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EXACT KRONECKER CONSTANTS OF HADAMARD SETS

BY

KATHRYN E. HARE (Waterloo, Ont.) and L. THOMAS RAMSEY (Honolulu, HI)

Abstract. A set S of integers is called ε-Kronecker if every function on S of modulus
one can be approximated uniformly to within ε by a character. The least such ε is called
the ε-Kronecker constant, κ(S). The angular Kronecker constant is the unique real number
α(S) ∈ [0, 1/2] such that κ(S) = |exp(2πiα(S))−1|. We show that for integers m > 1 and
d ≥ 1,

α{1,m, . . . ,md−1} =
md−1 − 1

2(md − 1)
and α{1,m,m2, . . .} = 1/(2m).

1. Introduction. A subset S of the dual of a compact, abelian group
G is called an ε-Kronecker set if for every continuous function f mapping
S into T, the set of complex numbers of modulo 1, there exists x ∈ G such
that

|γ(x)− f(γ)| < ε for all γ ∈ S.
The infimum of such ε is called the Kronecker constant, κ(S).

Sets whose Kronecker constants are zero are called Kronecker sets and
have been much studied (see [GM] and the references cited therein). The
concepts were discussed in the Séminaire Bourbaki (1964–1966) without
formal naming ([Kah]), were introduced by Varopoulos [Var] and were called
ε-free in [GK].

Infinite ε-Kronecker sets (for small ε) are known to exist in many groups
(cf. [GaHe], [GL], [GH4]). For instance, Hadamard sets {nj} ⊆ N with ratio
m > 2 (meaning infj{nj+1/nj} = m) have Kronecker constant at most
|1 − eiπ/(m−1)| ([GH1], [KR]). Various properties of ε-Kronecker sets were
established in [GH1], [GHK], [GH2] and [GH3]. For example, if k(S) <

√
2,

then S is a Sidon set, meaning that every bounded function defined on S is
the restriction to S of the Fourier transform of a measure on G. In fact, the
interpolating measure can be chosen to be discrete, positive and supported
on a small set.

However, many open problems remain. It is not known if every Hadamard
set is ε-Kronecker for some ε < 2, for example, or if S is necessarily Sidon
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if
√

2 ≤ κ(S) < 2. There is a simple formula for κ{a, b} when a, b ∈ Z, but
for larger subsets calculating Kronecker constants is generally very difficult.
Other than for small examples calculated by computer, Kronecker constants
have been determined only for certain classes of three-element subsets, such
as arithmetic progressions [HR1]. Kronecker constants of finite sets are of
interest because the Kronecker constant of an infinite set is the supremum
of the Kronecker constants of its finite subsets.

In this paper we calculate the Kronecker constants for finite or infinite
Hadamard sets {mj} with integer m ≥ 2. Kronecker constants (or upper
bounds on the Kronecker constants) are also obtained for certain closely
related multiplicative sets.

To state our precise results, it is more convenient to identify T with the
quotient space [−1/2, 1/2) where ±1/2 are identified, and to calculate the
angular Kronecker constant.

Definition 1. The angular Kronecker constant of a set S, denoted
α(S), is the infimum of α such that for all f : S → R there is some
x ∈ [−1/2, 1/2) with the property that for all n ∈ S, 〈f(n) − nx〉 < α,
where 〈u〉 is the distance from u to the nearest integer.

It is easy to check that α(S) is the unique real number in [0, 1/2] such
that κ(S) = |1−e2πiα(S)|. It is known that α(S) is rational when S is a finite
subset of Z and that α{a, b} = gcd(a, b)/2(|a|+ |b|) for non-zero integers a, b
([HR1]).

In this note we show that

α{1,m, . . . ,md−1} =
md−1 − 1

2(md − 1)
.

Consequently, α{mj}∞j=0 = 1/(2m). Moreover, we find examples of functions
f for which the bounds are sharp. We also consider sets of the form S =
{1, a1, a1a2, . . . , a1 . . . ad} where aj ∈ N and show, for example, that α(S) =
1/(2(1 + ad)) if aj > ad for j < d.

