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Abstract. We investigate a notion of relative operator entropy, which develops the
theory started by J. I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341–348]. For two
finite sequences A = (A1, . . . , An) and B = (B1, . . . , Bn) of positive operators acting on
a Hilbert space, a real number q and an operator monotone function f we extend the
concept of entropy by setting

Sf
q (A |B) :=

n∑
j=1

A
1/2
j (A

−1/2
j BjA

−1/2
j )qf(A

−1/2
j BjA

−1/2
j )A

1/2
j ,

and then give upper and lower bounds for Sf
q (A |B) as an extension of an inequality due

to T. Furuta [Linear Algebra Appl. 381 (2004), 219–235] under certain conditions. As an
application, some inequalities concerning the classical Shannon entropy are deduced.

1. Introduction and preliminaries. Throughout the paper, let B(H )
denote the algebra of all bounded linear operators acting on a complex
Hilbert space (H , 〈·, ·〉) and I is the identity operator. When dim H = n,
we identify B(H ) with the full matrix algebra Mn(C) of n × n matrices
with complex entries and denote its identity by In. A self-adjoint operator
A ∈ B(H ) is called positive, written A ≥ 0, if 〈Ax, x〉 ≥ 0 for all x ∈H . An
operator A is said to be strictly positive (denoted by A > 0) if it is positive
and invertible. For self-adjoint operators A,B ∈ B(H ), we write A ≤ B if
B −A ≥ 0.

Let f be a continuous real valued function defined on an interval J . The
function f is called operator decreasing if B ≤ A implies f(A) ≤ f(B) for
all A,B ∈ B(H ) with spectra in J . The function f is said to be operator
concave on J if

λf(A) + (1− λ)f(B) ≤ f(λA+ (1− λ)B)

for all self-adjoint A,B ∈ B(H ) with spectra in J and all λ ∈ [0, 1].
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In 1850 Clausius [Ann. Physik (2) 79 (1850), 368–397, 500–524] intro-
duced the notion of entropy in thermodynamics. Since then several ex-
tensions and reformulations have been developed in various disciplines (cf.
[ME, LR, L, NU]). The so-called entropy inequalities have been investigated
by several authors (see [BLP, BS, F2] and references therein).

A relative operator entropy of strictly positive operators A,B was intro-
duced in noncommutative information theory by Fujii and Kamei [FK] by

S(A |B) = A1/2 log(A−1/2BA−1/2)A1/2.

When A is positive, one may set S(A |B) := limε→+0 S(A+εI |B) if the limit
exists in the strong operator topology. In the same paper, it is shown that
S(A |B) ≤ 0 if A ≥ B. There is an analogous notion called the perspective
function (see [E, CK]) If f : [0,∞)→ R is an operator convex function, then
the perspective function g associated to f is defined by

g(B,A) = A1/2f(A−1/2BA−1/2)A1/2

for any self-adjoint operator B and any strictly positive operator A.

One can consider a more general case. Let B̃ = (B1, . . . , Bn) and Ã =
(A1, . . . , An) be n-tuples of self-adjoint and strictly positive operators, re-
spectively. Then the noncommutative f-divergence functionalΘ is defined by

Θ(B̃, Ã) =
n∑
i=1

A
1/2
i f(A

−1/2
i BiA

−1/2
i )A

1/2
i .

Next, recall that X \q Y is defined by X1/2(X−1/2Y X−1/2)qX1/2 for
any real q and any strictly positive operators X and Y . For p ∈ [0, 1], the
operator X \p Y coincides with the well-known p-power mean of X,Y .

Furuta [F1] defined a parametric extension of the operator entropy by

Sp(A |B) = A1/2(A−1/2BA−1/2)p log(A−1/2BA−1/2)A1/2,

where p∈ [0, 1] and A,B are strictly positive operators on a Hilbert space H ,
and proved some operator entropy inequalities: if {A1, . . . , An} and
{B1, . . . , Bn} are two sequences of strictly positive operators on a Hilbert
space H such that

∑n
j=1Aj \p Bj ≤ I, then

(1.1) log
[ n∑
j=1

(Aj \p+1 Bj) + t0

(
I −

n∑
j=1

Aj \p Bj

)]
− (log t0)

(
I −

n∑
j=1

Aj \p Bj

)
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≥
n∑
j=1

Sp(Aj |Bj)

≥ − log
[ n∑
j=1

(Aj \p−1 Bj) + t0

(
I−

n∑
j=1

Aj \p Bj

)]
+ (log t0)

(
I−

n∑
j=1

Aj \p Bj

)
for any fixed real number t0 > 0.

