COLLOQUIUM MATHEMATICUM

ON THE SIZE OF $L(1, \chi)$ AND S. CHOWLA'S
 HYPOTHESIS IMPLYING THAT $L(1, \chi)>0$ FOR $s>0$ AND FOR REAL CHARACTERS χ
 BY
 S. LOUBOUTIN (Marseille)

Abstract

We give explicit constants κ such that if χ is a real non-principal Dirichlet character for which $L(1, \chi) \leq \kappa$, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that $L(s, \chi)>0$ for $s>0$. These constants are larger than the previous ones $\kappa=1-\log 2=0.306 \ldots$ and $\kappa=0.367 \ldots$ we obtained elsewhere.

1. Introduction. Throughout this paper, we let χ be a real non-principal Dirichlet character modulo $f>1$. Setting $\chi_{0}=\chi$, we define inductively the functions χ_{k} for $k \geq 0$ by means of

$$
\chi_{k+1}(n)=\sum_{a=0}^{n} \chi_{k}(a)
$$

Define

$$
m(\chi):=\min \left\{k \geq 0 ; \chi_{k} \geq 0\right\}
$$

if this set is non-empty and $m(\chi)=\infty$ otherwise. Since χ_{1} is f-periodic and $\left|\chi_{1}(n)\right| \leq f$ for all $n \geq 0$, by induction on $k \geq 0$ we have

$$
\Gamma(s) L(s, \chi)=\int_{0}^{\infty}\left(1-e^{-t}\right)^{k}\left(\sum_{n \geq 1} \chi_{k}(n) e^{-n t}\right) t^{s} \frac{d t}{t} \quad(k \geq 1 \text { and } \Re(s)>0)
$$

In particular, if $m(\chi)<\infty$ then $L(s, \chi)>0$ for $s>0$ (see Cho, CD, [CDH] $[\mathrm{CH}]$ and [Ros for further results). Chowla's Hypothesis asserts that $m(\chi)<\infty$ for all non-principal real characters χ (see Cho). H. Heilbronn disproved this hypothesis (see Heil] and the historical remarks in BM, p. 25]). In fact, the set of real non-principal characters χ for which $m(\chi)<\infty$ has asymptotic density 0 in $\{\chi$ real and non-principal $\}$ (see BM, Corollary] and use Proposition 1.1).

[^0]Now, let

$$
P(t, \chi):=\sum_{n=1}^{f} \chi(n) t^{n} \quad \text { and } \quad F(t, \chi):=\sum_{n \geq 1} \chi(n) t^{n} \quad(|t|<1)
$$

be the Fekete polynomial and the related infinite series (see [FP]).
Proposition 1.1 (see [BPW, Lemma 6]). The following assertions are equivalent:
(i) $m(\chi)<\infty$,
(ii) $P(t, \chi)>0$ for $t \in(0,1)$ (which can be checked numerically by using Sturm's algorithm), and
(iii) $F(t, \chi)>0$ for $t \in(0,1)$.

If χ is odd, then χ_{1} being f-periodic we have $\chi_{1} \geq 0$ if and only if $\chi_{1}(n) \geq 0$ for $1 \leq n \leq f$. If χ is even, then $\chi_{1}(f-2)=-1$, but χ_{2} being f-periodic we have $\chi_{2} \geq 0$ if and only if $\chi_{2}(n) \geq 0$ for $1 \leq n \leq f$. Both these conditions can easily be checked numerically, i.e., one can easily ascertain whether $m(\chi)=1$ for χ odd or whether $m(\chi)=2$ for χ even, both in time $O\left(f^{1+\epsilon}\right)$. However, we let the reader think about how one could for some given χ, (a) ascertain that say $\chi_{40} \geq 0$, (b) check whether $m(\chi)<\infty$ (Sturm's algorithm invoked in Proposition 1.1 is computationally useless for f not that large), and (c) compute $m(\chi)$ if this is the case. We will come back to these problems in a forthcoming paper.

Our present problem is to explain how one can sometimes ascertain that $m(\chi)=\infty$ by proving relationships between Chowla's Hypothesis and the size of $L(1, \chi)$. S. Chowla observed that $L(1, \chi) \geq 1 /(1+m(\chi))$. In Lou03] and [Lou04], we greatly improved upon S. Chowla's result by proving that $L(1, \chi) \leq 1-\log 2=0.306 \ldots$ implies $m(\chi)=\infty$. (By CE and [Ell], it follows that $m(\chi)=\infty$ for infinitely many real non-principal characters χ). In Theorem 2.1, we give a general result which enables us to obtain constants greater than $1-\log 2$ for which this result still holds true:

TheOrem 1.2. Let χ be a real non-principal Dirichlet character.
(1) If $\chi(2)=-1$ and $L(1, \chi) \leq 0.373043$, then $m(\chi)=\infty$.
(2) If $\chi(2)=0$ and $L(1, \chi) \leq 0.545986$, then $m(\chi)=\infty$.
(3) If $\chi(2)=+1$ and $L(1, \chi) \leq 0.939751$, then $m(\chi)=\infty$.
(4) If $\chi(3)=0$ and $L(1, \chi) \leq 0.470215$, then $m(\chi)=\infty$.
(5) If $\chi(2)=\chi(3)=0$ and $L(1, \chi) \leq 0.690830$, then $m(\chi)=\infty$.
(6) If $\chi(2)=\chi(3)=+1$ and $L(1, \chi) \leq 1.624353$, then $m(\chi)=\infty$.