2. Upper bounds for Kronecker constants

Proposition 2. For S = {1,m,m2, . . . ,md−1}, with m > 1 an integer,

α(S) ≤ md−1 − 1

2(md − 1)
=: sd.

Proof. This is trivial for d = 1 and is known, as remarked above, for
d = 2. Note that sd < 1/(2m) for all d.

Let f : S → R and set f(mj−1) = θj for j = 1, . . . , d. Put D1 =
[θ1 − E, θ1 + E] and for j = 2, . . . , d inductively define

Dj = {z ∈ [θj − E, θj + E] : (∃k ∈ Z)(z − k ∈ mDj−1)}.
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The definition of Dj ensures that given any zj ∈ Dj , there is an integer
kj and zj−1 ∈ Dj−1 such that zj = kj +mzj−1. Thus

(2.1) zj =

j∑
t=2

mj−tkt +mj−1z1 for 1 ≤ j ≤ d.

Because each zj is in [θj − E, θj + E] and kt,m are integers,

〈θj −mj−1z1〉 = 〈θj − zj〉 ≤ E.

Thus, provided Dd 6= ∅, there will be some x (here labeled as z1) such
that ‖〈f − z1m〉‖∞ ≤ E for m = (1,m, . . . ,md−1). Since f was arbitrary,
that will prove α(S) ≤ E. Of course, it will be enough to prove this for
sd ≤ E < 1/(2m).

To show this, we will prove that the Lebesgue measure of Dj , denoted
|Dj |, satisfies

(2.2) |Dj | ≥
2(mj − 1)

m− 1
E − mj−1 − 1

m− 1
for 1 ≤ j ≤ d.

As sj ≤ sd, the right hand side of (2.2) is strictly positive for all j.

Note that when j = 1 we have equality since |D1| = 2E. Next, consider
the case of j = 2. Let D′2 = [θ2 − 1/2, θ2 + 1/2). Because D′2 has length 1
and is half-open, for each y ∈ mD1 there is a unique ω(y) ∈ D′2 such that
y ≡ ω(y) mod 1. Since mD1 is an interval of length 2mE < 1, ω is 1-1
and piecewise a translation. Hence |ω(mD1)| = 2mE. We also note that as
D2 ⊂ D′2, we have

D2 = [θ2 − E, θ2 + E] ∩ ω(mD1).

But ω(mD1) misses (in measure) 1− 2mE of D′2, thus

|D2| ≥ 2E − (1− 2mE) =
2(m2 − 1)

m− 1
E − m− 1

m− 1
,

showing (2.2) is satisfied for j = 2.

We proceed inductively. Suppose that (2.2) holds for some 2 ≤ j < d and
consider the case Dj+1. As Dj ⊂ [θj − E, θj + E], with width 2E < 1/m,
mDj is a subset of [mθj − mE,mθj + mE] whose length is 2mE < 1.
Let D′j+1 = [θj+1 − 1/2, θj+1 + 1/2). For each y ∈ mDj there is a unique
ω(y) ∈ D′j+1 such that y ≡ ω(y) mod 1. Since mDj is a subset of an interval
whose length is less than 1, ω is 1-1 and piecewise a translation on mDj .
Thus |ω(mDj)| = m|Dj |. As Dj+1 ⊂ D′j+1,

Dj+1 = [θj+1 − E, θj+1 + E] ∩ ω(mDj),
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hence

|Dj+1| ≥ 2E −
{

1−m
[

2(mj − 1)

m− 1
E − mj−1 − 1

m− 1

]}
=

2(mj+1 − 1)

m− 1
E − mj − 1

m− 1
,

proving (2.2). That completes the proof.

A similar argument gives the following related result.

Proposition 3. Let T = {1,m,m2, . . . ,md,md(m + 1)} for integers
d ≥ 1 and m > 1. Then

α(T ) ≤ (m+ 1)(1 + · · ·+md−1)

2(1 + · · ·+md +m2 + · · ·+md+1)
=: td.

