VOL. 130

2013

NO. 1

ON THE SIZE OF $L(1,\chi)$ AND S. CHOWLA'S HYPOTHESIS IMPLYING THAT $L(1,\chi) > 0$ FOR s > 0 AND FOR REAL CHARACTERS χ

 $_{\rm BY}$

S. LOUBOUTIN (Marseille)

Abstract. We give explicit constants κ such that if χ is a real non-principal Dirichlet character for which $L(1,\chi) \leq \kappa$, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that $L(s,\chi) > 0$ for s > 0. These constants are larger than the previous ones $\kappa = 1 - \log 2 = 0.306 \dots$ and $\kappa = 0.367 \dots$ we obtained elsewhere.

1. Introduction. Throughout this paper, we let χ be a real non-principal Dirichlet character modulo f > 1. Setting $\chi_0 = \chi$, we define inductively the functions χ_k for $k \ge 0$ by means of

$$\chi_{k+1}(n) = \sum_{a=0}^{n} \chi_k(a).$$

Define

$$m(\chi) := \min\{k \ge 0; \chi_k \ge 0\}$$

if this set is non-empty and $m(\chi) = \infty$ otherwise. Since χ_1 is *f*-periodic and $|\chi_1(n)| \leq f$ for all $n \geq 0$, by induction on $k \geq 0$ we have

$$\Gamma(s)L(s,\chi) = \int_{0}^{\infty} (1 - e^{-t})^{k} \left(\sum_{n \ge 1} \chi_{k}(n)e^{-nt}\right) t^{s} \frac{dt}{t} \quad (k \ge 1 \text{ and } \Re(s) > 0).$$

In particular, if $m(\chi) < \infty$ then $L(s,\chi) > 0$ for s > 0 (see [Cho], [CD], [CDH], [CH] and [Ros] for further results). Chowla's Hypothesis asserts that $m(\chi) < \infty$ for all non-principal real characters χ (see [Cho]). H. Heilbronn disproved this hypothesis (see [Heil] and the historical remarks in [BM, p. 25]). In fact, the set of real non-principal characters χ for which $m(\chi) < \infty$ has asymptotic density 0 in { χ real and non-principal} (see [BM, Corollary] and use Proposition 1.1).

²⁰¹⁰ Mathematics Subject Classification: Primary 11M20.

Key words and phrases: L-function, real character, mean values, real zero, Fekete polynomial.

Now, let

$$P(t,\chi) := \sum_{n=1}^{J} \chi(n) t^n$$
 and $F(t,\chi) := \sum_{n \ge 1} \chi(n) t^n$ $(|t| < 1)$

be the *Fekete polynomial* and the related infinite series (see [FP]).

PROPOSITION 1.1 (see [BPW, Lemma 6]). The following assertions are equivalent:

- (i) $m(\chi) < \infty$,
- (ii) $P(t,\chi) > 0$ for $t \in (0,1)$ (which can be checked numerically by using Sturm's algorithm), and
- (iii) $F(t, \chi) > 0$ for $t \in (0, 1)$.

If χ is odd, then χ_1 being *f*-periodic we have $\chi_1 \geq 0$ if and only if $\chi_1(n) \geq 0$ for $1 \leq n \leq f$. If χ is even, then $\chi_1(f-2) = -1$, but χ_2 being *f*-periodic we have $\chi_2 \geq 0$ if and only if $\chi_2(n) \geq 0$ for $1 \leq n \leq f$. Both these conditions can easily be checked numerically, i.e., one can easily ascertain whether $m(\chi) = 1$ for χ odd or whether $m(\chi) = 2$ for χ even, both in time $O(f^{1+\epsilon})$. However, we let the reader think about how one could for some given χ , (a) ascertain that say $\chi_{40} \geq 0$, (b) check whether $m(\chi) < \infty$ (Sturm's algorithm invoked in Proposition 1.1 is computationally useless for f not that large), and (c) compute $m(\chi)$ if this is the case. We will come back to these problems in a forthcoming paper.

Our present problem is to explain how one can sometimes ascertain that $m(\chi) = \infty$ by proving relationships between Chowla's Hypothesis and the size of $L(1,\chi)$. S. Chowla observed that $L(1,\chi) \ge 1/(1+m(\chi))$. In [Lou03] and [Lou04], we greatly improved upon S. Chowla's result by proving that $L(1,\chi) \le 1 - \log 2 = 0.306...$ implies $m(\chi) = \infty$. (By [CE] and [Ell], it follows that $m(\chi) = \infty$ for infinitely many real non-principal characters χ). In Theorem 2.1, we give a general result which enables us to obtain constants greater than $1 - \log 2$ for which this result still holds true:

THEOREM 1.2. Let χ be a real non-principal Dirichlet character.

- (1) If $\chi(2) = -1$ and $L(1, \chi) \leq 0.373043$, then $m(\chi) = \infty$.
- (2) If $\chi(2) = 0$ and $L(1, \chi) \le 0.545986$, then $m(\chi) = \infty$.

(3) If $\chi(2) = +1$ and $L(1, \chi) \leq 0.939751$, then $m(\chi) = \infty$.

(4) If $\chi(3) = 0$ and $L(1, \chi) \le 0.470215$, then $m(\chi) = \infty$.

