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ON THE SIZE OF L(1, χ) AND S. CHOWLA’S
HYPOTHESIS IMPLYING THAT L(1, χ) > 0

FOR s > 0 AND FOR REAL CHARACTERS χ

BY

S. LOUBOUTIN (Marseille)

Abstract. We give explicit constants κ such that if χ is a real non-principal Dirichlet
character for which L(1, χ) ≤ κ, then Chowla’s hypothesis is not satisfied and we cannot
use Chowla’s method for proving that L(s, χ) > 0 for s > 0. These constants are larger
than the previous ones κ = 1− log 2 = 0.306 . . . and κ = 0.367 . . . we obtained elsewhere.

1. Introduction. Throughout this paper, we letχ be a real non-principal
Dirichlet character modulo f > 1. Setting χ0 = χ, we define inductively the
functions χk for k ≥ 0 by means of

χk+1(n) =

n∑
a=0

χk(a).

Define

m(χ) := min{k ≥ 0 ;χk ≥ 0}

if this set is non-empty and m(χ) =∞ otherwise. Since χ1 is f -periodic and
|χ1(n)| ≤ f for all n ≥ 0, by induction on k ≥ 0 we have

Γ (s)L(s, χ) =

∞�

0

(1− e−t)k
(∑
n≥1

χk(n)e−nt
)
ts
dt

t
(k ≥ 1 and <(s) > 0).

In particular, if m(χ) < ∞ then L(s, χ) > 0 for s > 0 (see [Cho], [CD],
[CDH], [CH] and [Ros] for further results). Chowla’s Hypothesis asserts that
m(χ) <∞ for all non-principal real characters χ (see [Cho]). H. Heilbronn
disproved this hypothesis (see [Heil] and the historical remarks in [BM,
p. 25]). In fact, the set of real non-principal characters χ for whichm(χ) <∞
has asymptotic density 0 in {χ real and non-principal} (see [BM, Corollary]
and use Proposition 1.1).
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Now, let

P (t, χ) :=

f∑
n=1

χ(n)tn and F (t, χ) :=
∑
n≥1

χ(n)tn (|t| < 1)

be the Fekete polynomial and the related infinite series (see [FP]).

Proposition 1.1 (see [BPW, Lemma 6]). The following assertions are
equivalent:

(i) m(χ) <∞,
(ii) P (t, χ) > 0 for t ∈ (0, 1) (which can be checked numerically by using

Sturm’s algorithm), and
(iii) F (t, χ) > 0 for t ∈ (0, 1).

If χ is odd, then χ1 being f -periodic we have χ1 ≥ 0 if and only if
χ1(n) ≥ 0 for 1 ≤ n ≤ f . If χ is even, then χ1(f − 2) = −1, but χ2 being
f -periodic we have χ2 ≥ 0 if and only if χ2(n) ≥ 0 for 1 ≤ n ≤ f . Both these
conditions can easily be checked numerically, i.e., one can easily ascertain
whether m(χ) = 1 for χ odd or whether m(χ) = 2 for χ even, both in
time O(f1+ε). However, we let the reader think about how one could for
some given χ, (a) ascertain that say χ40 ≥ 0, (b) check whether m(χ) <∞
(Sturm’s algorithm invoked in Proposition 1.1 is computationally useless for
f not that large), and (c) compute m(χ) if this is the case. We will come
back to these problems in a forthcoming paper.

Our present problem is to explain how one can sometimes ascertain that
m(χ) = ∞ by proving relationships between Chowla’s Hypothesis and the
size of L(1, χ). S. Chowla observed that L(1, χ) ≥ 1/(1 +m(χ)). In [Lou03]
and [Lou04], we greatly improved upon S. Chowla’s result by proving that
L(1, χ) ≤ 1 − log 2 = 0.306 . . . implies m(χ) = ∞. (By [CE] and [Ell], it
follows that m(χ) =∞ for infinitely many real non-principal characters χ).
In Theorem 2.1, we give a general result which enables us to obtain constants
greater than 1− log 2 for which this result still holds true:

Theorem 1.2. Let χ be a real non-principal Dirichlet character.