With larger constants we are more likely to be able to ascertain fast that $m(\chi)=\infty$ for a given character χ. Indeed, assume that χ is odd and primitive $\bmod f>1$. The analytic class number formula yields $L(1, \chi)=$
$\pi h_{f} / \sqrt{f}$, where h_{f} is the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-f})$ of conductor f. The point is that h_{f} can be rigorously computed in time $O\left(f^{1 / 2+\epsilon}\right)$ (see Lou02]). Hence, for some odd χ 's $\bmod f$ we can ascertain that $m(\chi)=\infty$ in time $O\left(f^{1 / 2+\epsilon}\right)$. The same remark applies to the case of even primitive characters.

Now, if $\psi \bmod f d$ is induced by $\chi \bmod f$, then

$$
\begin{equation*}
L(s, \psi)=L(s, \chi) \prod_{p \mid d}\left(1-\frac{\chi(p)}{p^{s}}\right) \quad(\Re(s)>0) . \tag{1}
\end{equation*}
$$

The Generalized Chowla Hypothesis asserts that for any χ there exists some ψ induced by χ such that $m(\psi)<\infty$ (see [CDH], CH] or (Ros), which implies $L(s, \psi)>0$ for $s>0$, and $L(s, \chi)>0$ for $s>0$, by (11). In fact, it has been conjectured that if χ is odd then there exists some $\psi \bmod f d$ induced by χ such that $m(\psi)=1$, i.e. such that $\psi_{1}(n) \geq 0$ for $1 \leq n \leq f d$. However (see $[\mathrm{CDH}$), nobody has been able to prove this hypothesis in the difficult special case that χ is the odd character mod 163 associated with the imaginary quadratic field $\mathbb{Q}(\sqrt{-163})$ of class number 1 , for which $L(1, \chi)=\pi / \sqrt{163}$ is small (since $\pi / \sqrt{163}<1-\log 2$, we know beforehand that $m(\chi)=\infty$ for this character). In fact, it is because he could not check this hypothesis in that case that J. B. Rosser developed in Ros a completely different technique to prove that $L(s, \chi)>0$ for $s \in(0,1)$ for this character mod 163. We will explain in Section 7 how the present ideas could help us find such a d for this character, if one exists. In particular, see Proposition 6.2.

2. The main idea

Theorem 2.1. If $m(\chi)<\infty$, then for any $t \in(0,1)$ we have

$$
L(1, \chi)>G(t, \chi):=\sum_{n \geq 1} \frac{\chi(n)}{n} t^{n}=\log (1-t)+\sum_{n \geq 1} \frac{1+\chi(n)}{n} t^{n} .
$$

Proof. By induction on $k \geq 0$, for $t \in(0,1)$, we have

$$
t G^{\prime}(t, \chi)=\sum_{n \geq 1} \chi(n) t^{n}=(1-t)^{k} \sum_{n \geq 1} \chi_{k}(n) t^{n} .
$$

Consequently, if $m(\chi)<\infty$, then $G^{\prime}(t, \chi)>0$ and $t \mapsto G(t, \chi)$ increases with $t \in(0,1)$. Since $\lim _{1-} G(t, \chi)=L(1, \chi)$, by Abel's theorem, we obtain $L(1, \chi)>G(t, \chi)$ for any $t \in(0,1)$.

We derive explicit results from Theorem [2.1. The key point is that $(1+\chi(n)) / 2 \geq 0$ for $n \geq 1$, which yields

$$
\begin{equation*}
G(t, \chi) \geq \log (1-t)+\sum_{n \in E} \frac{1+\chi(n)}{n} t^{n} \quad(t \in(0,1)) \tag{2}
\end{equation*}
$$

for any set E (finite or infinite) of positive integers. In particular, by taking $E=\{1\}$, we have $G(t, \chi) \geq f(t):=\log (1-t)+2 t$. Since $f^{\prime}(t)=$ $(1-2 t) /(1-t)$, we choose $t_{0}=1 / 2$ and find that $F\left(t_{0}, \chi\right) \geq f\left(t_{0}\right)=1-\log 2$. Hence, by Theorem 2.1, we have a very short proof of the following result obtained in Lou03:

Corollary 2.2. If $L(1, \chi) \leq 1-\log 2=0.306852 \ldots$, then $m(\chi)=\infty$.
3. Taking into account prime numbers p for which $\chi(p)=0$. In some cases, we can readily improve upon this result. For example, let us assume that χ ranges over the characters for which $\chi(2)=0$. Then $\chi(1)=1$, $\chi(n)=0$ for $n \geq 2$ even and $\chi(n) \geq-1$ otherwise. Hence, for $t \in(0,1)$,

$$
G(t, \chi) \geq F_{2}(t):=\log (1-t)+2 t+\sum_{m \geq 1} \frac{1}{2 m} t^{2 m}=2 t+\frac{1}{2} \log \left(\frac{1-t}{1+t}\right) .
$$

More generally, assume that $\chi(p)=0$ for all the prime divisors $p \geq 2$ of a squarefree integer $d_{0}>1$. Then $(1+\chi(n)) / n=1 / n$ for $\operatorname{gcd}\left(n, d_{0}\right)>1$. Hence,

$$
\log (1-t)+\sum_{\operatorname{gcd}\left(n, d_{0}\right)>1} \frac{1+\chi(n)}{n} t^{n}=\sum_{\delta \mid d_{0}} \frac{\mu(\delta)}{\delta} \log \left(1-t^{\delta}\right) \quad(t \in(0,1)) .
$$

