorem of
J. E. Gilbert:

Theorem 3.5. Let w be a function on G. Then w ∈ B2(G) iff there
exists a Hilbert space K and bounded continuous functions u, v from G to
K such that w(x−1y) = 〈u(y), v(x)〉 for all x, y ∈ G.

A proof of this theorem has been given in [Ha], and for a different proof
see P. Jolissaint [Jo].
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The proof of the next result is very different from the suggestion, with
no proof, given in [Fu, p. 586].

Proposition 3.6. If G is 2-weak amenable then it is p-weak amenable
for all 1 < p <∞.

Proof. Let {vα} be an A.I. in A2(G) such that ‖vα‖B2 ≤ C. Let {uα} ⊂
A2 ∩ Cc ⊂ Ap ∩ Cc satisfy ‖uα − vα‖A2

→ 0. If v ∈ A2 then

‖uαv − v‖A2 ≤ ‖uα − vα‖A2‖v‖A2 + ‖vαv − v‖A2 → 0.

Moreover

‖uα‖Bp ≤ ‖uα‖B2 ≤ ‖uα − vα‖A2 + ‖vα‖B2 ≤ 2C

if α > α0, for some α0. It follows by Furuta’s theorem that {uα} is an A.I.
for Ap(G) equipped with the ‖ ‖Bp norm, while we need that it be in the
‖ ‖Ap norm.

In contrast to the hint in [Fu, p. 586] we proceed as follows:

Let Kβ be compact subsets of G whose interiors satisfy intKβ ↑ G. Let
V = V −1 be a neighborhood of the unit e of G with compact closure. Let

eβ(x) = λ(V )−1(1KβV
∗1V (x)) = λ(V )−1λ(xV ∩KβV ).

Then eβ(x) = 1 [0] if x ∈ Kβ [x /∈ KβV
2], respectively. Choose a subnet {uβ}

of {uα} such that ‖uβeβ − eβ‖A2
≤ 1 and let sβ(x) = (uβ + eβ − uβeβ)(x).

Then sβ(x) = 1 [0] if x ∈ Kβ [x /∈ KβV
2 ∪ sptuβ]. Also

‖sβ‖Bp ≤ ‖sβ‖B2 ≤ ‖uβ‖B2 + 1 ≤ 2C + 1,

by Furuta’s theorem. If v ∈ Ap ∩Cc and K = spt v, then K ⊂ Kβ if β > β0,
for some β0. Let now v ∈ Ap and ε > 0. Let u ∈ Ap∩Cc satisfy ‖v−u‖Ap < ε.
If β > β0 then

‖sβv − v‖Ap ≤ ‖sβ(v − u)‖Ap + ‖sβu− u‖Ap + ‖v − u‖Ap
≤ ‖sβ‖M(Ap)ε+ 0 + ε < (2C + 2)ε.

Thus {sβ} ⊂ Ap is an A.I. for Ap, bounded in Bp norm, i.e. G is p-weakly
amenable.

Corollary 3.7. If G is 2-weakly amenable then the Wp norm restricted
to Ap is equivalent to the Ap norm.

Proof. As noted, ‖sβ‖M(Ap) ≤ ‖sβ‖Bp , hence one can apply Propositions
3.2 and 3.6.

Proof of Theorem 3.1. We only need to use Corollary 3.7 to prove that
the Wp = PF ∗p norm restricted to Ap is equivalent to the Ap norm, a fact
well known if G is amenable. Then the proof of Theorem 2.1 in [Gr3] carries
over verbatim to prove that Arp = W r

p if 1 ≤ r ≤ max(p, p′), and is hence a
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dual Banach space, by Theorem 3.1 (note that G need not be weak amenable
if p = 2).

The RNP part is based on the fact that, if G is separable metric, then
Arp(G) is norm separable, a fact implied by the existence in Arp(G) of a
multiplier bounded approximate identity (since Theorem 2.2 in [Gr3] is only
based on Theorem 2.1, see [Gr3, p. 4380]).

4. Nonfactorisation. Improving a result of Burnham [Bu], Lai and
Chen [LCh, Thm. 3.3] have proved that for any noncompact locally compact
group G the algebra A1

p(G) does not factorise. We extend this result to the
algebras Arp(G) for all 1 ≤ r < ∞.

Theorem 4.1. For any noncompact locally compact group G and any
1 ≤ r <∞, the algebra Arp(G) does not factorise.

Proof. Assume at first that 1 < r < ∞. If Arp · Arp = Arp, let u ∈ Arp.
Then for any n, there exist u1, . . . , un in Arp such that u = u1 . . . un, where

ui ∈ Ap ∩ Lr. By [Bu, Lemma A], u ∈ L1. It follows that Arp(G) = A1
p(G).

Since r > 1, it follows from our Strong Containment Theorem 3.3 in [Gr2]
that this cannot be. The Lai–Chen result completes the proof.

Remark. M. Leinert [Le] has given an example of a commutative semi-
simple Banach algebra which factorises but does not even have unbounded
approximate units. Hence the fact that Arp(G) has no bounded approximate
identity [Gr2] does not imply that it does not factorise.
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