(1) If χ(2) = −1 and L(1, χ) ≤ 0.373043, then m(χ) =∞.
(2) If χ(2) = 0 and L(1, χ) ≤ 0.545986, then m(χ) =∞.
(3) If χ(2) = +1 and L(1, χ) ≤ 0.939751, then m(χ) =∞.
(4) If χ(3) = 0 and L(1, χ) ≤ 0.470215, then m(χ) =∞.
(5) If χ(2) = χ(3) = 0 and L(1, χ) ≤ 0.690830, then m(χ) =∞.
(6) If χ(2) = χ(3) = +1 and L(1, χ) ≤ 1.624353, then m(χ) =∞.

With larger constants we are more likely to be able to ascertain fast
that m(χ) = ∞ for a given character χ. Indeed, assume that χ is odd and
primitive mod f > 1. The analytic class number formula yields L(1, χ) =
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πhf/
√
f, where hf is the class number of the imaginary quadratic field

Q(
√
−f) of conductor f . The point is that hf can be rigorously computed

in time O(f1/2+ε) (see [Lou02]). Hence, for some odd χ’s mod f we can
ascertain that m(χ) = ∞ in time O(f1/2+ε). The same remark applies to
the case of even primitive characters.

Now, if ψ mod fd is induced by χ mod f , then

(1) L(s, ψ) = L(s, χ)
∏
p|d

(
1− χ(p)

ps

)
(<(s) > 0).

The Generalized Chowla Hypothesis asserts that for any χ there exists some
ψ induced by χ such that m(ψ) < ∞ (see [CDH], [CH] or [Ros]), which
implies L(s, ψ) > 0 for s > 0, and L(s, χ) > 0 for s > 0, by (1). In fact,
it has been conjectured that if χ is odd then there exists some ψ mod fd
induced by χ such that m(ψ) = 1, i.e. such that ψ1(n) ≥ 0 for 1 ≤ n ≤ fd.
However (see [CDH]), nobody has been able to prove this hypothesis in
the difficult special case that χ is the odd character mod 163 associated
with the imaginary quadratic field Q(

√
−163) of class number 1, for which

L(1, χ) = π/
√

163 is small (since π/
√

163 < 1 − log 2, we know beforehand
that m(χ) = ∞ for this character). In fact, it is because he could not
check this hypothesis in that case that J. B. Rosser developed in [Ros] a
completely different technique to prove that L(s, χ) > 0 for s ∈ (0, 1) for
this character mod 163. We will explain in Section 7 how the present ideas
could help us find such a d for this character, if one exists. In particular, see
Proposition 6.2.

2. The main idea

Theorem 2.1. If m(χ) <∞, then for any t ∈ (0, 1) we have

L(1, χ) > G(t, χ) :=
∑
n≥1

χ(n)

n
tn = log(1− t) +

∑
n≥1

1 + χ(n)

n
tn.

Proof. By induction on k ≥ 0, for t ∈ (0, 1), we have

tG′(t, χ) =
∑
n≥1

χ(n)tn = (1− t)k
∑
n≥1

χk(n)tn.

Consequently, if m(χ) < ∞, then G′(t, χ) > 0 and t 7→ G(t, χ) increases
with t ∈ (0, 1). Since lim1− G(t, χ) = L(1, χ), by Abel’s theorem, we obtain
L(1, χ) > G(t, χ) for any t ∈ (0, 1).