Since $\chi(1)=1$, using (2) with $E=\{1\} \cup\left\{n \geq 1 ; \operatorname{gcd}\left(n, d_{0}\right)>1\right\}$ we obtain

$$
\begin{equation*}
G(t, \chi) \geq F_{d_{0}}(t):=2 t+\sum_{\delta \mid d_{0}} \frac{\mu(\delta)}{\delta} \log \left(1-t^{\delta}\right) \quad(t \in(0,1)) . \tag{3}
\end{equation*}
$$

Set $P_{d_{0}}(t):=\left(1-t^{d}\right) F_{d_{0}}^{\prime}(t) \in \mathbb{Z}[X]$. Both $F_{d_{0}}(t)$ and $P_{d_{0}}(t)$ can be computed inductively by using $F_{1}(t)=\log (1-t)+2 t, P_{1}(t)=1-2 t$,

$$
F_{d_{0} p}(t)=F_{d_{0}}(t)-\frac{1}{p} F_{d_{0}}\left(t^{p}\right)+\frac{2}{p} t^{p}
$$

and

$$
P_{d_{0} p}(t)=\frac{1-t^{d p}}{1-t^{d}} P_{d_{0}}(t)-t^{p-1} P_{d_{0}}\left(t^{p}\right)+2\left(1-t^{d_{0} p}\right) t^{p-1},
$$

where $p \geq 2$ is a prime that does not divide $d \geq 1$.
For $d_{0}=2$, we obtain $P_{2}(t)=1-2 t^{2}$, whose only root in $(0,1)$ is $t_{0}=1 / \sqrt{2}$, for which $F_{2}\left(t_{0}\right)=\sqrt{2}-\log (1+\sqrt{2})=0.532839 \ldots$. Hence, if 2 divides f and $L(1, \chi) \leq \sqrt{2}-\log (1+\sqrt{2})=0.532839 \ldots$, then $m(\chi)=\infty$ (to be improved in Proposition 5.3).

For $d_{0}=6=2 \cdot 3$, we obtain $P_{6}(t)=1-t^{4}-2 t^{6}$, whose only root in $(0,1)$ is $t_{0}=0.810 \ldots$, for which $F_{6}\left(t_{0}\right)=0.690357 \ldots$ (to be improved in Proposition 5.5). More generally, we have:

d_{0}	t_{0}	$F_{d}\left(t_{0}\right)$	
30	$=2 \cdot 3 \cdot 5$	0.8586	$0.772333 \ldots$
210	$=2 \cdot 3 \cdot 5 \cdot 7$	0.8886	$0.828093 \ldots$
2310	$=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$	0.9059	$0.855750 \ldots$
30030	$=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$	0.9198	$0.879331 \ldots$
510510	$=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$	0.9296	$0.894912 \ldots$
9699690	$=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$	0.9380	$0.909271 \ldots$
223092870	$=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$	0.9444	$0.920087 \ldots$
6469693230	$=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$	0.9491	$0.927153 \ldots$

In the next section, we will generalize this approach to improve upon (3) (see (9)): given two finite disjoint sets \mathcal{P}_{0} and \mathcal{P}_{1} of prime numbers, we want to find a lower bound on $G(t, \chi)$ where χ ranges over all the real and non-principal Dirichlet characters such that $\chi(p)=0$ if $p \in \mathcal{P}_{0}$ and $\chi(p)=+1$ if $p \in \mathcal{P}_{1}$.
4. Taking into account any finite set of prime numbers. Fix three finite pairwise disjoint (possibly empty) sets $\mathcal{P}=\left\{p_{k} ; 1 \leq k \leq m\right\}$, \mathcal{P}_{0} and \mathcal{P}_{1} of m, m_{0} and m_{1} prime numbers. Set $d_{0}=\prod_{p \in \mathcal{P}_{0}} p \geq 1$. Let χ range over the real and non-principal Dirichlet characters for which $\chi(p)=0$ if $p \in \mathcal{P}_{0}$ and $\chi(p)=+1$ if $p \in \mathcal{P}_{1}$. Fix $N \geq 1$. Set $l_{N}=$ $\operatorname{lcm}\{n ; 1 \leq n \leq N\}$. Let $E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right)$ denote the set of those positive integers less than or equal to N whose prime divisors lie in $\mathcal{P} \cup \mathcal{P}_{1}$. Hence, $1 \in E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right)$. Using (2) with $E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right) \cup\left\{n \geq 1 ; \operatorname{gcd}\left(n, d_{0}\right)>1\right\}$, we obtain

$$
\begin{equation*}
G(t, \chi) \geq \sum_{\delta \mid d_{0}} \frac{\mu(\delta)}{\delta} \log \left(1-t^{\delta}\right)+\sum_{n \in E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right)} \frac{1+\chi(n)}{n} t^{n} \quad(t \in(0,1)) \tag{4}
\end{equation*}
$$

Now, the idea is to prove that the worst case in (4) is when χ takes on the value -1 on as many prime numbers as possible, i.e. when $\chi(p)=-1$ for $p \in \mathcal{P}$.