- (5) If $\chi(2) = \chi(3) = 0$ and $L(1, \chi) \le 0.690830$, then $m(\chi) = \infty$.
- (6) If $\chi(2) = \chi(3) = +1$ and $L(1, \chi) \leq 1.624353$, then $m(\chi) = \infty$.

With larger constants we are more likely to be able to ascertain fast that $m(\chi) = \infty$ for a given character χ . Indeed, assume that χ is odd and primitive mod f > 1. The analytic class number formula yields $L(1, \chi) =$

 $\pi h_f/\sqrt{f}$, where h_f is the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-f})$ of conductor f. The point is that h_f can be rigorously computed in time $O(f^{1/2+\epsilon})$ (see [Lou02]). Hence, for some odd χ 's mod f we can ascertain that $m(\chi) = \infty$ in time $O(f^{1/2+\epsilon})$. The same remark applies to the case of even primitive characters.

Now, if $\psi \mod fd$ is induced by $\chi \mod f$, then

(1)
$$L(s,\psi) = L(s,\chi) \prod_{p|d} \left(1 - \frac{\chi(p)}{p^s}\right) \quad (\Re(s) > 0).$$

The Generalized Chowla Hypothesis asserts that for any χ there exists some ψ induced by χ such that $m(\psi) < \infty$ (see [CDH], [CH] or [Ros]), which implies $L(s, \psi) > 0$ for s > 0, and $L(s, \chi) > 0$ for s > 0, by (1). In fact, it has been conjectured that if χ is odd then there exists some ψ mod fd induced by χ such that $m(\psi) = 1$, i.e. such that $\psi_1(n) \ge 0$ for $1 \le n \le fd$. However (see [CDH]), nobody has been able to prove this hypothesis in the difficult special case that χ is the odd character mod 163 associated with the imaginary quadratic field $\mathbb{Q}(\sqrt{-163})$ of class number 1, for which $L(1,\chi) = \pi/\sqrt{163}$ is small (since $\pi/\sqrt{163} < 1 - \log 2$, we know beforehand that $m(\chi) = \infty$ for this character). In fact, it is because he could not check this hypothesis in that case that J. B. Rosser developed in [Ros] a completely different technique to prove that $L(s,\chi) > 0$ for $s \in (0,1)$ for this character mod 163. We will explain in Section 7 how the present ideas could help us find such a d for this character, if one exists. In particular, see Proposition 6.2.

2. The main idea

THEOREM 2.1. If $m(\chi) < \infty$, then for any $t \in (0,1)$ we have

$$L(1,\chi) > G(t,\chi) := \sum_{n \ge 1} \frac{\chi(n)}{n} t^n = \log(1-t) + \sum_{n \ge 1} \frac{1+\chi(n)}{n} t^n$$

Proof. By induction on $k \ge 0$, for $t \in (0, 1)$, we have

$$tG'(t,\chi) = \sum_{n\geq 1} \chi(n)t^n = (1-t)^k \sum_{n\geq 1} \chi_k(n)t^n.$$

Consequently, if $m(\chi) < \infty$, then $G'(t,\chi) > 0$ and $t \mapsto G(t,\chi)$ increases with $t \in (0,1)$. Since $\lim_{1^-} G(t,\chi) = L(1,\chi)$, by Abel's theorem, we obtain $L(1,\chi) > G(t,\chi)$ for any $t \in (0,1)$.

We derive explicit results from Theorem 2.1. The key point is that $(1 + \chi(n))/2 \ge 0$ for $n \ge 1$, which yields

(2)
$$G(t,\chi) \ge \log(1-t) + \sum_{n \in E} \frac{1+\chi(n)}{n} t^n \quad (t \in (0,1))$$

for any set E (finite or infinite) of positive integers. In particular, by taking $E = \{1\}$, we have $G(t, \chi) \ge f(t) := \log(1-t) + 2t$. Since f'(t) = (1-2t)/(1-t), we choose $t_0 = 1/2$ and find that $F(t_0, \chi) \ge f(t_0) = 1 - \log 2$. Hence, by Theorem 2.1, we have a very short proof of the following result obtained in [Lou03]:

COROLLARY 2.2. If $L(1, \chi) \leq 1 - \log 2 = 0.306852..., then m(\chi) = \infty$.

3. Taking into account prime numbers p for which $\chi(p) = 0$. In some cases, we can readily improve upon this result. For example, let us assume that χ ranges over the characters for which $\chi(2) = 0$. Then $\chi(1) = 1$, $\chi(n) = 0$ for $n \ge 2$ even and $\chi(n) \ge -1$ otherwise. Hence, for $t \in (0, 1)$,

$$G(t,\chi) \ge F_2(t) := \log(1-t) + 2t + \sum_{m\ge 1} \frac{1}{2m} t^{2m} = 2t + \frac{1}{2} \log\left(\frac{1-t}{1+t}\right).$$

More generally, assume that $\chi(p) = 0$ for all the prime divisors $p \ge 2$ of a squarefree integer $d_0 > 1$. Then $(1 + \chi(n))/n = 1/n$ for $gcd(n, d_0) > 1$. Hence,

$$\log(1-t) + \sum_{\gcd(n,d_0)>1} \frac{1+\chi(n)}{n} t^n = \sum_{\delta \mid d_0} \frac{\mu(\delta)}{\delta} \log(1-t^{\delta}) \quad (t \in (0,1)).$$