We derive explicit results from Theorem 2.1. The key point is that
(1 + χ(n))/2 ≥ 0 for n ≥ 1, which yields

(2) G(t, χ) ≥ log(1− t) +
∑
n∈E

1 + χ(n)

n
tn (t ∈ (0, 1))
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for any set E (finite or infinite) of positive integers. In particular, by tak-
ing E = {1}, we have G(t, χ) ≥ f(t) := log(1 − t) + 2t. Since f ′(t) =
(1−2t)/(1−t), we choose t0 = 1/2 and find that F (t0, χ) ≥ f(t0) = 1−log 2.
Hence, by Theorem 2.1, we have a very short proof of the following result
obtained in [Lou03]:

Corollary 2.2. If L(1, χ) ≤ 1− log 2 = 0.306852 . . ., then m(χ) =∞.

3. Taking into account prime numbers p for which χ(p) = 0.
In some cases, we can readily improve upon this result. For example, let us
assume that χ ranges over the characters for which χ(2) = 0. Then χ(1) = 1,
χ(n) = 0 for n ≥ 2 even and χ(n) ≥ −1 otherwise. Hence, for t ∈ (0, 1),

G(t, χ) ≥ F2(t) := log(1− t) + 2t+
∑
m≥1

1

2m
t2m = 2t+

1

2
log

(
1− t
1 + t

)
.

More generally, assume that χ(p) = 0 for all the prime divisors p ≥ 2 of
a squarefree integer d0 > 1. Then (1 + χ(n))/n = 1/n for gcd(n, d0) > 1.
Hence,

log(1− t) +
∑

gcd(n,d0)>1

1 + χ(n)

n
tn =

∑
δ|d0

µ(δ)

δ
log(1− tδ) (t ∈ (0, 1)).

Since χ(1) = 1, using (2) with E = {1}∪ {n ≥ 1 ; gcd(n, d0) > 1} we obtain

(3) G(t, χ) ≥ Fd0(t) := 2t+
∑
δ|d0

µ(δ)

δ
log(1− tδ) (t ∈ (0, 1)).

Set Pd0(t) := (1−td)F ′d0(t) ∈ Z[X]. Both Fd0(t) and Pd0(t) can be computed
inductively by using F1(t) = log(1− t) + 2t, P1(t) = 1− 2t,

Fd0p(t) = Fd0(t)− 1

p
Fd0(tp) +

2

p
tp

and

Pd0p(t) =
1− tdp

1− td
Pd0(t)− tp−1Pd0(tp) + 2(1− td0p)tp−1,

where p ≥ 2 is a prime that does not divide d ≥ 1.

For d0 = 2, we obtain P2(t) = 1 − 2t2, whose only root in (0, 1) is
t0 = 1/

√
2, for which F2(t0) =

√
2− log(1 +

√
2) = 0.532839 . . .. Hence, if 2

divides f and L(1, χ) ≤
√

2 − log(1 +
√

2) = 0.532839 . . ., then m(χ) = ∞
(to be improved in Proposition 5.3).

For d0 = 6 = 2 · 3, we obtain P6(t) = 1 − t4 − 2t6, whose only root in
(0, 1) is t0 = 0.810 . . ., for which F6(t0) = 0.690357 . . . (to be improved in
Proposition 5.5). More generally, we have:
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d0 t0 Fd(t0)

30 = 2 · 3 · 5 0.8586 0.772333 . . .

210 = 2 · 3 · 5 · 7 0.8886 0.828093 . . .

2310 = 2 · 3 · 5 · 7 · 11 0.9059 0.855750 . . .

30030 = 2 · 3 · 5 · 7 · 11 · 13 0.9198 0.879331 . . .

510510 = 2 · 3 · 5 · 7 · 11 · 13 · 17 0.9296 0.894912 . . .

9699690 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 0.9380 0.909271 . . .

223092870 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 0.9444 0.920087 . . .

6469693230 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 0.9491 0.927153 . . .

In the next section, we will generalize this approach to improve upon
(3) (see (9)): given two finite disjoint sets P0 and P1 of prime numbers,
we want to find a lower bound on G(t, χ) where χ ranges over all the real
and non-principal Dirichlet characters such that χ(p) = 0 if p ∈ P0 and
χ(p) = +1 if p ∈ P1.