Let $\lambda_{\mathcal{P}_{1}}$ denote the completely multiplicative arithmetic function defined on the prime numbers by

$$
\lambda_{\mathcal{P}_{1}}(p)= \begin{cases}-1 & \text { if } p \notin \mathcal{P}_{1} \tag{5}\\ +1 & \text { if } p \in \mathcal{P}_{1}\end{cases}
$$

Finally, for $\left(x_{1}, \ldots, x_{m}\right) \in\{-1,0,1\}^{m}$, let $X_{x_{1}, \ldots, x_{m}, \mathcal{P}_{1}}$ denote the completely multiplicative arithmetic function defined on the prime numbers by

$$
X_{x_{1}, \ldots, x_{m}, \mathcal{P}_{1}}(p)= \begin{cases}x_{k} & \text { if } p=p_{k} \in \mathcal{P} \\ +1 & \text { if } p \in \mathcal{P}_{1}\end{cases}
$$

Set

$$
P_{N}\left(x_{1}, \ldots, x_{m}, \mathcal{P}, \mathcal{P}_{1} ; t\right):=l_{N} \sum_{n \in E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right)} \frac{1+X_{x_{1}, \ldots, x_{m}, \mathcal{P}_{1}}(n)}{n} t^{n} \in \mathbb{Z}[X]
$$

In particular,

$$
\begin{equation*}
P_{N}\left(-1, \ldots,-1, \mathcal{P}, \mathcal{P}_{1} ; t\right)=l_{N} \sum_{n \in E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right)} \frac{1+\lambda_{\mathcal{P}_{1}}(n)}{n} t^{n} \in \mathbb{Z}[X] \tag{6}
\end{equation*}
$$

For any real and non-principal Dirichlet character χ, we can choose the x_{k} 's so that $x_{k}=\chi\left(p_{k}\right)$ for $1 \leq k \leq m$, which yields

$$
\sum_{n \in E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right)} \frac{1+\chi(n)}{n} t^{n}=\frac{1}{l_{N}} P_{N}\left(x_{1}, \ldots, x_{m}, \mathcal{P}, \mathcal{P}_{1} ; t\right)
$$

Hence, we deduce that for any real and non-principal Dirichlet characters χ for which $\chi(p)=0$ if $p \in \mathcal{P}_{0}$ and $\chi(p)=+1$ if $p \in \mathcal{P}_{1}$, any $t \in(0,1)$, any $m \geq 1$ and any $N \geq 1$ we have
$G(t, \chi) \geq \sum_{\delta \mid d_{0}} \frac{\mu(\delta)}{\delta} \log \left(1-t^{\delta}\right)+\frac{1}{l_{N}} \min _{\left(x_{1}, \ldots, x_{m}\right) \in\{-1,0,1\}^{m}} P_{N}\left(x_{1}, \ldots, x_{m}, \mathcal{P}, \mathcal{P}_{1} ; t\right)$.
Now, by Theorem 2.1, we want to compute the greatest value as t ranges in $(0,1)$ of the right hand side of (7). Of course, we could perform some numerical analysis to evaluate the greatest value as t ranges in $(0,1)$ of each of the 3^{m} functions

$$
\sum_{\delta \mid d_{0}} \frac{\mu(\delta)}{\delta} \log \left(1-t^{\delta}\right)+\frac{1}{l_{N}} P_{N}\left(x_{1}, \ldots, x_{m}, \mathcal{P}, \mathcal{P}_{1} ; t\right)
$$

as $\left(x_{1}, \ldots, x_{m}\right)$ ranges over $\{-1,0,1\}^{m}$. However, for most choices of $\mathcal{P}, \mathcal{P}_{1}$ and N, Lemma 4.1 below enables us to greatly simplify this task, namely, to prove that for any $t \in(0,1)$ we have

$$
\begin{equation*}
\min _{\left(x_{1}, \ldots, x_{m}\right) \in\{-1,0,1\}^{m}} P_{N}\left(x_{1}, \ldots, x_{m}, \mathcal{P}, \mathcal{P}_{1} ; t\right)=P_{m, N}\left(-1, \ldots,-1, \mathcal{P}, \mathcal{P}_{1} ; t\right) \tag{8}
\end{equation*}
$$

For example, it readily shows that this holds true for $N=1000, m=10$, $\mathcal{P}=\{2,3,5,7,11,13,17,19,23,29\}$ and $\mathcal{P}_{0}=\mathcal{P}_{1}=\emptyset$.

LEMMA 4.1. Let $P(t)=\sum_{k=1}^{N} p_{k} t^{k}$ and $Q(t)=\sum_{k=1}^{N} q_{k} t^{k}$. Set $\Delta_{l}=$ $\sum_{k=1}^{l}\left(p_{k}-q_{k}\right)$. If $\Delta_{l} \geq 0$ for $1 \leq l \leq N$, then $P(t) \geq Q(t)$ for $t \in[0,1]$.

Proof. Set $\Delta_{0}=0$. Then

$$
P(t)-Q(t)=\sum_{k=1}^{N}\left(\Delta_{k}-\Delta_{k-1}\right) t^{k}=\left(\sum_{k=1}^{n-1} \Delta_{k}\left(t^{k}-t^{k+1}\right)\right)+\Delta_{N} t^{N}
$$

Using (7), (8) and (6) we finally obtain a general improvement on (3):
Proposition 4.2. Fix three finite pairwise disjoints (possibly empty) sets $\mathcal{P}, \mathcal{P}_{0}$ and \mathcal{P}_{1} of m, m_{0} and m_{1} prime numbers. Set $d_{0}=\prod_{p \in \mathcal{P}_{0}} p \geq 1$. Let $\lambda_{\mathcal{P}_{1}}$ be as in (5). Fix $N \geq 1$ and set $l_{N}=\operatorname{lcm}\{n ; 1 \leq n \leq N\}$. Let $E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right) \ni 1$ denote the set of all positive integers $\leq N$ whose prime divisors lie in $\mathcal{P} \cup \mathcal{P}_{1}$.

