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Abstract. A space is n-arc connected (n-ac) if any family of no more than n-points
are contained in an arc. For graphs the following are equivalent: (i) 7-ac, (ii) n-ac for all n,
(iii) continuous injective image of a closed subinterval of the real line, and (iv) one of a
finite family of graphs. General continua that are ℵ0-ac are characterized. The complexity
of characterizing n-ac graphs for n = 2, 3, 4, 5 is determined to be strictly higher than that
of the stated characterization of 7-ac graphs.

1. Introduction. A topological spaceX is called n-arc connected (n-ac)
if for any points p1, . . . , pn in X, there exists an arc α in X such that
p1, . . . , pn are all in α. If a space is n-ac for all n ∈ N, then we will say
that it is ω-ac. Note that this is equivalent to saying that for any finite F
contained in X there is an arc α in X containing F . Call a space ℵ0-ac if for
every countable subset, S, there is an arc containing S. Evidently a space
is arc connected if and only if it is 2-ac, and ‘ℵ0-ac’ implies ‘ω-ac’ implies
‘(n+ 1)-ac’ implies ‘n-ac’ (for any fixed n).

Thus we have a family of natural strengthenings of arc connectedness,
and the main aim of this paper is to characterize when ‘nice’ spaces have
one of these strong arc connectedness properties. Secondary aims are to dis-
tinguish ‘n-ac’ (for each n), ‘ω-ac’ and ‘ℵ0-ac’, and to compare and contrast
the familiar arc connectedness (i.e. 2-ac) with its strengthenings.

Observe that any Hausdorff image of an n-ac (respectively, ω-ac, ℵ0-ac)
space under a continuous injective map is also n-ac (respectively, ω-ac,
ℵ0-ac). Below, unless explicitly stated otherwise, all spaces are (metrizable)
continua.

It turns out that ‘sufficiently large’ (in terms of dimension) arc connected
spaces tend to be ω-ac. Indeed, it is not hard to see that manifolds (with
or without boundary) of dimension at least 2 are ω-ac. Thus we focus on
curves (1-dimensional continua) and especially on graphs (those connected
spaces obtained by taking a finite family of arcs and then identifying some
of the endpoints).
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To motivate our main results consider the following examples.

Examples 1.1.

(A) The arc (the closed unit interval, I = [0, 1]) is ℵ0-ac.
(B) The open interval, (0, 1) and ray, [0, 1), are ω-ac.
(C) From (A) and (B), all continua which are the continuous injective

images of the arc, open interval and ray are ω-ac. It is easy to verify
that these include: (a) arc, (b) circle, (c) figure eight curve, (d)
lollipop, (e) dumbbell and (f) theta curve.

(a) (b) (c) (d) (e) (f)

(D) The Warsaw circle, double Warsaw circle, Menger cube, and Sier-
piński triangle are ω-ac.

(E) The simple triod is 2-ac but not 3-ac. It is minimal in the sense that
no graph with strictly fewer edges is 2-ac not 3-ac. The graphs (a),
(b) and (c) below are: 3-ac but not 4-ac, 4-ac but not 5-ac, and 5-ac
but not 6-ac, respectively. All are minimal.

(a) (b) (c)

(F) The Kuratowski graph K3,3 is 6-ac but not 7-ac. It is also minimal.
(G) The graphs below are all 6-ac and, by Theorem 1.3, none is 7-ac.

Unlike K3,3, all are planar. It is unknown if the first of these graphs
(which has 12 edges) is minimal among planar graphs. A minimal
example must have at least nine edges.

· · ·

The diversity of examples in (D) of ω-ac curves suggests that no simple
characterization of these continua is likely. The authors, together with
Kovan-Bakan, prove that there is indeed no characterization of ω-ac curves
any simpler than the definition (see [2] for details).
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This prompts us to restrict attention to the more concrete case of graphs,
and leads us to the following natural problems.

Problems 1.2.

(1) Characterize the ω-ac graphs.
(2) Characterize the ℵ0-ac graphs.
(3) Characterize, for each n, the graphs which are n-ac but not (n+1)-ac.

In Section 2.1 below we show that the list of ω-ac graphs given in (C) is
complete, answering Problem 1.2(1).

Theorem 1.3. For a graph G the following are equivalent:

(1) G is 7-ac.
(2) G is ω-ac.
(3) G is the continuous injective image of a subinterval of the real line.
(4) G is one of the following graphs: arc, simple closed curve, figure eight

curve, lollipop, dumbbell or theta curve.