4. Taking into account any finite set of prime numbers. Fix
three finite pairwise disjoint (possibly empty) sets P = {pk ; 1 ≤ k ≤ m},
P0 and P1 of m, m0 and m1 prime numbers. Set d0 =

∏
p∈P0

p ≥ 1.
Let χ range over the real and non-principal Dirichlet characters for which
χ(p) = 0 if p ∈ P0 and χ(p) = +1 if p ∈ P1. Fix N ≥ 1. Set lN =
lcm{n ; 1 ≤ n ≤ N}. Let EN (P,P1) denote the set of those positive in-
tegers less than or equal to N whose prime divisors lie in P ∪ P1. Hence,
1 ∈ EN (P,P1). Using (2) with EN (P,P1) ∪ {n ≥ 1 ; gcd(n, d0) > 1}, we
obtain

(4) G(t, χ) ≥
∑
δ|d0

µ(δ)

δ
log(1− tδ) +

∑
n∈EN (P,P1)

1 + χ(n)

n
tn (t ∈ (0, 1)).

Now, the idea is to prove that the worst case in (4) is when χ takes on the
value −1 on as many prime numbers as possible, i.e. when χ(p) = −1 for
p ∈ P.

Let λP1 denote the completely multiplicative arithmetic function defined
on the prime numbers by

(5) λP1(p) =

{−1 if p 6∈ P1,
+1 if p ∈ P1.

Finally, for (x1, . . . , xm) ∈ {−1, 0, 1}m, letXx1,...,xm,P1 denote the completely
multiplicative arithmetic function defined on the prime numbers by

Xx1,...,xm,P1(p) =

{
xk if p = pk ∈ P,

+1 if p ∈ P1.
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Set

PN (x1, . . . , xm,P,P1; t) := lN
∑

n∈EN (P,P1)

1 +Xx1,...,xm,P1(n)

n
tn ∈ Z[X].

In particular,

(6) PN (−1, . . . ,−1,P,P1; t) = lN
∑

n∈EN (P,P1)

1 + λP1(n)

n
tn ∈ Z[X].

For any real and non-principal Dirichlet character χ, we can choose the xk’s
so that xk = χ(pk) for 1 ≤ k ≤ m, which yields∑

n∈EN (P,P1)

1 + χ(n)

n
tn =

1

lN
PN (x1, . . . , xm,P,P1; t).

Hence, we deduce that for any real and non-principal Dirichlet characters χ
for which χ(p) = 0 if p ∈ P0 and χ(p) = +1 if p ∈ P1, any t ∈ (0, 1), any
m ≥ 1 and any N ≥ 1 we have

(7)

G(t, χ)≥
∑
δ|d0

µ(δ)

δ
log(1−tδ)+

1

lN
min

(x1,...,xm)∈{−1,0,1}m
PN (x1, . . . , xm,P,P1; t).

Now, by Theorem 2.1, we want to compute the greatest value as t ranges
in (0, 1) of the right hand side of (7). Of course, we could perform some
numerical analysis to evaluate the greatest value as t ranges in (0, 1) of each
of the 3m functions∑

δ|d0

µ(δ)

δ
log(1− tδ) +

1

lN
PN (x1, . . . , xm,P,P1; t),

as (x1, . . . , xm) ranges over {−1, 0, 1}m. However, for most choices of P, P1
and N , Lemma 4.1 below enables us to greatly simplify this task, namely,
to prove that for any t ∈ (0, 1) we have

(8)

min
(x1,...,xm)∈{−1,0,1}m

PN (x1, . . . , xm,P,P1; t) = Pm,N (−1, . . . ,−1,P,P1; t).

For example, it readily shows that this holds true for N = 1000, m = 10,
P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29} and P0 = P1 = ∅.