Assume that the following hypothesis (H) holds true: as $\left(x_{1}, \ldots, x_{m}\right)$ runs over the 3^{m} elements of $\{-1,0,+1\}^{m}$, the rational integers

$$
\Delta_{l}:=\sum_{\substack{n=1 \\ n \in E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right)}}^{l} \frac{l_{N}}{n}\left(X_{x_{1}, \ldots, x_{m}, \mathcal{P}_{1}}(n)-\lambda_{\mathcal{P}_{1}}(n)\right) \in \mathbb{Z}
$$

are non-negative for $1 \leq l \leq N$.
Then, for any real and non-principal Dirichlet characters χ for which $\chi(p)=0$ if $p \in \mathcal{P}_{0}$ and $\chi(p)=+1$ if $p \in \mathcal{P}_{1}$, we have $G(t, \chi) \geq F(t)$ for $t \in(0,1)$, where

$$
\begin{equation*}
F(t)=F_{N}\left(t, \mathcal{P}, \mathcal{P}_{0}, \mathcal{P}_{1}\right):=\sum_{\delta \mid d_{0}} \frac{\mu(\delta)}{\delta} \log \left(1-t^{\delta}\right)+2 \sum_{n \in E} \frac{1}{n} t^{n} \tag{9}
\end{equation*}
$$

and $E:=\left\{n \in E_{N}\left(\mathcal{P}, \mathcal{P}_{1}\right) ; \lambda_{\mathcal{P}_{1}}(n)=+1\right\} \ni 1$.
Moreover, $\left(1-t^{d}\right) F^{\prime}(t) \in \mathbb{Z}[t]$.
We would like to emphasize that, in order to use Proposition 4.2, we only have to check that the $3^{m} N$ rational integers Δ_{l} are not negative, which in principle could be done by hand. Moreover, if $m=0$, i.e. if $\mathcal{P}=\emptyset$, then hypothesis (H) clearly holds true.
5. Proof of Theorem 1.2. Taking $m=8, \mathcal{P}=\{2,3,5,7,11,13,17,19\}$, $\mathcal{P}_{0}=\mathcal{P}_{1}=\emptyset$ and $N=40$, we obtain $E=\{1,4,6,9,10,14,15,16,21,22,24$, $25,26,33,34,35,36,38,39,40\}$. Using Prof. Kida's UBASIC on a PC, we checked in 10 seconds that Hypothesis (H) is satisfied. Hence, we obtain

$$
G(t, \chi) \geq F(t):=\log (1-t)+2 \sum_{n \in E} \frac{1}{n} t^{n}, \quad t \in(0,1)
$$

Choosing $t=t_{0}=0.670 \ldots$, the only real root in $(0,1)$ of $P(t):=(1-t) F^{\prime}(t)$ $=-1+2(1-t) \sum_{n \in E} t^{n-1}$, we obtain:

Proposition 5.1. $L(1, \chi) \leq F\left(t_{0}\right)=0.373043 \ldots$ implies $m(\chi)=\infty$.
Assume that $\chi(2)=+1$. Taking $m=7, \mathcal{P}=\{3,5,7,11,13,17,19\}$, $\mathcal{P}_{0}=\emptyset, \mathcal{P}_{1}=\{2\}$ and $N=60$, we obtain $E=\{1,2,4,8,9,15,16,18,21,25$,
$30,32,33,35,36,39,42,49,50,51,55,57,60\}$ and

$$
G(t, \chi) \geq F(t):=\log (1-t)+2 \sum_{n \in E} \frac{1}{n} t^{n}, \quad t \in(0,1)
$$

Choosing $t=t_{0}=0.859 \ldots$, the only real root in $(0,1)$ of $P(t):=(1-t) F^{\prime}(t)$ $=-1+2(1-t) \sum_{n \in E} t^{n-1}$, we obtain:

Proposition 5.2. $\chi(2)=+1$ and $L(1, \chi) \leq F\left(t_{0}\right)=0.939751 \ldots$ imply $m(\chi)=\infty$.

Assume that $\chi(2)=0$. Taking $m=7, \mathcal{P}=\{3,5,7,11,13,17,19\}, \mathcal{P}_{0}=\{2\}$, $\mathcal{P}_{1}=\emptyset$ and $N=60$, we obtain $E=\{1,9,15,21,25,33,35,39,49,51,55,57\}$ and

$$
G(t, \chi) \geq F(t):=\frac{1}{2} \log \left(\frac{(1-t)^{2}}{1-t^{2}}\right)+2 \sum_{n \in E} \frac{1}{n} t^{n}, \quad t \in(0,1)
$$

Choosing $t=t_{0}=0.741 \ldots$, the only real root in $(0,1)$ of $P(t):=\left(1-t^{2}\right) F^{\prime}(t)$ $=-1+2\left(1-t^{2}\right) \sum_{n \in E} t^{n-1}$, we obtain:

Proposition 5.3. $\chi(2)=0$ and $L(1, \chi) \leq F\left(t_{0}\right)=0.545986 \ldots$ imply $m(\chi)=\infty$.

Assume that $\chi(3)=0$. Taking $m=9, \mathcal{P}=\{2,5,7,11,13,17,19,23,29\}$, $\mathcal{P}_{0}=\{3\}, \mathcal{P}_{1}=\emptyset$ and $N=60$, we obtain $E=\{1,4,10,14,16,22,25,26,34$, $35,38,46,49,55,58\}$ and

$$
G(t, \chi) \geq F(t):=\frac{1}{3} \log \left(\frac{(1-t)^{3}}{1-t^{3}}\right)+2 \sum_{n \in E} \frac{1}{n} t^{n}, \quad t \in(0,1)
$$

Choosing $t=t_{0}=0.762 \ldots$, the only real root in $(0,1)$ of $P(t):=\left(1-t^{3}\right) F^{\prime}(t)$ $=-1-t+2\left(1-t^{3}\right) \sum_{n \in E} t^{n-1}$, we obtain:

Proposition 5.4. $\chi(3)=0$ and $L(1, \chi) \leq F\left(t_{0}\right)=0.470215 \ldots$ imply $m(\chi)=\infty$.