Since $\chi(1) = 1$, using (2) with $E = \{1\} \cup \{n \ge 1; \operatorname{gcd}(n, d_0) > 1\}$ we obtain

(3)
$$G(t,\chi) \ge F_{d_0}(t) := 2t + \sum_{\delta \mid d_0} \frac{\mu(\delta)}{\delta} \log(1-t^{\delta}) \quad (t \in (0,1)).$$

Set $P_{d_0}(t) := (1-t^d) F'_{d_0}(t) \in \mathbb{Z}[X]$. Both $F_{d_0}(t)$ and $P_{d_0}(t)$ can be computed inductively by using $F_1(t) = \log(1-t) + 2t$, $P_1(t) = 1 - 2t$,

$$F_{d_0p}(t) = F_{d_0}(t) - \frac{1}{p}F_{d_0}(t^p) + \frac{2}{p}t^p$$

and

$$P_{d_0p}(t) = \frac{1 - t^{d_p}}{1 - t^d} P_{d_0}(t) - t^{p-1} P_{d_0}(t^p) + 2(1 - t^{d_0p})t^{p-1},$$

where $p \ge 2$ is a prime that does not divide $d \ge 1$.

For $d_0 = 2$, we obtain $P_2(t) = 1 - 2t^2$, whose only root in (0, 1) is $t_0 = 1/\sqrt{2}$, for which $F_2(t_0) = \sqrt{2} - \log(1 + \sqrt{2}) = 0.532839...$ Hence, if 2 divides f and $L(1, \chi) \le \sqrt{2} - \log(1 + \sqrt{2}) = 0.532839...$, then $m(\chi) = \infty$ (to be improved in Proposition 5.3).

For $d_0 = 6 = 2 \cdot 3$, we obtain $P_6(t) = 1 - t^4 - 2t^6$, whose only root in (0,1) is $t_0 = 0.810...$, for which $F_6(t_0) = 0.690357...$ (to be improved in Proposition 5.5). More generally, we have:

d_0	t_0	$F_d(t_0)$
$30 = 2 \cdot 3 \cdot 5$	0.8586	0.772333
$210 = 2 \cdot 3 \cdot 5 \cdot 7$	0.8886	0.828093
$2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$	0.9059	0.855750
$30030 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$	0.9198	0.879331
$510510 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$	0.9296	0.894912
$9699690 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$	0.9380	0.909271
$223092870 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$	0.9444	0.920087
$6469693230 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$	0.9491	$0.927153\ldots$

In the next section, we will generalize this approach to improve upon (3) (see (9)): given two finite disjoint sets \mathcal{P}_0 and \mathcal{P}_1 of prime numbers, we want to find a lower bound on $G(t, \chi)$ where χ ranges over all the real and non-principal Dirichlet characters such that $\chi(p) = 0$ if $p \in \mathcal{P}_0$ and $\chi(p) = +1$ if $p \in \mathcal{P}_1$.

4. Taking into account any finite set of prime numbers. Fix three finite pairwise disjoint (possibly empty) sets $\mathcal{P} = \{p_k; 1 \leq k \leq m\}$, \mathcal{P}_0 and \mathcal{P}_1 of m, m_0 and m_1 prime numbers. Set $d_0 = \prod_{p \in \mathcal{P}_0} p \geq 1$. Let χ range over the real and non-principal Dirichlet characters for which $\chi(p) = 0$ if $p \in \mathcal{P}_0$ and $\chi(p) = +1$ if $p \in \mathcal{P}_1$. Fix $N \geq 1$. Set $l_N =$ lcm $\{n; 1 \leq n \leq N\}$. Let $E_N(\mathcal{P}, \mathcal{P}_1)$ denote the set of those positive integers less than or equal to N whose prime divisors lie in $\mathcal{P} \cup \mathcal{P}_1$. Hence, $1 \in E_N(\mathcal{P}, \mathcal{P}_1)$. Using (2) with $E_N(\mathcal{P}, \mathcal{P}_1) \cup \{n \geq 1; \gcd(n, d_0) > 1\}$, we obtain

(4)
$$G(t,\chi) \ge \sum_{\delta \mid d_0} \frac{\mu(\delta)}{\delta} \log(1-t^{\delta}) + \sum_{n \in E_N(\mathcal{P},\mathcal{P}_1)} \frac{1+\chi(n)}{n} t^n \quad (t \in (0,1)).$$

Now, the idea is to prove that the worst case in (4) is when χ takes on the value -1 on as many prime numbers as possible, i.e. when $\chi(p) = -1$ for $p \in \mathcal{P}$.