The object of this paper is to state an operator entropy inequality par-
allel to the main result of [F1] and refine some known operator entropy
inequalities.

2. Operator entropy inequality. The following notion is basic in our
work.

Definition 2.1. Assume that A = (A1, . . . , An) and B = (B1, . . . , Bn)
are finite sequences of strictly positive operators on a Hilbert space H .
For q ∈ R and an operator monotone function f : (0,∞) → [0,∞) the
generalized operator Shannon entropy is defined by

Sfq (A |B) :=
n∑
j=1

Sfq (Aj |Bj),

where

Sfq (Aj |Bj) = A
1/2
j (A

−1/2
j BjA

−1/2
j )qf(A

−1/2
j BjA

−1/2
j )A

1/2
j .

We recall that for q = 0, f(t) = log t and A,B > 0, we get the relative

operator entropy Sf0 (A |B) = A1/2 log(A−1/2BA−1/2)A1/2 = S(A |B). It is
interesting to point out that Sq(A |B) = −S1−q(B |A) for any real q, in
particular, S1(A |B) = −S(B |A). In fact, since Xf(X∗X) = f(XX∗)X for
every X ∈ B(H ) and every continuous function f on [0, ‖X‖2], considering
X = B1/2A−1/2 and f(t) = log t we get

Sq(A |B)= A1/2(A−1/2BA−1/2)q log(A−1/2BA−1/2)A1/2

= B1/2B−1/2A1/2(A−1/2BA−1/2)q log(A−1/2BA−1/2)A1/2B−1/2B1/2

= B1/2X∗−1(X∗X)q log(X∗X)X−1B1/2

= B1/2X−1
∗
(X−1X−1

∗
)−q log(X∗X)X−1B1/2

= B1/2(X−1
∗
X−1)1−q(X−1

∗
X−1)−1X−1

∗
log(X∗X)X−1B1/2

= B1/2(X−1
∗
X−1)1−qX log(X∗X)X−1B1/2

= B1/2(X−1
∗
X−1)1−q log(XX∗)XX−1B1/2

= −B1/2(X−1
∗
X−1)1−q log(X−1

∗
X−1)B1/2

= −B1/2(X∗−1X−1)1−q log(X∗−1X−1)B1/2 = −S1−q(B |A).

We need the following useful lemma.
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Lemma 2.2 ([F1, Proposition 3.1]). If f is a continuous real function on
an interval J , then the following conditions are equivalent:

(i) f is operator concave.
(ii) f(C∗XC + t0(I − C∗C)) ≥ C∗f(X)C + f(t0)(I − C∗C)) for any

operator C with ‖C‖ ≤ 1 and any self-adjoint operator X with
sp(X) ⊆ J , and for any fixed t0 ∈ J .

(iii) f(
∑n

j=1C
∗
jXjCj + t0(I −

∑n
j=1C

∗
jCj)) ≥

∑n
j=1C

∗
j f(Xj)Cj +

f(t0)(I −
∑n

j=1C
∗
jCj)) for any operators Cj with

∑n
j=1C

∗
jCj ≤ I

and self-adjoint operators Xj with sp(Xj) ⊆ J for j = 1, . . . , n, and
for any fixed t0 ∈ J .

For other equivalent conditions the reader may consult [FMPS, M] and
references therein. Using an idea of [F1] we prove the following result.

Theorem 2.3. Assume that f , A and B are as in Definition 2.1. Let∑n
j=1Aj =

∑n
j=1Bj = I and let f be operator concave. Then

f
[ n∑
j=1

(Aj\p+1Bj)+t0

(
I−

n∑
j=1

Aj\pBj

)]
−f(t0)

(
I−

n∑
j=1

Aj\pBj

)
≥ Sfp (A |B)

for all p ∈ [0, 1] and for any fixed t0 > 0, and

−f
[ n∑
j=1

(Aj\p−1Bj)+t0

(
I−

n∑
j=1

Aj\pBj

)]
+f(t0)

(
I−

n∑
j=1

Aj\pBj

)
≤ Sfp (A |B)

for all p ∈ [2, 3] and for any fixed t0 > 0.