Assume that $\chi(2)=\chi(3)=0$. Taking $m=4, \mathcal{P}=\{5,7,11,13\}, \mathcal{P}_{0}=$ $\{2,3\}, \mathcal{P}_{1}=\emptyset$ and $N=65$, we obtain $E=\{1,25,35,49,55,65\}$ and

$$
G(t, \chi) \geq F(t):=\frac{1}{6} \log \left(\frac{(1-t)^{6}\left(1-t^{6}\right)}{\left(1-t^{2}\right)^{3}\left(1-t^{3}\right)^{2}}\right)+2 \sum_{n \in E} \frac{1}{n} t^{n}, \quad t \in(0,1)
$$

Choosing $t=t_{0}=0.812 \ldots$, the only real root in $(0,1)$ of $P(t):=\left(1-t^{6}\right) F^{\prime}(t)$ $=-1-t^{4}+2\left(1-t^{6}\right) \sum_{n \in E} t^{n-1}$, we obtain:

Proposition 5.5. $\chi(2)=\chi(3)=0$ and $L(1, \chi) \leq F\left(t_{0}\right)=0.690830 \ldots$ imply $m(\chi)=\infty$.

Finally, assume that $\chi(2)=\chi(3)=+1$. Taking $m=0, \mathcal{P}=\mathcal{P}_{0}=\emptyset$, $\mathcal{P}_{1}=\{2,3\}$ and $N=27$, we obtain $E=\{1,2,3,4,6,8,9,12,16,18,24,25,27\}$
and

$$
G(t, \chi) \geq F(t):=\log (1-t)+2 \sum_{n \in E} \frac{1}{n} t^{n}, \quad t \in(0,1)
$$

Choosing $t=t_{0}=0.928 \ldots$, the only real root in $(0,1)$ of $P(t):=(1-t) F^{\prime}(t)$ $=-1+2(1-t) \sum_{n \in E} t^{n-1}$, we obtain:

Proposition 5.6. $\chi(2)=\chi(3)=+1$ and $L(1, \chi) \leq F\left(t_{0}\right)=1.624353 \ldots$ imply $m(\chi)=\infty$.
6. On the Generalized Chowla Hypothesis. For χ a character mod f and $d \geq 1$, let $\chi^{(d)}$ be the character $\bmod f d$ induced by χ. We say that the Generalized Chowla Hypothesis holds true for χ if there exists $d \geq 1$ such that $m\left(\chi^{(d)}\right)<\infty$, in which case $d_{\chi} \geq 1$ denotes the least such $d \geq 1$. Otherwise, we set $d_{\chi}=0$. Hence, $d_{\chi}=1$ if and only if $m(\chi)<\infty$. Let also $2 \leq p_{1}(\chi)<p_{2}(\chi)<\cdots$ be the sorted prime numbers in the set $\{p ; p \geq 2$ prime and $\chi(p)=-1\}$. Set $D_{0}=1$ and $D_{t}=D_{t}(\chi)=\prod_{k=1}^{t} p_{k}(\chi)$ for $t \geq 1$. Set $D_{\chi}=D_{t_{\chi}}$ where $t_{\chi}:=\min \left\{t \geq 0 ; m\left(\chi^{\left(D_{t}\right)}\right)<\infty\right\}$ if this set is not empty. Otherwise, set $D_{\chi}=0$.

Lemma 6.1. Let ϕ be a non-principal character. Let $p \geq 2$ be a prime.
(1) If $\phi(p)=0$, then $m(\phi)=m\left(\phi^{(p)}\right)$.
(2) If $m(\phi)=\infty$ and $\phi(p) \neq-1$, then $m\left(\phi^{(p)}\right)=\infty$.
(3) If $m(\phi)<\infty$ and $\phi(p) \neq+1$, then $m\left(\phi^{(p)}\right)<\infty$.

Proof. Assume that $\phi(p)=0$. Then $\phi(n)=\phi^{(p)}(n)$ for any $n \geq 1$. Hence $\phi_{k}=\phi_{k}^{(p)}$ for any $k \geq 1$, and $m(\phi)=m\left(\phi^{(p)}\right)$.

Since $G(0, \phi)=0$ and $G^{\prime}(0, \phi)=1$, if $m(\phi)=\infty$ then we can define $t_{\phi}=\min \{t \in(0,1) ; G(t, \phi)=0\}$. We have $G(t, \phi)>0$ for $t \in\left(0, t_{\phi}\right)$. Since $\phi^{(p)}(n)=\phi(n)$ if p does not divide n and $\phi^{(p)}(n)=0=\phi(n)-\phi(n)$ if p divides n, we obtain

$$
G\left(t, \phi^{(p)}\right)=\sum_{n \geq 1} \phi(n) t^{n}-\sum_{n \geq 1 \text { and } p \mid n} \phi(n) t^{n}=G(t, \phi)-\phi(p) G\left(t^{p}, \phi\right)
$$

If $m(\phi)=\infty$ and $\phi(p) \neq-1$, then $G\left(t_{\phi}, \phi\right)=0$ and $G\left(t_{\phi}, \phi^{(p)}\right) \leq G\left(t_{\phi}, \phi\right) \leq 0$, hence $m\left(\phi^{(p)}\right)=\infty$. If $m(\phi)<\infty$ and $\phi(p) \neq+1$, then $G(t, \phi)>0$ for $t \in(0,1)$ and $G\left(t, \phi^{(p)}\right) \geq G(t, \phi)>0$ for $t \in(0,1)$, hence $m\left(\phi^{(p)}\right)<\infty$.