Let $\lambda_{\mathcal{P}_1}$ denote the completely multiplicative arithmetic function defined on the prime numbers by

(5)
$$\lambda_{\mathcal{P}_1}(p) = \begin{cases} -1 & \text{if } p \notin \mathcal{P}_1, \\ +1 & \text{if } p \in \mathcal{P}_1. \end{cases}$$

Finally, for $(x_1, \ldots, x_m) \in \{-1, 0, 1\}^m$, let $X_{x_1, \ldots, x_m, \mathcal{P}_1}$ denote the completely multiplicative arithmetic function defined on the prime numbers by

$$X_{x_1,\dots,x_m,\mathcal{P}_1}(p) = \begin{cases} x_k & \text{if } p = p_k \in \mathcal{P}, \\ +1 & \text{if } p \in \mathcal{P}_1. \end{cases}$$

Set

$$P_N(x_1,\ldots,x_m,\mathcal{P},\mathcal{P}_1;t) := l_N \sum_{n \in E_N(\mathcal{P},\mathcal{P}_1)} \frac{1 + X_{x_1,\ldots,x_m,\mathcal{P}_1}(n)}{n} t^n \in \mathbb{Z}[X].$$

In particular,

n

(6)
$$P_N(-1,\ldots,-1,\mathcal{P},\mathcal{P}_1;t) = l_N \sum_{n \in E_N(\mathcal{P},\mathcal{P}_1)} \frac{1+\lambda_{\mathcal{P}_1}(n)}{n} t^n \in \mathbb{Z}[X].$$

For any real and non-principal Dirichlet character χ , we can choose the x_k 's so that $x_k = \chi(p_k)$ for $1 \le k \le m$, which yields

$$\sum_{\in E_N(\mathcal{P},\mathcal{P}_1)} \frac{1+\chi(n)}{n} t^n = \frac{1}{l_N} P_N(x_1,\ldots,x_m,\mathcal{P},\mathcal{P}_1;t)$$

Hence, we deduce that for any real and non-principal Dirichlet characters χ for which $\chi(p) = 0$ if $p \in \mathcal{P}_0$ and $\chi(p) = +1$ if $p \in \mathcal{P}_1$, any $t \in (0, 1)$, any $m \ge 1$ and any $N \ge 1$ we have

(7)

$$G(t,\chi) \ge \sum_{\delta \mid d_0} \frac{\mu(\delta)}{\delta} \log(1-t^{\delta}) + \frac{1}{l_N} \min_{(x_1,\dots,x_m) \in \{-1,0,1\}^m} P_N(x_1,\dots,x_m,\mathcal{P},\mathcal{P}_1;t).$$

Now, by Theorem 2.1, we want to compute the greatest value as t ranges in (0, 1) of the right hand side of (7). Of course, we could perform some numerical analysis to evaluate the greatest value as t ranges in (0, 1) of each of the 3^m functions

$$\sum_{\delta \mid d_0} \frac{\mu(\delta)}{\delta} \log(1 - t^{\delta}) + \frac{1}{l_N} P_N(x_1, \dots, x_m, \mathcal{P}, \mathcal{P}_1; t),$$

as (x_1, \ldots, x_m) ranges over $\{-1, 0, 1\}^m$. However, for most choices of $\mathcal{P}, \mathcal{P}_1$ and N, Lemma 4.1 below enables us to greatly simplify this task, namely, to prove that for any $t \in (0, 1)$ we have

(8)

$$\min_{(x_1,\dots,x_m)\in\{-1,0,1\}^m} P_N(x_1,\dots,x_m,\mathcal{P},\mathcal{P}_1;t) = P_{m,N}(-1,\dots,-1,\mathcal{P},\mathcal{P}_1;t).$$

For example, it readily shows that this holds true for N = 1000, m = 10, $\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29\}$ and $\mathcal{P}_0 = \mathcal{P}_1 = \emptyset$.

LEMMA 4.1. Let $P(t) = \sum_{k=1}^{N} p_k t^k$ and $Q(t) = \sum_{k=1}^{N} q_k t^k$. Set $\Delta_l = \sum_{k=1}^{l} (p_k - q_k)$. If $\Delta_l \ge 0$ for $1 \le l \le N$, then $P(t) \ge Q(t)$ for $t \in [0, 1]$.

Proof. Set $\Delta_0 = 0$. Then

$$P(t) - Q(t) = \sum_{k=1}^{N} (\Delta_k - \Delta_{k-1}) t^k = \left(\sum_{k=1}^{n-1} \Delta_k (t^k - t^{k+1})\right) + \Delta_N t^N. \bullet$$

Using (7), (8) and (6) we finally obtain a general improvement on (3):

PROPOSITION 4.2. Fix three finite pairwise disjoints (possibly empty) sets \mathcal{P} , \mathcal{P}_0 and \mathcal{P}_1 of m, m_0 and m_1 prime numbers. Set $d_0 = \prod_{p \in \mathcal{P}_0} p \ge 1$. Let $\lambda_{\mathcal{P}_1}$ be as in (5). Fix $N \ge 1$ and set $l_N = \operatorname{lcm}\{n; 1 \le n \le N\}$. Let $E_N(\mathcal{P}, \mathcal{P}_1) \ge 1$ denote the set of all positive integers $\le N$ whose prime divisors lie in $\mathcal{P} \cup \mathcal{P}_1$.

Assume that the following hypothesis (H) holds true: as (x_1, \ldots, x_m) runs over the 3^m elements of $\{-1, 0, +1\}^m$, the rational integers

$$\Delta_l := \sum_{\substack{n=1\\n\in E_N(\mathcal{P},\mathcal{P}_1)}}^l \frac{l_N}{n} (X_{x_1,\dots,x_m,\mathcal{P}_1}(n) - \lambda_{\mathcal{P}_1}(n)) \in \mathbb{Z}$$

are non-negative for $1 \leq l \leq N$.