Proof. Note that 2mtd < 1. Pick E with td < E < 1/(2m) and assume
f : T → R. We identify f with {θj}d+2

j=1 , let D1 = [θ1 − E, θ1 + E] and for
1 ≤ j ≤ d inductively define

Dj+1 = [θj+1 − E, θj+1 + E] ∩ {z : (∃k ∈ Z)(z − k ∈ mDj)}.
Similar arguments to those used in the proof of Prop. 2 show that since
2mE < 1, we have

(2.3) |Dj | ≥ 2E(1 + · · ·+mj−1)− (1 + · · ·+mj−2)

and this is easily seen to be strictly positive given the assumptions on E.
Now let

Dd+2 = [θd+2 − E, θd+2 + E] ∩ {z : (∃k ∈ Z)(z − k ∈ (m+ 1)Dd+1)}.
For any zd+2 ∈ Dd+2, there is an integer, kd+2, such that

zd+2 = kd+2 + (m+ 1)zd+1 for some zd+1 ∈ Dd+1.

As in the previous proof there are integers kt and zt ∈ Dt such that

zd+2 = kd+2 + (m+ 1)
(d+1∑
t=2

md+1−tkt +mdz1

)
.

It follows that for j = 1, . . . , d+ 1,

〈θj −mj−1z1〉 = 〈θj − zj〉 ≤ E
and

〈θd+2 −md(m+ 1)z1〉 = 〈θd+2 − zd+2〉 ≤ E.

It remains to check that Dd+2 is non-empty. Of course, (m+ 1)Dd+1 ⊆
(m + 1)[θd+1 − E, θd+1 + E] =: Id and the length of Id is 2(m + 1)E > 1.
Thus every point of [θd+2 − E, θd+2 + E] is congruent mod 1 to an element
of Id. Indeed, there is an integer N and β ∈ [θd+2 − E, θd+2 + E] such that
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the intervals (β, θd+2 + E] + N − 1 and [θd+2 − E, β] + N are disjoint and
contained in Id. It will suffice to prove that

I ′ := (m+ 1)Dd+1 ∩
(
[β, θd+2 + E] +N − 1 ∪ [θd+2 − E, β] +N

)
is non-empty. Since both intervals, [β, θd+2+E]+N−1 and [θd+2−E, β]+N,
are contained in Id, and (m + 1)Dd+1 misses a subset of Id of measure
2(m+ 1)E − (m+ 1)|Dd+1|, it follows that the measure of I ′ is at least

2E − (2(m+ 1)E − (m+ 1)|Dd+1|)
≥ 2E

(
1− (m+ 1) + (m+ 1)(1 + · · ·+md)

)
− (m+ 1)(1 + · · ·+md−1).

This is positive provided

E >
(m+ 1)(1 + · · ·+md−1)

2((m+ 1)(1 + · · ·+md)−m)
,

and that is true by the choice of E. This completes the proof.

Remark 4. One can similarly show that for any integer p > 1,

α{1,m, . . . ,md,md(m+ p)} ≤ (m+ p)(1 + · · ·+md−1)

2(p(m+ · · ·+md) + 1 +m2 + · · ·+md+1)

3. Lower bounds for Kronecker constants. The paper [HR1] pro-
vides an alternative calculation of α(S) for S = {n1, . . . , nd} ⊂ Z \ {0}:

α(S) = max{αS(f) : f ∈ Rd−1}

where αS(f) is the distance of f to a particular discrete subgroup K ⊂ Rd−1
(determined by S), with respect to the norm

‖z‖ = max

{
|njzi − nizj |
|ni|+ |nj |

: 1 ≤ i < j ≤ d
}

where z = (z1, . . . , zd) and zd = 0. We call
|njzi−nizj |
|ni|+|nj | the (i, j)-form of the

norm. This formulation will be used to show that the upper bound of Prop. 2
is sharp.

Theorem 5. For S = {1,m,m2, . . . ,md−1}, with m > 1 an integer,

α(S) =
md−1 − 1

2(md − 1)
.