Proof. Since
∑n

j=1Aj \qBj ≤ (
∑n

j=1Aj) \q (
∑n

j=1Bj) (see [FMPS, The-

orem 5.7]) for every q ∈ [0, 1], and
∑n

j=1Aj =
∑n

j=1Bj = I, we have

n∑
j=1

Aj \p Bj ≤ I.

Fix a positive real number t0. Since f is operator concave, we get

f
[ n∑
j=1

(Aj \p+1 Bj) + t0

(
I −

n∑
j=1

Aj \p Bj

)]
=f
[ n∑
j=1

((A
−1/2
j BjA

−1/2
j )p/2A

1/2
j )∗(A

−1/2
j BjA

−1/2
j )((A

−1/2
j BjA

−1/2
j )p/2A

1/2
j )

+ t0

(
I −

n∑
j=1

Aj \p Bj

)]
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≥
n∑
j=1

A
1/2
j (A

−1/2
j BjA

−1/2
j )p/2f(A

−1/2
j BjA

−1/2
j )(A

−1/2
j BjA

−1/2
j )p/2A

1/2
j

+ f(t0)
(
I −

n∑
j=1

Aj \p Bj

)
(by Lemma 2.2(iii))

=

n∑
j=1

A
1/2
j (A

−1/2
j BjA

−1/2
j )pf(A

−1/2
j BjA

−1/2
j )A

1/2
j + f(t0)

(
I −

n∑
j=1

Aj \p Bj

)
=

n∑
j=1

Sfp (Aj |Bj) + f(t0)
(
I −

n∑
j=1

Aj \p Bj

)
,

whence

f
[ n∑
j=1

(Aj \p+1 Bj) + t0

(
I −

n∑
j=1

Aj \p Bj

)]
≥

n∑
j=1

Sfp (Aj |Bj) + f(t0)
(
I −

n∑
j=1

Aj \p Bj

)
.

Following a similar argument, we obtain

f
[ n∑
j=1

(Aj \p−1 Bj) + t0

(
I −

n∑
j=1

Aj \p Bj

)]
≥

n∑
j=1

Sfp−2(Aj |Bj) + f(t0)
(
I −

n∑
j=1

Aj \p Bj

)
.

Thus

−f
[ n∑
j=1

(Aj \p−1 Bj) + t0

(
I −

n∑
j=1

Aj \p Bj

)]
+ f(t0)

(
I −

n∑
j=1

Aj \p Bj

)
≤ −Sfp−2(A |B).

Since f is a continuous nonnegative function, Xqf(X) ≥ 0 for every X ≥ 0
and q ∈ R. Hence

(A
−1/2
j BjA

−1/2
j )qf(A

−1/2
j BjA

−1/2
j ) ≥ 0.

Consequently, Sfq (Aj |Bj) ≥ 0. Thus

Sfp (Aj |Bj) + Sfp−2(Aj |Bj) ≥ 0 (j = 1, . . . , n),

whence −Sfp−2(A |B) ≤ Sfp (A |B), which yields the required result.

Remark 2.4. By taking f(t) = log t in Theorem 2.3, we get (1.1).

Corollary 2.5. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two
sequences of strictly positive operators on a Hilbert space H such that
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∑n
j=1Aj =

∑n
j=1Bj = I. If f : (0,∞) → [0,∞) is a function which is

both operator monotone and operator concave, then

(i) f(
∑n

j=1BjA
−1
j Bj) ≥ Sf1 (A |B),

(ii) f(I) ≥ Sf0 (A |B).

Proof. (i) Setting p = 1 in Theorem 2.3 and applying
∑n

j=1Aj \1 Bj =∑n
j=1Bj = I, we obtain

f
( n∑
j=1

BjA
−1
j Bj

)
= f

( n∑
j=1

Aj \2 Bj

)
≥ Sf1 (A |B).

(ii) Putting p = 0 in Theorem 2.3 and using
∑n

j=1Aj \0 Bj =
∑n

j=1Aj
= I, we get

f(I) = f
( n∑
j=1

Bj

)
= f

( n∑
j=1

Aj \1 Bj

)
≥ Sf0 (A |B).

Next we extend the operator entropy to n strictly positive operators
A1, . . . , An ∈ B(H ) and refine the operator entropy inequality.