Then, for any real and non-principal Dirichlet characters χ for which $\chi(p) = 0$ if $p \in \mathcal{P}_0$ and $\chi(p) = +1$ if $p \in \mathcal{P}_1$, we have $G(t, \chi) \geq F(t)$ for $t \in (0, 1)$, where

(9)
$$F(t) = F_N(t, \mathcal{P}, \mathcal{P}_0, \mathcal{P}_1) := \sum_{\delta \mid d_0} \frac{\mu(\delta)}{\delta} \log(1 - t^{\delta}) + 2 \sum_{n \in E} \frac{1}{n} t^n$$

and $E := \{n \in E_N(\mathcal{P}, \mathcal{P}_1); \lambda_{\mathcal{P}_1}(n) = +1\} \ni 1.$ Moreover, $(1 - t^d)F'(t) \in \mathbb{Z}[t].$

We would like to emphasize that, in order to use Proposition 4.2, we only have to check that the $3^m N$ rational integers Δ_l are not negative, which in principle could be done by hand. Moreover, if m = 0, i.e. if $\mathcal{P} = \emptyset$, then hypothesis (H) clearly holds true.

5. Proof of Theorem 1.2. Taking m = 8, $\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, 19\}$, $\mathcal{P}_0 = \mathcal{P}_1 = \emptyset$ and N = 40, we obtain $E = \{1, 4, 6, 9, 10, 14, 15, 16, 21, 22, 24, 25, 26, 33, 34, 35, 36, 38, 39, 40\}$. Using Prof. Kida's UBASIC on a PC, we checked in 10 seconds that Hypothesis (H) is satisfied. Hence, we obtain

$$G(t,\chi) \ge F(t) := \log(1-t) + 2\sum_{n \in E} \frac{1}{n}t^n, \quad t \in (0,1).$$

Choosing $t = t_0 = 0.670...$, the only real root in (0, 1) of $P(t) := (1-t)F'(t) = -1 + 2(1-t)\sum_{n \in E} t^{n-1}$, we obtain:

PROPOSITION 5.1. $L(1, \chi) \le F(t_0) = 0.373043...$ implies $m(\chi) = \infty$.

Assume that $\chi(2) = +1$. Taking m = 7, $\mathcal{P} = \{3, 5, 7, 11, 13, 17, 19\}$, $\mathcal{P}_0 = \emptyset$, $\mathcal{P}_1 = \{2\}$ and N = 60, we obtain $E = \{1, 2, 4, 8, 9, 15, 16, 18, 21, 25, ..., 25, ..$

30, 32, 33, 35, 36, 39, 42, 49, 50, 51, 55, 57, 60 and

$$G(t,\chi) \ge F(t) := \log(1-t) + 2\sum_{n \in E} \frac{1}{n} t^n, \quad t \in (0,1).$$

Choosing $t = t_0 = 0.859...$, the only real root in (0, 1) of $P(t) := (1-t)F'(t) = -1 + 2(1-t)\sum_{n \in E} t^{n-1}$, we obtain:

PROPOSITION 5.2. $\chi(2) = +1$ and $L(1, \chi) \leq F(t_0) = 0.939751...$ imply $m(\chi) = \infty$.

Assume that $\chi(2) = 0$. Taking m = 7, $\mathcal{P} = \{3, 5, 7, 11, 13, 17, 19\}$, $\mathcal{P}_0 = \{2\}$, $\mathcal{P}_1 = \emptyset$ and N = 60, we obtain $E = \{1, 9, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57\}$ and

$$G(t,\chi) \ge F(t) := \frac{1}{2} \log \left(\frac{(1-t)^2}{1-t^2}\right) + 2\sum_{n \in E} \frac{1}{n} t^n, \quad t \in (0,1).$$

Choosing $t = t_0 = 0.741...$, the only real root in (0, 1) of $P(t) := (1-t^2)F'(t) = -1 + 2(1-t^2)\sum_{n \in E} t^{n-1}$, we obtain:

PROPOSITION 5.3. $\chi(2) = 0$ and $L(1, \chi) \leq F(t_0) = 0.545986...$ imply $m(\chi) = \infty$.

Assume that $\chi(3) = 0$. Taking m = 9, $\mathcal{P} = \{2, 5, 7, 11, 13, 17, 19, 23, 29\}$, $\mathcal{P}_0 = \{3\}$, $\mathcal{P}_1 = \emptyset$ and N = 60, we obtain $E = \{1, 4, 10, 14, 16, 22, 25, 26, 34, 35, 38, 46, 49, 55, 58\}$ and

$$G(t,\chi) \ge F(t) := \frac{1}{3} \log \left(\frac{(1-t)^3}{1-t^3} \right) + 2 \sum_{n \in E} \frac{1}{n} t^n, \quad t \in (0,1).$$

Choosing $t = t_0 = 0.762...$, the only real root in (0, 1) of $P(t) := (1-t^3)F'(t) = -1 - t + 2(1-t^3)\sum_{n \in E} t^{n-1}$, we obtain:

PROPOSITION 5.4. $\chi(3) = 0$ and $L(1, \chi) \le F(t_0) = 0.470215...$ imply $m(\chi) = \infty$.