Lemma 4.1. Let P (t) =
∑N

k=1 pkt
k and Q(t) =

∑N
k=1 qkt

k. Set ∆l =∑l
k=1(pk − qk). If ∆l ≥ 0 for 1 ≤ l ≤ N , then P (t) ≥ Q(t) for t ∈ [0, 1].

Proof. Set ∆0 = 0. Then

P (t)−Q(t) =

N∑
k=1

(∆k −∆k−1)t
k =

( n−1∑
k=1

∆k(t
k − tk+1)

)
+∆N t

N .
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Using (7), (8) and (6) we finally obtain a general improvement on (3):

Proposition 4.2. Fix three finite pairwise disjoints (possibly empty)
sets P, P0 and P1 of m, m0 and m1 prime numbers. Set d0 =

∏
p∈P0

p ≥ 1.
Let λP1 be as in (5). Fix N ≥ 1 and set lN = lcm{n ; 1 ≤ n ≤ N}. Let
EN (P,P1) 3 1 denote the set of all positive integers ≤ N whose prime
divisors lie in P ∪ P1.

Assume that the following hypothesis (H) holds true: as (x1, . . . , xm) runs
over the 3m elements of {−1, 0,+1}m, the rational integers

∆l :=
l∑

n=1
n∈EN (P,P1)

lN
n

(Xx1,...,xm,P1(n)− λP1(n)) ∈ Z

are non-negative for 1 ≤ l ≤ N .

Then, for any real and non-principal Dirichlet characters χ for which
χ(p) = 0 if p ∈ P0 and χ(p) = +1 if p ∈ P1, we have G(t, χ) ≥ F (t) for
t ∈ (0, 1), where

(9) F (t) = FN (t,P,P0,P1) :=
∑
δ|d0

µ(δ)

δ
log(1− tδ) + 2

∑
n∈E

1

n
tn

and E := {n ∈ EN (P,P1) ;λP1(n) = +1} 3 1.

Moreover, (1− td)F ′(t) ∈ Z[t].

We would like to emphasize that, in order to use Proposition 4.2, we only
have to check that the 3mN rational integers ∆l are not negative, which in
principle could be done by hand. Moreover, if m = 0, i.e. if P = ∅, then
hypothesis (H) clearly holds true.

5. Proof of Theorem 1.2. Taking m=8, P={2, 3, 5, 7, 11, 13, 17, 19},
P0 = P1 = ∅ and N = 40, we obtain E = {1, 4, 6, 9, 10, 14, 15, 16, 21, 22, 24,
25, 26, 33, 34, 35, 36, 38, 39, 40}. Using Prof. Kida’s UBASIC on a PC, we
checked in 10 seconds that Hypothesis (H) is satisfied. Hence, we obtain

G(t, χ) ≥ F (t) := log(1− t) + 2
∑
n∈E

1

n
tn, t ∈ (0, 1).

Choosing t = t0 = 0.670 . . ., the only real root in (0, 1) of P (t) := (1−t)F ′(t)
= −1 + 2(1− t)

∑
n∈E t

n−1, we obtain:

Proposition 5.1. L(1, χ) ≤ F (t0) = 0.373043 . . . implies m(χ) =∞.

Assume that χ(2) = +1. Taking m = 7, P = {3, 5, 7, 11, 13, 17, 19},
P0 = ∅, P1 = {2} and N = 60, we obtain E = {1, 2, 4, 8, 9, 15, 16, 18, 21, 25,
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30, 32, 33, 35, 36, 39, 42, 49, 50, 51, 55, 57, 60} and

G(t, χ) ≥ F (t) := log(1− t) + 2
∑
n∈E

1

n
tn, t ∈ (0, 1).

Choosing t = t0 = 0.859 . . ., the only real root in (0, 1) of P (t) := (1−t)F ′(t)
= −1 + 2(1− t)

∑
n∈E t

n−1, we obtain:

Proposition 5.2. χ(2) = +1 and L(1, χ) ≤ F (t0) = 0.939751 . . . imply
m(χ) =∞.