Corollary 2.6. Let A1, . . . , An ∈ B(H ) be a sequence of strictly posi-
tive operators on a Hilbert space H such that

∑n
j=1Aj = I. Then

log
( n∑
j=1

A−1j

)
≥ (log n)I − 1

n

n∑
j=1

logAj .(2.1)

Proof. Taking A = (A1, . . . , An) and B =
(
1
nI, . . . ,

1
nI
)

and f(t) = log t
in Corollary 2.5 (i), we get

− 2(log n)I + log
( n∑
j=1

A−1j

)
= log

(
1

n2

n∑
j=1

A−1j

)
≥ Slog

1 (A |B)

=

n∑
j=1

1

n
A
−1/2
j log

(
1

n
A−1j

)
A

1/2
j =

n∑
j=1

1

n
log

(
1

n
A−1j

)

= −
n∑
j=1

1

n
((log n)I + logAj) = −(log n)I − 1

n

n∑
j=1

logAj ,

which yields (2.1).

Corollary 2.7 (Operator entropy inequality). Assume that A1, . . . , An
∈ B(H ) are positive invertible operators satisfying

∑n
j=1Aj = I. Then

−
n∑
j=1

Aj logAj ≤ (log n)I.
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Proof. Letting A = (A1, . . . , An), B =
(
1
nI, . . . ,

1
nI
)

and f(t) = log t in
Corollary 2.5(ii), we get

0 = log I ≥ Slog
0 (A |B)

=

n∑
j=1

A
1/2
j log

(
1

n
A−1j

)
A

1/2
j =

n∑
j=1

A
1/2
j (−(log n)I − logAj)A

1/2
j

= −(log n)

n∑
j=1

Aj −
n∑
j=1

A
1/2
j (logAj)A

1/2
j .

Remark 2.8. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be n-tuples
of positive numbers such that

∑n
j=1 aj =

∑n
j=1 bj = 1. Put Ai = [ai]1×1 ∈

M1(C) and Bi= [bi]1×1∈M1(C). It follows from Corollary 2.5(ii) that 0≥∑n
j=1 aj log(bj/aj), which is an entropy inequality related to the Kullback–

Leibler relative entropy or information divergence S(p, q)=
∑n

j=1 pj log(pj/qj)
with the convention x log x = 0 if x = 0, and x log y = +∞ if y = 0 and
x 6= 0 (cf. [KL]).

Theorem 2.9. Let p ∈ [0, 1] and let A,B be strictly positive operators
on a Hilbert space H such that A \p−2 B ≤ I and B2 ≤ A2. If f : (0,∞)→
[0,∞) is both operator monotone and operator concave, then

f(A \p+1 B + t0(I −A \p B))− f(t0)(I −A \p B)

≥ Sfp (A |B) ≥ −f(A \p−1 B + t0(I −A \p B)) + f(t0)(I −A \p B)

for any fixed real number t0 > 0.

Proof. It follows from A \p−2 B ≤ I that

A1/2(A−1/2BA−1/2)p−2A1/2 ≤ I,
(A−1/2BA−1/2)p−2 ≤ A−1,

(A−1/2BA−1/2)p ≤ (A−1/2BA−1/2)A−1(A−1/2BA−1/2),

A1/2(A−1/2BA−1/2)pA1/2 ≤ BA−2B.
Since B2 ≤ A2 and the map t 7→ −1/t is operator monotone, we have
A1/2(A−1/2BA−1/2)pA1/2 ≤ I, so that A \p B ≤ I. Now the same reasoning
as in the proof of Theorem 2.3 (with n = 1 and using Lemma 2.2(ii)) yields
the desired inequalities.

Recall that a map Φ : B(H ) → B(K ), where H and K are Hilbert
spaces, is called positive if Φ(A) ≥ 0 whenever A ≥ 0, and it is said to
be normalized if it preserves the identity. The paper [MMM, Lemma 5.2]
includes the following refinement of the Jensen inequality for Hilbert space
operators: Let µ = (µ1, . . . , µm) and λ = (λ1, . . . , λn) be probability vectors.
By a (discrete) weight function (with respect to µ and λ) we mean a mapping
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ω : {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} → [0,∞) such that
∑m

i=1 ω(i, j)µi =
1 (j = 1, . . . , n) and

∑n
j=1 ω(i, j)λj = 1 (i = 1, . . . ,m). If f is a real-

valued operator concave function on an interval J ,A1, . . . , An are self-adjoint
operators with spectra in J and Φ : B(H )→ B(K ) is a normalized positive
map, then

(2.2) f
( n∑
j=1

λjΦ(Aj)
)
≥

m∑
i=1

µif
( n∑
j=1

ω(i, j)λjΦ(Aj)
)
≥

n∑
j=1

λjΦ(f(Aj)).