In Section 2.2 we go on to characterize the ℵ0-ac continua, giving a very
strong solution to Problem 1.2(2).

Theorem 1.4. For any continuum K (not necessarily metrizable) the
following are equivalent:

(1) K is ℵ0-ac.
(2) K is a continuous injective image of a closed subinterval of the long

line.
(3) K is one of: arc, long circle, long lollipop, long dumbbell, long figure

eight curve or long theta curve.

From Theorem 1.3 we see that there are no examples of graphs that are
n-ac but not (n + 1)-ac, for n ≥ 7, solving Problem 1.2(3) in these cases.
Of course Examples 1.1(E) and (F) show that there are n-ac non-(n+ 1)-ac
graphs for n = 2, 3, 4, 5, 6. But the question remains: can we characterize
these latter graphs? Informally our answers are as follows.

Theorem 1.5.

(1) The characterization of ω-ac graphs given in Theorem 1.3 is as
simple as possible.

(2) There exist reasonably simple characterizations of n-ac non-(n+1)-ac
graphs for n ≤ 7.

(3) For n = 2, 3, 4, 5, there is no possible characterization of n-ac non-
(n+ 1)-ac graphs which is as simple as that for ω-ac graphs.

In Section 3 we outline some machinery from descriptive set theory which
allows us to formalize and prove these claims. The situation with n = 6—the
complexity of characterizing graphs which are 6-ac but not 7-ac—remains
unclear. This, and other remaining open problems, are discussed in Section 4.
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2. Characterizations. In this section we prove the characterization
theorems stated in the Introduction: first, Theorem 1.3 characterizing ω-ac
graphs; second, Theorem 1.4 characterizing ℵ0-ac continua.

2.1. ω-ac graphs. As noted in Example 1.1(C), the graphs listed in
part (4) of Theorem 1.3 are all the continuous injective images of a closed
subinterval of the real line, giving (4)⇒(3), and all such images are ω-ac,
yielding (3)⇒(2) of Theorem 1.3. Clearly ω-ac graphs are 7-ac, and so
(2)⇒(1) in Theorem 1.3.

It remains to show (1)⇒(4) in Theorem 1.3, in other words that any 7-ac
graph is one of the graphs listed in (4). This is established in Theorem 2.16
below. We proceed by establishing an ever tightening sequence of restrictions
on the structure of 7-ac graphs.

We note that Lelek and McAuley [6] showed that the only Peano continua
which are continuous injective images of the real line are the figure eight,
dumbbell and theta curve. Their proof can be modified to establish the
equivalence of (3) and (4) in Theorem 1.3.

Proposition 2.1. Let G be a finite graph, and let H ⊂ G be a subgraph
of G such that G − H is connected, G−H ∩ H = {r} and r is a branch
point of G. If G is n-ac, then G−H is n-ac.

Proof. First note that G−H = (G −H) ∪ {r}. Hence every connected
set intersecting G−H and H − {r} must contain r.

Let P = {p1, . . . , pn} be a set of n points in G−H. Then, since G is
n-ac, there exists an arc α in G containing P. If α ⊂ G−H, we are done. So
assume α intersects H − {r}. Let t0, t1 ∈ [0, 1] be such that α(t0) ∈ G−H
and α(t1) ∈ H − {r}; assume without loss of generality that t0 < t1. Hence
there exists s ∈ [t0, t1] such that α(s) = r. Then α([0, s]) is an arc in G−H
containing P, otherwise r ∈ α((s, 1]), which is impossible since α is an
injective image of [0, 1]. This proves that G−H is n-ac.

The reverse implication of Proposition 2.1 does not hold. To see this, let
G be a simple triod and H be one of the edges of G. Clearly G is not 3-ac
but G−H (an arc) is 3-ac.

Definition 2.2. Let G be a finite graph. An edge e of G is called a
terminal edge of G if one of the vertices of e is an end-point of G.

Definition 2.3. Let G be a finite graph, and let I = {e1, . . . , em} be the

set of terminal edges of G. Let G∗ be the graph given by G− I. Clearly this
operation can be applied to G∗ as well. We perform this operation as many
times as necessary until we obtain a graph G′ having no terminal edges. We
call G′ the reduced graph of G.

The following is a corollary of Proposition 2.1.
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Corollary 2.4. Let G be an n-ac finite graph. Then the reduced graph
of G is an n-ac finite graph containing no terminal edges.