Proof. From the first proposition, we have already seen that α(S) ≤
(md−1−1)/(2(md−1)). Thus it will suffice to show there exists some f ∈Rd−1
such that αS(f) = (md−1 − 1)/(2(md − 1)). We will show this is true for

f =

{
(1 +md−1)(md−i − 1)

2md−i(md − 1)

}d−1
i=1

.
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By Proposition 3 of [HR1], a basis for K consists of Pi, 1 ≤ i ≤ d − 1,
given by

(Pi)j =

{
m−(i−j+1) for 1 ≤ j ≤ i,
0 for i < j.

Let r ∈ Zd−1 specify an arbitrary member Wr ∈ K, where Wr =∑d−1
i=1 riPi.
Suppose rd−1 ≥ 1. Then the (d− 1)th coordinate of Wr − f satisfies

(Wr − f)d−1 =
rd−1
m
− (1 +md−1)(m− 1)

2m(md − 1)

≥ 1

m
− (1 +md−1)(m− 1)

2m(md − 1)

=
(md−1 − 1)(1 +m)

2m(md − 1)
.

Using the (d− 1, d)-form of the metric, we have

‖Wr − f‖ ≥
md−1(Wr − f)d−1
md−1 +md−2 =

md−1 − 1

2(md − 1)
=: sd.

Next, suppose that rd−1 < 0. Since fd−1 > 0 and rd−1 ≤ −1,

(f −Wr)d−1 > 0− rd−1
m
≥ 1

m
.

By using the (d− 1, d)-form of the metric, we see that

‖Wr − f‖ >
md−1(1/m)−md−2 · 0

md−2 +md−1 =
1

m+ 1
>

1

2m
> sd.

For an induction hypothesis, suppose that rs = 0 for i + 1 ≤ s ≤ d − 1
and i > 0. First, suppose that ri ≥ 1. Then the ith coordinate of Wr is
ri/m, therefore,

(Wr − f)i ≥
1

m
− (1 +md−1)(md−i − 1)

2md−i(md − 1)
.

Also,

(f −Wr)i+1 = fi+1 =
(1 +md−1)(md−i−1 − 1)

2md−i−1(md − 1)
.

A computation using the (i, i+ 1)-form of the metric gives

‖Wr − f‖ ≥
mi(Wr − f)i −mi−1(Wr − f)i+1

mi +mi−1 ≥ 1

m+ 1

+
−m(1 +md−1)(md−i − 1)/m+ (1 +md−1)(md−i−1 − 1)

(m+ 1)2md−i−1(md − 1)

=
md−1 − 1

2(md − 1)
= sd.
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Next, suppose that ri ≤ −1. As fi > 0, (f −Wr)i > 0 − ri/m ≥ 1/m.
By using the (i, d)-form of the metric, we have

‖Wr − f‖ >
md−1(1/m)

mi−1 +md−1 =
md−i−1

1 +md−i ≥
md−i−1

2md−i =
1

2m
> sd.

Thus, we may assume ri = 0. We proceed backward through i, until we
have rs = 0 for 1 ≤ s ≤ d− 1.

That leaves only Wr = 0 and for that element of K we will use the
(1, d)-form of the metric. Since

f1 =
(1 +md−1)(md−1 − 1)

2md−1(md − 1)

we deduce that

‖f‖ ≥ md−1(1 +md−1)(md−1 − 1)

(md−1 + 1)2md−1(md − 1)
= sd.

This shows that for every choice of r, and therefore every choice of Wr ∈ K,
‖f −Wr‖ ≥ sd, and consequently αS(f) ≥ sd.

Similar arguments show that the upper bound of Prop. 3 is also an
equality.

Proposition 6. For integers m > 1 and d ≥ 1 we have

α{1,m, . . . ,md,md(m+ 1)} =
(m+ 1)(1 + · · ·+md−1)

2(1 + · · ·+md +m2 + · · ·+md+1)
=: td.