Assume that χ(2)=0. Taking m=7, P={3, 5, 7, 11, 13, 17, 19}, P0={2},
P1 = ∅ and N = 60, we obtain E = {1, 9, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57}
and

G(t, χ) ≥ F (t) :=
1

2
log

(
(1− t)2

1− t2

)
+ 2

∑
n∈E

1

n
tn, t ∈ (0, 1).

Choosing t = t0 = 0.741 . . ., the only real root in (0, 1) of P (t) := (1−t2)F ′(t)
= −1 + 2(1− t2)

∑
n∈E t

n−1, we obtain:

Proposition 5.3. χ(2) = 0 and L(1, χ) ≤ F (t0) = 0.545986 . . . imply
m(χ) =∞.

Assume that χ(3) = 0. Taking m = 9, P = {2, 5, 7, 11, 13, 17, 19, 23, 29},
P0 = {3}, P1 = ∅ and N = 60, we obtain E = {1, 4, 10, 14, 16, 22, 25, 26, 34,
35, 38, 46, 49, 55, 58} and

G(t, χ) ≥ F (t) :=
1

3
log

(
(1− t)3

1− t3

)
+ 2

∑
n∈E

1

n
tn, t ∈ (0, 1).

Choosing t = t0 = 0.762 . . ., the only real root in (0, 1) of P (t) := (1−t3)F ′(t)
= −1− t+ 2(1− t3)

∑
n∈E t

n−1, we obtain:

Proposition 5.4. χ(3) = 0 and L(1, χ) ≤ F (t0) = 0.470215 . . . imply
m(χ) =∞.

Assume that χ(2) = χ(3) = 0. Taking m = 4, P = {5, 7, 11, 13}, P0 =
{2, 3}, P1 = ∅ and N = 65, we obtain E = {1, 25, 35, 49, 55, 65} and

G(t, χ) ≥ F (t) :=
1

6
log

(
(1− t)6(1− t6)

(1− t2)3(1− t3)2

)
+ 2

∑
n∈E

1

n
tn, t ∈ (0, 1).

Choosing t = t0 = 0.812 . . ., the only real root in (0, 1) of P (t) := (1−t6)F ′(t)
= −1− t4 + 2(1− t6)

∑
n∈E t

n−1, we obtain:

Proposition 5.5. χ(2) = χ(3) = 0 and L(1, χ) ≤ F (t0) = 0.690830 . . .
imply m(χ) =∞.

Finally, assume that χ(2) = χ(3) = +1. Taking m = 0, P = P0 = ∅,
P1 ={2, 3} and N =27, we obtain E={1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 25, 27}
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and

G(t, χ) ≥ F (t) := log(1− t) + 2
∑
n∈E

1

n
tn, t ∈ (0, 1).

Choosing t = t0 = 0.928 . . ., the only real root in (0, 1) of P (t) := (1−t)F ′(t)
= −1 + 2(1− t)

∑
n∈E t

n−1, we obtain:

Proposition 5.6. χ(2) = χ(3) = +1 and L(1, χ)≤ F (t0) = 1.624353 . . .
imply m(χ) =∞.

6. On the Generalized Chowla Hypothesis. For χ a character mod
f and d ≥ 1, let χ(d) be the character mod fd induced by χ. We say that
the Generalized Chowla Hypothesis holds true for χ if there exists d ≥ 1
such that m(χ(d)) <∞, in which case dχ ≥ 1 denotes the least such d ≥ 1.
Otherwise, we set dχ = 0. Hence, dχ = 1 if and only if m(χ) < ∞. Let
also 2 ≤ p1(χ) < p2(χ) < · · · be the sorted prime numbers in the set
{p ; p ≥ 2 prime and χ(p) = −1}. Set D0 = 1 and Dt = Dt(χ) =

∏t
k=1 pk(χ)

for t ≥ 1. Set Dχ = Dtχ where tχ := min{t ≥ 0 ;m(χ(Dt)) < ∞} if this set
is not empty. Otherwise, set Dχ = 0.