Proof. Observe that the reduced graph of G can also be obtained by
removing terminal edges one at a time.

Now, from Proposition 2.1, if G is an n-ac finite graph and e is a terminal
edge of G, then G− e is n-ac. This implies that each time we remove a
terminal edge we obtain an n-ac graph. This and the observation prove the
corollary.

Remark 2.5. Note that if X is an n-ac space and {p1, . . . , pn} are n
different points of X, then there is an arc α such that {p1, . . . , pn} ⊂ α
and the end-points of α belong to {p1, . . . , pn}. To see this, let β be the
arc containing {p1, . . . , pn}, given by the fact that X is n-ac. Let t0 =
min{β−1(pi) : i = 1, . . . , n} and t1 = max{β−1(pi) : i = 1, . . . , n}. Then
α ∈ β([t0, t1]) satisfies the desired conditions.

From now on, if X is an n-ac space, {p1, . . . , pn} are n different points
and α is an arc passing through {p1, . . . , pn}, then we will assume that the
end-points of α belong to {p1, . . . , pn}.

Lemma 2.6. Let G be a finite graph. Assume that G contains a simple
triod T = L1 ∪ L2 ∪ L3 (with {q} = Li ∩ Lj for i 6= j) such that for each i,
Li−{q} contains no branch points of G. For each i = 1, 2, 3, let pi ∈ int(Li).
If α is an arc containing {p1, p2, p3}, then

(1) q ∈ int(α), and
(2) at least one of the end-points of α lies in [q, p1] ∪ [q, p2] ∪ [q, p3].

Proof. Let G, T and p1, p2, p3 as in the hypothesis of the lemma. Let
α ⊂ G be an arc containing {p1, p2, p3}, and denote, for each i = 1, 2, 3, by
[q, li] the arc Li.

(1) Assume, without loss of generality, that α(ti) = pi and t1 < t2 < t3.
Then p2 ∈ int(α) and α = α([0, t2]) ∪ α([t2, 1]).

We consider two cases: q 6∈ α([0, t2]) and q ∈ α([0, t2]). Assume
q 6∈ α([0, t2]). Then, since L2 − {q} contains no branch points of G and
p2 ∈ int(L2), we have l2 = α(s) for some s with 0 < s < t2. Hence
[l2, p2] ⊆ α([0, t2]). Therefore, since {p2, p3} ⊆ α([t2, 1]), p2 ∈ int(L2),
L2 − q has no branch points of G, and α is a 1-1 function, we deduce that
[p2, q] ⊆ α([t2, 1)). This implies that q ∈ int(α).

Now suppose that q ∈ α([0, t2]). If q ∈ α((0, t2]), then we are done. So
assume that q = α(0), i.e. q is an end-point of α. Using the same argument as
in the previous case, we can conclude that [l2, p2] ⊆ α([0, t2]). This implies,
as before, that [p2, q] ⊆ α([t2, 1)), which contradicts the fact that α is a 1-1
function. Hence q ∈ int(α).
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(2) First, assume that α(ti) = pi and t1 < t2 < t3. We will show that one
end-point of α lies on either [q, p1] or [q, p3]. The other cases (rearrangements
of the tis) are done in the same way, the only difference is the conclusion:
the end-point lies on [q, p1] ∪ [q, p2], or on [q, p2] ∪ [q, p3].

By (1), q ∈ int(α) and if q = α(s), then s < t3; otherwise the arc
α([0, t3]) would contain p1, p2, p3 and q 6∈ int(α([0, t3])), contrary to (1).
Similarly, t1 < s. Hence t1 < s < t3.

If s < t2, then p1, q 6∈ α([t2, 1]) = α([t2, t3]) ∪ α([t3, 1]). Now, since
L3 − {q} has no branch points of G, q ∈ α([0, t2]), and p3 ∈ int(L3), we
have l3 ∈ α([t2, t3]). Thus, since α is a 1-1 function, α([t3, 1]) ⊂ (q, p3]. This
shows that α(1) lies in [q, p3].

If t2 < s, then a similar argument using −α (α traveled in the opposite
direction) shows that one of the end-points of α lies on [q, p1].

We obtain the following corollaries.

Corollary 2.7. With the same conditions as in Lemma 2.6, if α is an
arc containing {p1, p2, p3}, and q = α(s), pi = α(ti) for i = 1, 2, 3, then
tj < s < tk for some j, k ∈ {1, 2, 3}.