Proof. Set D = 1 + · · ·+md +m2 + . . .+md+1. For j = 0, . . . , d− 1 let
Aj =

∑d−j−1
t=0 mt and let Ad = 0.

It was proved earlier that α{1, . . . ,md,md(m + 1)} ≤ td, thus to show
equality, it will be enough to establish that f ∈ Rd+1, described below, is
an example of a worst point to approximate:

fj =

{
0 for j = d+ 1,
1

2m
+
−A0 +md−j + 2Aj

2md+1−jD
for integers j ∈ [1, d].

The argument will be similar to the proof of the previous theorem. A
basis for the appropriate discrete subgroup K consists of (particular) func-

tions P (j), 1 ≤ j ≤ d+ 1, which have the property that P
(d+1)
d+1 = 1/(m+ 1)

and P
(j)
j = 1/m for integers j ∈ [1, d].

Given r ∈ Zd+1 let Wr =
∑d+1

j=1 rjP
(j). As in the previous proof, an

induction argument using the (j, j + 1)- and (j, d + 2)-forms of the norm
can be given to show that if any rj is non-zero, then ‖f −Wr‖ ≥ td. On
the other hand, if all rj are zero, then the (1, d+ 2)-form of the norm shows
that ‖f −Wr‖ = ‖f‖ ≥ td. The calculations are left to the reader.
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Corollary 7. If m ≥ 2 is an integer, then

α{1,m,m(m+ 1)} = α{1,m,m2}.

4. Kronecker constants for infinite Hadamard sequences. One
reason for the interest in Kronecker constants of finite sets is that the Kro-
necker constant of an infinite set is the supremum of the Kronecker constants
of the finite subsets.

Proposition 8. If S =
⋃
j Fj with Fj ⊂ Fj+1 for all positive integers j,

then
α(S) = lim

j→∞
α(Fj) and κ(S) = lim

j→∞
κ(Fj).

Proof. Since the sets Fj are nested, it is clear that α(S) ≥ α(Fj) for all j
and α(Fj) is increasing. As α(Fj) ≤ 1/2, it follows that limj→∞ α(Fj) exists
and equals supα(Fj).

Consider f : S → T and let fj = f |Fj . Fix E > supα(Fj). Then there
exists xj ∈ G such that

|γ(xj)− fj(γ)| < E for all γ ∈ Fj .
Since G is compact, the net {xj} has cluster point x0. Without loss of

generality, xj → x0 and then, by continuity, γ(xj) → γ(x0) for all γ ∈ Γ.
Given any γ ∈ S there is an index J such that γ ∈ Fj for all j ≥ J . Thus
|γ(xj) − f(γ)| < E for all j ≥ J and that implies |γ(x0) − f(γ)| ≤ E.
Thus α(S) ≤ E and as E > supα(Fj) was arbitrary, it follows that α(S) ≤
supα(Fj), as we desired to show.

The statement for κ(S) holds since κ(S) = |exp(2πiα(S))− 1|.
With this it is easy to determine the Kronecker constants of the set of

powers of an integer.

Corollary 9. Let m > 1 be an integer and S = {mj}∞j=0. Then

α(S) = 1/(2m) and κ(S) =
√

2(1− cos(π/m)).

Proof. Note that S =
⋃∞
j=1 Fj where Fj = {1,m,m2, . . . ,mj−1} and

α(Fj) =
mj−1 − 1

2(mj − 1)
=

1−m−j+1

2(m−m−j+1)
→ 1

2m
.

5. Closely related multiplicative sets. We will say that a finite set
S of positive integers is multiplicative if S = {n1, . . . , nd} with

(i) 1 ≤ n1 < · · · < nd.
(ii) For integers j ∈ [1, d), nj divides nj+1.

As noted in [HR1], the Kronecker constant of S ⊆ N is unchanged if one
divides each element of S by the greatest common divisor of the set. So one
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may assume n1 = 1 for computing Kronecker constants of multiplicative
sets.