Lemma 6.1. Let φ be a non-principal character. Let p ≥ 2 be a prime.

(1) If φ(p) = 0, then m(φ) = m(φ(p)).
(2) If m(φ) =∞ and φ(p) 6= −1, then m(φ(p)) =∞.
(3) If m(φ) <∞ and φ(p) 6= +1, then m(φ(p)) <∞.

Proof. Assume that φ(p) = 0. Then φ(n) = φ(p)(n) for any n ≥ 1. Hence

φk = φ
(p)
k for any k ≥ 1, and m(φ) = m(φ(p)).

Since G(0, φ) = 0 and G′(0, φ) = 1, if m(φ) = ∞ then we can define
tφ = min{t ∈ (0, 1) ;G(t, φ) = 0}. We have G(t, φ) > 0 for t ∈ (0, tφ). Since

φ(p)(n) = φ(n) if p does not divide n and φ(p)(n) = 0 = φ(n) − φ(n) if p
divides n, we obtain

G(t, φ(p)) =
∑
n≥1

φ(n)tn −
∑

n≥1 and p|n

φ(n)tn = G(t, φ)− φ(p)G(tp, φ).

If m(φ)=∞ and φ(p) 6=−1, then G(tφ, φ)=0 and G(tφ, φ
(p))≤G(tφ, φ)≤0,

hence m(φ(p)) = ∞. If m(φ) < ∞ and φ(p) 6= +1, then G(t, φ) > 0 for
t ∈ (0, 1) and G(t, φ(p)) ≥ G(t, φ) > 0 for t ∈ (0, 1), hence m(φ(p)) <∞.

Proposition 6.2. If dχ > 1, then dχ is squarefree and such that p | dχ
implies χ(p) = −1. Moreover, the Generalized Chowla Hypothesis holds true
for χ if and only there exists t ≥ 0 such that m(χ(Dt)) <∞.

Proof. Let p be any prime divisor of dχ > 1, write dχ = dp and set
φ = χ(d). Hence φ(p) = χ(dχ). If p divides d, then φ(p) = 0 and m(χ(d)) =
m(χ(dχ)) < ∞ (by Lemma 6.1(1)) and 1 ≤ d < dχ, a contradiction. Hence,
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dχ is squarefree, which implies φ(p) = χ(p). If χ(p) 6= −1, then φ(p) 6= −1
and m(χ(d)) < ∞ (by Lemma 6.1(2)) and 1 ≤ d < dχ, a contradiction.
Finally, by Lemma 6.1(3), if dχ 6= 0 then m(χDt) < ∞ as soon as dχ
divides Dt, i.e. as soon as t is large enough.

Hence, we have dχ 6= 0 ⇔ Dχ 6= 0 and dχ ≤ Dχ. For the real and
odd character χ mod f = 43 we have χ(2) = χ(3) = −1, m(χ) = ∞,
m(χ(2)) <∞ and m(χ(3)) <∞ (use Sturm’s algorithm). Hence, dχ = 2 but
m(χ(3)) <∞. This example shows that if dχ 6= 0, then we cannot expect dχ
to have the nice property that m(χ(d)) <∞ if and only if dχ | d, even when
d is restricted to be a squarefree integer such that p | dχ implies χ(p) = −1.

7. A computational challenge. Let χ be the real and odd Dirichlet
character mod 163. Hence, χ(p) = −1 for p ≤ 37 a prime number. Set
Eχ := {d ≥ 2 ; d squarefree and p | d implies χ(p) = −1}.

We have L(1, χ) = π/
√

163 = 0.246068 . . . . Hence, m(χ) =∞, by Corol-
lary 2.2.