Proof. To see this, note that if q does not lie between two of the pis, then
either s < ti for all i, or ti < s for all i. Then either α([s, 1]) or α([0, s]) is an
arc containing {p1, p2, p3} for which q is an end-point; this contradicts (1)
of Lemma 2.6.

Corollary 2.8. Let G be a finite graph, and let {p1, . . . , pn} ⊂ G be
n different points. In addition, let α be an arc containing {p1, . . . , pn}, with
end-points belonging to {p1, . . . , pn}. If there are three different indices i, j, k
such that pi, pj and pk belong to a triod T satisfying the conditions of
Lemma 2.6, and such that ([q, pi]∪[q, pj ]∪[q, pk])∩{p1, . . . , pn} = {pi, pj , pk},
then either pi, pj or pk is an end-point of α.

Proof. By (2) of Lemma 2.6, at least one of the end-points of α lies in
[q, pi]∪ [q, pj ]∪ [q, pk]. Hence, since the end-points of α belong to {p1, . . . , pn}
and ([q, pi] ∪ [q, pj ] ∪ [q, pk]) ∩ {p1, . . . , pn} = {pi, pj , pk}, one of pi, pj or pk
is an end-point of α.

Proposition 2.9. Let G be a finite graph. If G is 5-ac, then G has no
branch point of degree greater than or equal to five.

Proof. Assume, for contradiction, that G contains at least one branch
point, q, of degree at least 5. Then, since G is a finite graph, G contains a
simple 5-od, T = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5, such that {q} = Li ∩ Lj for i 6= j,
and Li − {q} contains no branch points of G.

For each i = 1, . . . , 5, let pi ∈ int(Li). Then, since G is 5-ac, there exists
an arc α ⊂ G such that {p1, . . . , p5} ⊂ α. Note that T contains a triod
satisfying the conditions of Lemma 2.6, hence q ∈ int(α). Let t0 ∈ (0, 1) be
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the point such that α(t0) = q. Then α−{q} = α([0, t0))∪α((t0, 1]), and either
α([0, t0]) or α([t0, 1]) contains three points out of {p1, p2, p3, p4, p5}; note that
q is an end-point of α([0, t0]) and of α([t0, 1]). Without loss of generality,
suppose that p1, p2, p3 ⊂ α([0, t0]); then L1, L2, L3 and the corresponding
pis satisfy the conditions of Lemma 2.6, implying that any arc containing
those points contains q in its interior, a contradiction, since q is an end-point
of α([0, t0]). This shows that G does not contain a branch point of degree
greater than or equal to five.

From Proposition 2.9 we obtain the following corollary.

Corollary 2.10. Let G be a finite graph. If G is n-ac for n ≥ 5, then
G has no branch point of degree greater than or equal to five.

The following proposition is easy to prove.

Proposition 2.11. Let G be a finite connected graph. If G has at least
three branch points, then there is an arc α such that the end-points of α are
branch points of G and all the points of the interior of α, except for one, are
non-branch points of G. So α contains exactly three branch points of G.

Theorem 2.12. A finite graph with three or more branch points cannot
be 7-ac.

Proof. Let G be a finite graph with at least three branch points. By
Proposition 2.11, there is an arc α in G containing exactly three branch
points of G such that two of them are the end-points of α. Denote by q1,
q2, and q3 these branch points, and assume without loss of generality that
q1 and q3 are the end-points of α.

Let p3 be a point between q1 and q2, and let p5 be a point between q2
and q3. Since G is a finite graph, we can find, in a neighborhood of q1, two
points p1 and p2 such that p1, p2, p3 belong to a triod T1 satisfying the
conditions of Lemma 2.6, and q1 is the branch point of T1. Similarly, we
can find a point p4 in a neighborhood of q2 such that p3, p4, p5 belong to a
triod T2 satisfying the conditions of Lemma 2.6, and q2 is the branch point
of T2. Finally, we can find two points p6 and p7 in a neighborhood of q3 such
that p5, p6, p7 belong to a triod T3 satisfying the conditions of Lemma 2.6,
and q3 is the branch point of T3.

p3 p5

q1

q2

q3

p4

p1 p2

p6

p7
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We show that there is no arc containing {p1, . . . , p7}. Suppose for con-
tradiction that such an arc β ⊂ G exists. Using the same argument from
Remark 2.5, we can assume that the end-points of β belong to {p1, . . . , p7}.