Assume that $\chi(2) = \chi(3) = 0$. Taking m = 4, $\mathcal{P} = \{5, 7, 11, 13\}$, $\mathcal{P}_0 = \{2, 3\}$, $\mathcal{P}_1 = \emptyset$ and N = 65, we obtain $E = \{1, 25, 35, 49, 55, 65\}$ and

$$G(t,\chi) \ge F(t) := \frac{1}{6} \log \left(\frac{(1-t)^6 (1-t^6)}{(1-t^2)^3 (1-t^3)^2} \right) + 2 \sum_{n \in E} \frac{1}{n} t^n, \quad t \in (0,1).$$

Choosing $t = t_0 = 0.812...$, the only real root in (0, 1) of $P(t) := (1-t^6)F'(t) = -1 - t^4 + 2(1-t^6)\sum_{n \in E} t^{n-1}$, we obtain:

PROPOSITION 5.5. $\chi(2) = \chi(3) = 0$ and $L(1, \chi) \leq F(t_0) = 0.690830...$ imply $m(\chi) = \infty$.

Finally, assume that $\chi(2) = \chi(3) = +1$. Taking m = 0, $\mathcal{P} = \mathcal{P}_0 = \emptyset$, $\mathcal{P}_1 = \{2, 3\}$ and N = 27, we obtain $E = \{1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 25, 27\}$

and

$$G(t,\chi) \ge F(t) := \log(1-t) + 2\sum_{n \in E} \frac{1}{n} t^n, \quad t \in (0,1)$$

Choosing $t = t_0 = 0.928...$, the only real root in (0, 1) of $P(t) := (1-t)F'(t) = -1 + 2(1-t)\sum_{n \in E} t^{n-1}$, we obtain:

PROPOSITION 5.6. $\chi(2) = \chi(3) = +1$ and $L(1, \chi) \le F(t_0) = 1.624353...$ imply $m(\chi) = \infty$.

6. On the Generalized Chowla Hypothesis. For χ a character mod f and $d \ge 1$, let $\chi^{(d)}$ be the character mod fd induced by χ . We say that the Generalized Chowla Hypothesis holds true for χ if there exists $d \ge 1$ such that $m(\chi^{(d)}) < \infty$, in which case $d_{\chi} \ge 1$ denotes the least such $d \ge 1$. Otherwise, we set $d_{\chi} = 0$. Hence, $d_{\chi} = 1$ if and only if $m(\chi) < \infty$. Let also $2 \le p_1(\chi) < p_2(\chi) < \cdots$ be the sorted prime numbers in the set $\{p; p \ge 2 \text{ prime and } \chi(p) = -1\}$. Set $D_0 = 1$ and $D_t = D_t(\chi) = \prod_{k=1}^t p_k(\chi)$ for $t \ge 1$. Set $D_{\chi} = D_{t_{\chi}}$ where $t_{\chi} := \min\{t \ge 0; m(\chi^{(D_t)}) < \infty\}$ if this set is not empty. Otherwise, set $D_{\chi} = 0$.

LEMMA 6.1. Let ϕ be a non-principal character. Let $p \geq 2$ be a prime.

- (1) If $\phi(p) = 0$, then $m(\phi) = m(\phi^{(p)})$.
- (2) If $m(\phi) = \infty$ and $\phi(p) \neq -1$, then $m(\phi^{(p)}) = \infty$.
- (3) If $m(\phi) < \infty$ and $\phi(p) \neq +1$, then $m(\phi^{(p)}) < \infty$.

Proof. Assume that $\phi(p) = 0$. Then $\phi(n) = \phi^{(p)}(n)$ for any $n \ge 1$. Hence $\phi_k = \phi_k^{(p)}$ for any $k \ge 1$, and $m(\phi) = m(\phi^{(p)})$.

Since $G(0, \phi) = 0$ and $G'(0, \phi) = 1$, if $m(\phi) = \infty$ then we can define $t_{\phi} = \min\{t \in (0, 1); G(t, \phi) = 0\}$. We have $G(t, \phi) > 0$ for $t \in (0, t_{\phi})$. Since $\phi^{(p)}(n) = \phi(n)$ if p does not divide n and $\phi^{(p)}(n) = 0 = \phi(n) - \phi(n)$ if p divides n, we obtain

$$G(t,\phi^{(p)}) = \sum_{n\geq 1} \phi(n)t^n - \sum_{n\geq 1 \text{ and } p|n} \phi(n)t^n = G(t,\phi) - \phi(p)G(t^p,\phi).$$

If $m(\phi) = \infty$ and $\phi(p) \neq -1$, then $G(t_{\phi}, \phi) = 0$ and $G(t_{\phi}, \phi^{(p)}) \leq G(t_{\phi}, \phi) \leq 0$, hence $m(\phi^{(p)}) = \infty$. If $m(\phi) < \infty$ and $\phi(p) \neq +1$, then $G(t, \phi) > 0$ for $t \in (0, 1)$ and $G(t, \phi^{(p)}) \geq G(t, \phi) > 0$ for $t \in (0, 1)$, hence $m(\phi^{(p)}) < \infty$.