Proposition 6.2. If $d_{\chi}>1$, then d_{χ} is squarefree and such that $p \mid d_{\chi}$ implies $\chi(p)=-1$. Moreover, the Generalized Chowla Hypothesis holds true for χ if and only there exists $t \geq 0$ such that $m\left(\chi^{\left(D_{t}\right)}\right)<\infty$.

Proof. Let p be any prime divisor of $d_{\chi}>1$, write $d_{\chi}=d p$ and set $\phi=\chi^{(d)}$. Hence $\phi^{(p)}=\chi^{\left(d_{\chi}\right)}$. If p divides d, then $\phi(p)=0$ and $m\left(\chi^{(d)}\right)=$ $m\left(\chi^{\left(d_{\chi}\right)}\right)<\infty$ (by Lemma 6.1(1)) and $1 \leq d<d_{\chi}$, a contradiction. Hence,
d_{χ} is squarefree, which implies $\phi(p)=\chi(p)$. If $\chi(p) \neq-1$, then $\phi(p) \neq-1$ and $m\left(\chi^{(d)}\right)<\infty$ (by Lemma 6.1(2)) and $1 \leq d<d_{\chi}$, a contradiction. Finally, by Lemma 6.1 (3), if $d_{\chi} \neq 0$ then $m\left(\chi^{D_{t}}\right)<\infty$ as soon as d_{χ} divides D_{t}, i.e. as soon as t is large enough.

Hence, we have $d_{\chi} \neq 0 \Leftrightarrow D_{\chi} \neq 0$ and $d_{\chi} \leq D_{\chi}$. For the real and odd character $\chi \bmod f=43$ we have $\chi(2)=\chi(3)=-1, m(\chi)=\infty$, $m\left(\chi^{(2)}\right)<\infty$ and $m\left(\chi^{(3)}\right)<\infty$ (use Sturm's algorithm). Hence, $d_{\chi}=2$ but $m\left(\chi^{(3)}\right)<\infty$. This example shows that if $d_{\chi} \neq 0$, then we cannot expect d_{χ} to have the nice property that $m\left(\chi^{(d)}\right)<\infty$ if and only if $d_{\chi} \mid d$, even when d is restricted to be a squarefree integer such that $p \mid d_{\chi}$ implies $\chi(p)=-1$.
7. A computational challenge. Let χ be the real and odd Dirichlet character $\bmod 163$. Hence, $\chi(p)=-1$ for $p \leq 37$ a prime number. Set $E_{\chi}:=\{d \geq 2 ; d$ squarefree and $p \mid d$ implies $\chi(p)=-1\}$.

We have $L(1, \chi)=\pi / \sqrt{163}=0.246068 \ldots$. Hence, $m(\chi)=\infty$, by Corollary 2.2 .

The challenges are (i) to computationally prove that $d_{\chi} \neq 0$, and (ii) to find either d_{χ} or D_{χ}.

We have not found any of these two invariants, but we want to present the reader who would like to tackle their determination with some ideas to speed up his computation: we explain how one can easily get rid of many d 's when d ranges over the positive integers less than or equal to a prescribed upper bound B.
7.1. Speeding up the search for d_{χ}. Let B be given. Set $E(B):=$ $\{d \geq 2 ; d \leq B$ and d squarefree $\}$ and let d range in $E_{\chi}(B):=\left\{d \in E_{\chi} ;\right.$ $d \leq B\}$. If $m\left(\chi^{(d)}\right)<\infty$, where $d \in E_{\chi}$, then $L\left(1, \chi^{(d)}\right)=\psi(d) L(1, \chi)>$ 0.373043 , where

$$
\psi(d):=\prod_{p \mid d}\left(1+p^{-1}\right) .
$$

Hence, we must have $\psi(d)>0.373043 \sqrt{163} / \pi=1.516012 \ldots$ In particular, d cannot be a prime number. Set $E_{\chi}^{\prime}(B):=\left\{n \in E_{\chi}(B) ; \psi(d)>1.516012\right\}$. Now, noticing that $\chi(2)=-1$, we can consider two cases:

$$
\psi(d) \begin{cases}0.373043 \sqrt{163} / \pi>1.516012 & \text { if } \operatorname{gcd}(d, 2)=1, \\ 0.545986 \sqrt{163} / \pi>2.218837 & \text { if } \operatorname{gcd}(d, 2)=1,\end{cases}
$$

and let $E_{\chi}^{\prime \prime}(B)$ denote the set of the d 's in $E_{\chi}(B)$ that satisfy these conditions.

Finally, noticing that $\chi(2)=\chi(3)=-1$, we can consider four cases:

$$
\psi(d) \begin{cases}0.373043 \sqrt{163} / \pi>1.516012 & \text { if } \operatorname{gcd}(d, 6)=1 \\ 0.545986 \sqrt{163} / \pi>2.218837 & \text { if } \operatorname{gcd}(d, 6)=2 \\ 0.470215 \sqrt{163} / \pi>1.910910 & \text { if } \operatorname{gcd}(d, 6)=3 \\ 0.690830 \sqrt{163} / \pi>2.807469 & \text { if } \operatorname{gcd}(d, 6)=6\end{cases}
$$

and let $E_{\chi}^{\prime \prime \prime}(B)$ denote the set of the d's in $E_{\chi}(B)$ that satisfy these conditions.