The Kronecker constants for multiplicative sequences have some sur-
prising features that do not appear with Hadamard sequences with con-
stant ratio, such as no obvious “monotonicity”. For example, by Theorem
5, α{1, 4, 16} = 5/42 but, according to [HR2], α{1, 4, 24} = 3/25 > 5/42.

However, large lacunary ratios “should” contribute less to the Kronecker
constant. The results of this section give some examples of this.

Proposition 10. Let n1, . . . , nd be any positive integers. Then

α{n1, . . . , nd, n} → α{n1, . . . , nd} as n→∞.
Proof. Assume α{n1, . . . , nd} = α and let ε > 0. Take n > nd/ε where nd

is the largest of the nj . Let θ ∈ Rd+1 be arbitrary and choose x ∈ [−1/2, 1/2]
such that 〈θj − xnj〉 ≤ α for all j = 1, . . . , d. Then

〈θj − (x+ y)nj〉 ≤ 〈θj − xnj〉+ 〈ynj〉 ≤ α+ ε

for any y with |y| ≤ ε/nd.
The choice of n ensures that there exists z ∈ [x−ε/nd, x+ε/nd] such that

nz ≡ θd+1 mod 1. That means ‖〈θ − zn〉‖ ≤ α+ ε for n = (n1, . . . , nd, n).

Proposition 11. Let S = {n1, . . . , nd} be any set of d nonzero integers,
with d ≥ 2. Suppose that gcd(n1, . . . , nd)=1 and that m=gcd(n1, . . . , nd−1).
Then

α(S) ≤ max

{
1

2m
,α{n1, . . . , nd−1}

}
.

Proof. Let β = α{n1, . . . , nd−1} = α{n1/m, . . . , nd−1/m}. Let θ ∈ Rd
be given. The definition of the angular Kronecker constant ensures there is
some real x and integers kj such that

|θj − (nj/m)x− kj | ≤ β for 1 ≤ j < d.

For θd there is some integer s such that |θd − ndx/m− s/m| ≤ 1/(2m).
Because nd and m are relatively prime, we can write s = and + bm for some
integers a and b. Let xs = (x+ a)/m. Then

θd − ndxs − b = (θd − ndx/m− nda/m)− b = θd − ndx/m− s/m
and consequently we have an integer b such that |θd−nd(xs)− b| ≤ 1/(2m).

For 1 ≤ j ≤ d− 1, with the integers k′j = kj − nja/m,

|θj − njxs − k′j | = |θj − njxs + nja/m− kj |
= |θj − (nj/m)x− kj | ≤ β.

Thus ‖θ − nxs‖ ≤ max(1/(2m), β) and hence α(S) ≤ max{1/(2m), β}.
Example 12. For any integers j, k ≥ 5 one has α{1, j, jk, 4jk, 24jk} =

α{1, 4, 24} = 3/25.
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Corollary 13. Let aj>1 be integers and Sd={1, a1, a1a2, . . . , a1 . . . ad}
with d ≥ 1. Then

α(Sd) ≤ max[{(2aj)−1 : j < d} ∪ {(2(ad + 1))−1}]
Proof. This is clear for d = 1. Now assume the result holds for any

set {1, b1, b1b2, . . . , b1 . . . bd−1} with integers bj > 1. Consider Sd and let
S′ = Sd \ {1}. By the induction hypothesis,

α(S′) = α(S′/a1) ≤ max[{(2aj)−1 : 1 < j < d} ∪ {(2(ad + 1))−1}].
By Proposition 11, we have

α(Sd) ≤ max{1/(2a1), α(S′)}
≤ max[{(2aj)−1 : j < d} ∪ {(2(ad + 1))−1}].

An immediate consequence of Corollary 13 is that, if the last multiplier
is smaller than the rest, it determines the Kronecker constant.

Corollary 14. Let aj > 1 be integers. Let

S = {1, a1, a1a2, . . . , a1a2 . . . ad}
with d ≥ 1 and suppose that aj > ad for j < d. Then α(S) = 1/(2(1 + ad)).
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