PROPOSITION 6.2. If $d_{\chi} > 1$, then d_{χ} is squarefree and such that $p \mid d_{\chi}$ implies $\chi(p) = -1$. Moreover, the Generalized Chowla Hypothesis holds true for χ if and only there exists $t \geq 0$ such that $m(\chi^{(D_t)}) < \infty$.

Proof. Let p be any prime divisor of $d_{\chi} > 1$, write $d_{\chi} = dp$ and set $\phi = \chi^{(d)}$. Hence $\phi^{(p)} = \chi^{(d_{\chi})}$. If p divides d, then $\phi(p) = 0$ and $m(\chi^{(d)}) = m(\chi^{(d_{\chi})}) < \infty$ (by Lemma 6.1(1)) and $1 \leq d < d_{\chi}$, a contradiction. Hence,

 d_{χ} is squarefree, which implies $\phi(p) = \chi(p)$. If $\chi(p) \neq -1$, then $\phi(p) \neq -1$ and $m(\chi^{(d)}) < \infty$ (by Lemma 6.1(2)) and $1 \leq d < d_{\chi}$, a contradiction. Finally, by Lemma 6.1(3), if $d_{\chi} \neq 0$ then $m(\chi^{D_t}) < \infty$ as soon as d_{χ} divides D_t , i.e. as soon as t is large enough.

Hence, we have $d_{\chi} \neq 0 \Leftrightarrow D_{\chi} \neq 0$ and $d_{\chi} \leq D_{\chi}$. For the real and odd character $\chi \mod f = 43$ we have $\chi(2) = \chi(3) = -1$, $m(\chi) = \infty$, $m(\chi^{(2)}) < \infty$ and $m(\chi^{(3)}) < \infty$ (use Sturm's algorithm). Hence, $d_{\chi} = 2$ but $m(\chi^{(3)}) < \infty$. This example shows that if $d_{\chi} \neq 0$, then we cannot expect d_{χ} to have the nice property that $m(\chi^{(d)}) < \infty$ if and only if $d_{\chi} \mid d$, even when d is restricted to be a squarefree integer such that $p \mid d_{\chi}$ implies $\chi(p) = -1$.

7. A computational challenge. Let χ be the real and odd Dirichlet character mod 163. Hence, $\chi(p) = -1$ for $p \leq 37$ a prime number. Set $E_{\chi} := \{d \geq 2; d \text{ squarefree and } p \mid d \text{ implies } \chi(p) = -1\}.$

We have $L(1, \chi) = \pi/\sqrt{163} = 0.246068...$ Hence, $m(\chi) = \infty$, by Corollary 2.2.

The challenges are (i) to computationally prove that $d_{\chi} \neq 0$, and (ii) to find either d_{χ} or D_{χ} .

We have not found any of these two invariants, but we want to present the reader who would like to tackle their determination with some ideas to speed up his computation: we explain how one can easily get rid of many d's when d ranges over the positive integers less than or equal to a prescribed upper bound B.

7.1. Speeding up the search for d_{χ} . Let *B* be given. Set $E(B) := \{d \geq 2; d \leq B \text{ and } d \text{ squarefree}\}$ and let *d* range in $E_{\chi}(B) := \{d \in E_{\chi}; d \leq B\}$. If $m(\chi^{(d)}) < \infty$, where $d \in E_{\chi}$, then $L(1, \chi^{(d)}) = \psi(d)L(1, \chi) > 0.373043$, where

$$\psi(d) := \prod_{p|d} (1+p^{-1}).$$

Hence, we must have $\psi(d) > 0.373043\sqrt{163}/\pi = 1.516012...$ In particular, d cannot be a prime number. Set $E'_{\chi}(B) := \{n \in E_{\chi}(B); \psi(d) > 1.516012\}$. Now, noticing that $\chi(2) = -1$, we can consider two cases:

$$\psi(d) \begin{cases} 0.373043\sqrt{163}/\pi > 1.516012 & \text{if } \gcd(d,2) = 1, \\ 0.545986\sqrt{163}/\pi > 2.218837 & \text{if } \gcd(d,2) = 1, \end{cases}$$

and let $E_{\chi}''(B)$ denote the set of the d's in $E_{\chi}(B)$ that satisfy these conditions. Finally, noticing that $\chi(2) = \chi(3) = -1$, we can consider four cases:

$$\psi(d) \begin{cases} 0.373043\sqrt{163}/\pi > 1.516012 & \text{if } \gcd(d,6) = 1, \\ 0.545986\sqrt{163}/\pi > 2.218837 & \text{if } \gcd(d,6) = 2, \\ 0.470215\sqrt{163}/\pi > 1.910910 & \text{if } \gcd(d,6) = 3, \\ 0.690830\sqrt{163}/\pi > 2.807469 & \text{if } \gcd(d,6) = 6, \end{cases}$$

and let $E_{\chi}^{\prime\prime\prime}(B)$ denote the set of the *d*'s in $E_{\chi}(B)$ that satisfy these conditions.