The challenges are (i) to computationally prove that dχ 6= 0, and (ii) to
find either dχ or Dχ.

We have not found any of these two invariants, but we want to present
the reader who would like to tackle their determination with some ideas to
speed up his computation: we explain how one can easily get rid of many d’s
when d ranges over the positive integers less than or equal to a prescribed
upper bound B.

7.1. Speeding up the search for dχ. Let B be given. Set E(B) :=
{d ≥ 2 ; d ≤ B and d squarefree} and let d range in Eχ(B) := {d ∈ Eχ ;
d ≤ B}. If m(χ(d)) < ∞, where d ∈ Eχ, then L(1, χ(d)) = ψ(d)L(1, χ) >
0.373043, where

ψ(d) :=
∏
p|d

(1 + p−1).

Hence, we must have ψ(d) > 0.373043
√

163/π = 1.516012 . . .. In particular,
d cannot be a prime number. Set E′χ(B) := {n ∈ Eχ(B) ;ψ(d) > 1.516012}.
Now, noticing that χ(2) = −1, we can consider two cases:

ψ(d)

{
0.373043

√
163/π > 1.516012 if gcd(d, 2) = 1,

0.545986
√

163/π > 2.218837 if gcd(d, 2) = 1,

and let E′′χ(B) denote the set of the d’s in Eχ(B) that satisfy these condi-
tions.
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Finally, noticing that χ(2) = χ(3) = −1, we can consider four cases:

ψ(d)


0.373043

√
163/π > 1.516012 if gcd(d, 6) = 1,

0.545986
√

163/π > 2.218837 if gcd(d, 6) = 2,

0.470215
√

163/π > 1.910910 if gcd(d, 6) = 3,

0.690830
√

163/π > 2.807469 if gcd(d, 6) = 6,

and let E′′′χ (B) denote the set of the d’s in Eχ(B) that satisfy these condi-
tions.

If we had extended our range of computation in Theorem 1.2, we could
have dealt with a finer distinction of cases. The following table shows that
the finer our distinction of cases, the shorter our list of d’s to test to be able
to compute dχ:

B 103 104 105 106 107 108

#E(B) 607 6082 60793 607925 6079290 60792693

#Eχ(B) 387 3205 27806 250290 2298910 21386754

#E′χ(B) 122 947 8453 72324 655508 6070111

#E′′χ(B) 42 289 2442 20924 187151 1717406

#E′′′χ (B) 1 20 139 1055 8785 76003

7.2. On the size of Dχ. As for Dχ, notice that m(χ(Dt)) < ∞ if and
only if t ≥ tχ, by Lemma 6.1(3). Since χ(p) = −1 for p ≤ 29 a prime, the
Dt = Dt(χ)’s for 3 ≤ t ≤ 10 are listed in the first column of the table of
Section 3. Since

L(1, χ(D8)) = ψ(D8)L(1, χ) =
165888π

46189
√

163
= 0.883756 . . . < 0.909271,

we have m(χ(D8)) = ∞, by Section 3. Hence, tχ ≥ 9 and D9 divides Dχ.
Moreover, L(1, χ(D9)) = ψ(D9)L(1, χ) = 3981312π

1062347
√
163

= 0.922180 . . . is not

less than 0.920087. However, when applying (3) with d = D9 to the character
χ(D9) we may use the fact that χ(D9)(41) = χ(41) = +1 to add a term
2t41/41 to the right hand side of (3), which enables us to replace the Fd(t0) =
0.920087 of the eighth line of this table by the larger value 0.924760. Hence,
m(χ(D9)) =∞, tχ ≥ 10 and D10 = D10(χ) = 6469693230 divides Dχ. Notice
that f := 163D10 ≈ 1012.

REFERENCES

[BM] R. C. Baker and H. L. Montgomery, Oscillations of quadratic L-functions, in:
Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math. 85, Birkhäuser
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