If we had extended our range of computation in Theorem 1.2, we could have dealt with a finer distinction of cases. The following table shows that the finer our distinction of cases, the shorter our list of d 's to test to be able to compute d_{χ} :

B	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\# E(B)$	607	6082	60793	607925	6079290	60792693
$\# E_{\chi}(B)$	387	3205	27806	250290	2298910	21386754
$\# E_{\chi}^{\prime}(B)$	122	947	8453	72324	655508	6070111
$\# E_{\chi}^{\prime \prime}(B)$	42	289	2442	20924	187151	1717406
$\# E_{\chi}^{\prime \prime \prime}(B)$	1	20	139	1055	8785	76003

7.2. On the size of D_{χ}. As for D_{χ}, notice that $m\left(\chi^{\left(D_{t}\right)}\right)<\infty$ if and only if $t \geq t_{\chi}$, by Lemma 6.1(3). Since $\chi(p)=-1$ for $p \leq 29$ a prime, the $D_{t}=D_{t}(\chi)$'s for $3 \leq t \leq 10$ are listed in the first column of the table of Section 3. Since

$$
L\left(1, \chi^{\left(D_{8}\right)}\right)=\psi\left(D_{8}\right) L(1, \chi)=\frac{165888 \pi}{46189 \sqrt{163}}=0.883756 \ldots<0.909271
$$

we have $m\left(\chi^{\left(D_{8}\right)}\right)=\infty$, by Section 3. Hence, $t_{\chi} \geq 9$ and D_{9} divides D_{χ}. Moreover, $L\left(1, \chi^{\left(D_{9}\right)}\right)=\psi\left(D_{9}\right) L(1, \chi)=\frac{3981312 \pi}{1062347 \sqrt{163}}=0.922180 \ldots$ is not less than 0.920087 . However, when applying (3) with $d=D_{9}$ to the character $\chi^{\left(D_{9}\right)}$ we may use the fact that $\chi^{\left(D_{9}\right)}(41)=\chi(41)=+1$ to add a term $2 t^{41} / 41$ to the right hand side of (3), which enables us to replace the $F_{d}\left(t_{0}\right)=$ 0.920087 of the eighth line of this table by the larger value 0.924760 . Hence, $m\left(\chi^{\left(D_{9}\right)}\right)=\infty, t_{\chi} \geq 10$ and $D_{10}=D_{10}(\chi)=6469693230$ divides D_{χ}. Notice that $f:=163 D_{10} \approx 10^{12}$.

REFERENCES

[BM] R. C. Baker and H. L. Montgomery, Oscillations of quadratic L-functions, in: Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math. 85, Birkhäuser Boston, Boston, MA, 1990, 23-40.
[BPW] P. T. Bateman, G. B. Purdy and S. S. Wagstaff Jr., Some numerical results on Fekete polynomials, Math. Comp. 29 (1975), 7-23.
[Cho] S. Chowla, Note on Dirichlet's L-functions, Acta Arith. 1 (1935), 113-114.
[CD] S. Chowla and M. J. DeLeon, A note on the Hecke hypothesis and the determination of imaginary quadratic fields with class-number 1, J. Number Theory 6 (1974), 261-263.
[CDH] S. Chowla, M. J. DeLeon and P. Hartung, On a hypothesis implying the nonvanishing of Dirichlet's L-series $L(s, \chi)$ for $s>0$ and real odd characters χ, J. Reine Angew. Math. 262/263 (1973), 415-419.
[CE] S. Chowla and P. Erdős, A theorem on the distribution of the values of Lfunctions, J. Indian Math. Soc. (N.S.) 15 (1951), 11-18.
[CH] S. Chowla and P. Hartung, A note on the hypothesis that $L(s, \chi)>0$ for all real non-principal characters χ and for all $s>0$, J. Number Theory 6 (1974), 271-275.
[E11] P. D. T. A. Elliott, The distribution of the quadratic class number, Litovsk. Mat. Sb. 10 (1970), 189-197.
[FP] M. Fekete und G. Pólya, Über ein Problem von Laguerre, Rend. Circ. Mat. Palermo 34 (1912), 89-120.
[Heil] H. Heilbronn, On real characters, Acta Arith. 2 (1937), 212-213.
[Lou02] S. Louboutin, Computation of class numbers of quadratic number fields, Math. Comp. 71 (2002), 1735-1743.
[Lou03] S. Louboutin, Note on a hypothesis implying the non-vanishing of Dirichlet Lseries $L(s, \chi)$ for $s>0$ and real characters χ, Colloq. Math. 96 (2003), 207-212.
[Lou04] S. Louboutin, Remarks on S. Chowla's hypothesis implying that $L(s, \chi)>0$ for $s>0$ and for real characters χ, in: Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Inst. Comm. 41, Amer. Math. Soc., Providence, RI, 2004, 283-291.
[Ros] J. B. Rosser, Real roots of real Dirichlet L-series, J. Res. Nat. Bur. Standards 45 (1950), 501-514.
S. Louboutin

Institut de Mathématiques de Luminy
UMR 6206
163, avenue de Luminy
Case 907
13288 Marseille Cedex 9, France
E-mail: stephane.louboutin@univ-amu.fr

[^0]: 2010 Mathematics Subject Classification: Primary 11M20.
 Key words and phrases: L-function, real character, mean values, real zero, Fekete polynomial.