If we had extended our range of computation in Theorem 1.2, we could have dealt with a finer distinction of cases. The following table shows that the finer our distinction of cases, the shorter our list of d's to test to be able to compute d_{χ} :

В	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
#E(B)	607	6082	60793	607925	6079290	60792693
$\#E_{\chi}(B)$	387	3205	27806	250290	2298910	21386754
$\#E'_{\chi}(B)$	122	947	8453	72324	655508	6070111
$\#E_{\chi}^{\prime\prime}(B)$	42	289	2442	20924	187151	1717406
$\#E_{\chi}^{\prime\prime\prime}(B)$	1	20	139	1055	8785	76003

7.2. On the size of D_{χ} . As for D_{χ} , notice that $m(\chi^{(D_t)}) < \infty$ if and only if $t \ge t_{\chi}$, by Lemma 6.1(3). Since $\chi(p) = -1$ for $p \le 29$ a prime, the $D_t = D_t(\chi)$'s for $3 \le t \le 10$ are listed in the first column of the table of Section 3. Since

$$L(1,\chi^{(D_8)}) = \psi(D_8)L(1,\chi) = \frac{165888\pi}{46189\sqrt{163}} = 0.883756\dots < 0.909271,$$

we have $m(\chi^{(D_8)}) = \infty$, by Section 3. Hence, $t_{\chi} \geq 9$ and D_9 divides D_{χ} . Moreover, $L(1, \chi^{(D_9)}) = \psi(D_9)L(1, \chi) = \frac{3981312\pi}{1062347\sqrt{163}} = 0.922180...$ is not less than 0.920087. However, when applying (3) with $d = D_9$ to the character $\chi^{(D_9)}$ we may use the fact that $\chi^{(D_9)}(41) = \chi(41) = +1$ to add a term $2t^{41}/41$ to the right hand side of (3), which enables us to replace the $F_d(t_0) =$ 0.920087 of the eighth line of this table by the larger value 0.924760. Hence, $m(\chi^{(D_9)}) = \infty, t_{\chi} \geq 10$ and $D_{10} = D_{10}(\chi) = 6469693230$ divides D_{χ} . Notice that $f := 163D_{10} \approx 10^{12}$.

REFERENCES

- [BM] R. C. Baker and H. L. Montgomery, Oscillations of quadratic L-functions, in: Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math. 85, Birkhäuser Boston, Boston, MA, 1990, 23–40.
- [BPW] P. T. Bateman, G. B. Purdy and S. S. Wagstaff Jr., Some numerical results on Fekete polynomials, Math. Comp. 29 (1975), 7–23.

90	S. LOUBOUTIN
[Cho]	S. Chowla, Note on Dirichlet's L-functions, Acta Arith. 1 (1935), 113–114.
[CD]	S. Chowla and M. J. DeLeon, A note on the Hecke hypothesis and the determi-
	nation of imaginary quadratic fields with class-number 1, J. Number Theory 6
	(1974), 261-263.
[CDH]	S. Chowla, M. J. DeLeon and P. Hartung, On a hypothesis implying the non-
	vanishing of Dirichlet's L-series $L(s,\chi)$ for $s > 0$ and real odd characters χ ,
[0]=1	J. Reine Angew. Math. 262/263 (1973), 415–419.
[CE]	S. Chowla and P. Erdős, A theorem on the distribution of the values of L-
[077]	functions, J. Indian Math. Soc. (N.S.) 15 (1951), 11–18.
[CH]	S. Chowla and P. Hartung, A note on the hypothesis that $L(s,\chi) > 0$ for all
	real non-principal characters χ and for all $s > 0$, J. Number Theory 6 (1974),
[17]1]	271–275.
[Ell]	P. D. T. A. Elliott, <i>The distribution of the quadratic class number</i> , Litovsk. Mat.
[FD]	Sb. 10 (1970), 189–197. M. Felette und C. Pélue – Üben ein Brohlem von Leeuwerne Bond Cine Met
[FP]	M. Fekete und G. Pólya, <i>Uber ein Problem von Laguerre</i> , Rend. Circ. Mat. Palermo 34 (1912), 89–120.
[Heil]	H. Heilbronn, On real characters, Acta Arith. 2 (1937), 212–213.
[Lou02]	S. Louboutin, Computation of class numbers of quadratic number fields, Math.
[LOUO2]	Comp. 71 (2002), 1735–1743.
[Lou03]	S. Louboutin, Note on a hypothesis implying the non-vanishing of Dirichlet L-
[10400]	series $L(s, \chi)$ for $s > 0$ and real characters χ , Colloq. Math. 96 (2003), 207–212.
[Lou04]	S. Louboutin, Remarks on S. Chowla's hypothesis implying that $L(s,\chi) > 0$ for
[]	$s > 0$ and for real characters χ , in: Primes and Misdemeanours: Lectures in
]	Honour of the 60th Birthday of Hugh Cowie Williams, Fields Inst. Comm. 41,
	Amer. Math. Soc., Providence, RI, 2004, 283–291.
[Ros]	J. B. Rosser, Real roots of real Dirichlet L-series, J. Res. Nat. Bur. Standards
	45 (1950), 501–514.
C Il	
S. Loubo	
	de Mathématiques de Luminy
UMR 62	
TOD, aver	nue de Luminy

Case 907

13288 Marseille Cedex 9, France E-mail: stephane.louboutin@univ-amu.fr

> Received 8 October 2012; revised 9 January 2013 (5780)