A matrix A = [aij ] ∈ Mn(C) is said to be doubly stochastic if aij ≥ 0
(i, j = 1, . . . , n) and

∑n
i=1 aij =

∑n
j=1 aij = 1. Now we introduce a refine-

ment of the operator Jensen inequality.

Theorem 2.10. Suppose that f is a real-valued operator concave func-
tion on an interval J and A1, . . . , An are self-adjoint operators with spectra
in J . Assume that B = [bij ] and C = [cij ] are n × n doubly stochastic
matrices, ω1 and ω2 are weight functions with respect to the same proba-
bility vector, and Φ : B(H ) → B(K ) is a normalized positive map. If the
operator-valued functions Fω1,ω2 and FB,C are defined by

Fω1,ω2(t) :=
m∑
i=1

µif
( n∑
j=1

[(1− t)ω1(i, j) + tω2(i, j)]λjΦ(Aj)
)

(0 ≤ t ≤ 1)

and

(2.3) FB,C(t) :=
1

n

n∑
i=1

f
( n∑
j=1

[(1− t)bij + tcij ]Φ(Aj)
)

(0 ≤ t ≤ 1),

then

(i)

(2.4) f
( n∑
j=1

λjΦ(Aj)
)
≥ Fω1,ω2(t) ≥

n∑
j=1

λjΦ(f(Aj)) (0 ≤ t ≤ 1).

In particular,

f

(
1

n

n∑
j=1

Φ(Aj)

)
≥ FB,C(t) ≥ 1

n

n∑
j=1

Φ(f(Aj)) (0 ≤ t ≤ 1).

(ii) For any i = 1, . . . , n, the maps

t 7→ f
( n∑
j=1

[(1− t)ω1(i, j) + tω2(i, j)]λjΦ(Aj)
)

(0 ≤ t ≤ 1),

as well as the function Fω1,ω2, are operator concave. In particular,
FB,C is concave on [0, 1].
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Proof. (i) Since for every t in [0, 1], the map

(i, j) 7→ (1− t)ω1(i, j) + tω2(i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n)

is a weight function, (2.4) follows from (2.2). By taking m = n, λj = µi =
1/n, ω1(i, j) = nbij , ω2(i, j) = ncij in Fω1,ω2(t), we obtain the second part.

(ii) Let η1, η2 ≥ 0 with η1 + η2 = 1 and let t1, t2 ∈ [0, 1]. For every i with
1 ≤ i ≤ m, we have

f
( n∑
j=1

[(1− η1t1 − η2t2)ω1(i, j) + (η1t1 + η2t2)ω2(i, j)]λjΦ(Aj)
)

= f
(
η1

n∑
j=1

[(1− t1)ω1(i, j) + t1ω2(i, j)]λjΦ(Aj)

+ η2

n∑
j=1

[(1− t2)ω1(i, j) + t2ω2(i, j)]λjΦ(Aj)
)

≥ η1f
( n∑
j=1

[(1− t1)ω1(i, j) + t1ω2(i, j)]λjΦ(Aj)
)

+ η2f
( n∑
j=1

[(1− t2)ω1(i, j) + t2ω2(i, j)]λjΦ(Aj)
)

(by concavity of f),

which implies (ii). The concavity of FB,C over [0, 1] is clear.

By taking f(t) = −t log t and Φ(t) = t in (2.3) and by using Theorem
2.10, we obtain the following result:

Corollary 2.11 (Refinement of an operator entropy inequality). As-
sume that A1, . . . , An are positive self-adjoint invertible operators with spec-
tra in an interval J and

∑n
j=1Aj = I. If B = [bij ] and C = [cij ] are n× n

doubly stochastic matrices, then

(log n)I ≥
n∑
i=1

[
−
( n∑
j=1

[(1− t)bij + tcij ]Aj

)
log
( n∑
j=1

[(1− t)bij + tcij ]Aj

)]
≥ −

n∑
j=1

Aj logAj (0 ≤ t ≤ 1).
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