Now, by Corollary 2.8, one of {p1, p2, p3} is an end-point of β. Similarly,
one of {p3, p4, p5} is an end-point of β, and one of {p5, p6, p7} is an end-point
of β. So, since β is an arc with end-points in {p1, . . . , p7}, we deduce that
either

(i) p1 or p2 and p5 are the end-points of β, or
(ii) p6 or p7 and p3 are the end-points of β, or
(iii) p3 and p5 are the end-points of β,

and that these are the only possible cases. We will prove that every case
leads to a contradiction.

(i) Assume that p1 and p5 are the end-points of β. Since the arc between
q2 and q3 contains no branch points of G, we have either [q2, p5] ⊂ β or
[p5, q3] ⊂ β.

Assume first that [q2, p5] ⊂ β. Then, by the way p4 was chosen and
the fact that p4 ∈ int(β), the arc [p4, q2] is contained in β; similarly, since
the arc [q1, q2] contains no branch points of G and as p3 ∈ int(β), we have
[p3, q2] ⊂ β. Then [p3, q2]∪[p4, q2]∪[q2, p5] ⊂ β, which is a contradiction since
[p3, q2] ∪ [p4, q2] ∪ [q2, p5] is a non-degenerate simple triod.

Assume that [p5, q3] ⊂ β. Then, by the way p6 was chosen and the fact
that p6 ∈ int(β), we have [q3, p6] ⊂ β. Using the same argument we can
conclude that [q3, p7] ⊂ β. Hence [p5, q3] ∪ [p6, q3] ∪ [q3, p7] ⊂ β, which is a
contradiction.

The case when p2 and p5 are the end-points of β is similar to the case
we just proved. So (i) does not hold.

(ii) This case is equivalent to (i), therefore (ii) does not hold.

(iii) Assume that p3 and p5 are the end-points of β. Then, since the arc
[q1, q2] contains no branch points of G and p3 is an end-point of β, either
[q1, p3] ⊂ β or [p3, q2] ⊂ β.

Suppose that [q1, p3] ⊂ β. As in (i), since p1, p2 ∈ int(β), we see that
the arcs [p1, q1] and [q1, p2] are contained in β. This implies that the non-
degenerate simple triod [q1, p3] ∪ [p1, q1] ∪ [q1, p2] lies in β, which is a con-
tradiction.

Now assume that [p3, q2] ⊂ β. Then [p5, q3] ⊂ β. Again, the same argu-
ment as in (i) leads to a non-degenerate simple triod being contained in β
since p6, p7 ∈ int(β). Hence (iii) does not hold.

This proves that there is no arc containing {p1, . . . , p7}. Therefore G is
not 7-ac.

Since every (n+ 1)-ac space is n-ac, we have the following corollary.
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Corollary 2.13. A finite graph with three or more branch points cannot
be n-ac for n ≥ 7.

Lemma 2.14. If G is a finite graph with only two branch points each of
degree greater than or equal to 4, then G is not 7-ac.

Proof. Let q1 and q2 be the two branch points of G. Then there exists
at least one edge e having q1 and q2 as vertices. Let p1 ∈ int(e). Since G is a
finite graph, and q1 and q2 have degree at least 4, we can choose three points
p2, p3, p4 in a neighborhood of q1 such that T1 = [q1, p1] ∪ [q1, p2] ∪ [q1, p3] ∪
[q1, p4] is a simple 4-od, and three points p5, p6, p7 in a neighborhood of q2
such that T2 = [q2, p1] ∪ [q2, p5] ∪ [q2, p6] ∪ [q2, p7] is a simple 4-od, and they
are such that T1 ∩ T2 = {p1}.

We show that there is no arc α ⊂ G containing {p1, . . . , p7}. Suppose for
contradiction that there exists such an arc α, and assume further that the
end-points of α belong to {p1, . . . , p7}. Then, since {p2, p3, p4} satisfy the
conditions of Corollary 2.8, we can assume without loss of generality that
p4 is an end-point of α. Similarly for the set {p5, p6, p7}, so we can assume
without loss of generality that p5 is an end-point of α. On the other hand,
the set {p1, p2, p3} also satisfies the conditions of Corollary 2.8, hence p1
or p2 or p3 is an end-point of α, which is impossible since α only has two
end-points. This shows that there is no arc in G containing {p1, . . . , p7}, and
proves that G is not 7-ac.

Corollary 2.15. If G is a finite graph with only two branch points each
of degree greater than or equal to 4, then G is not n-ac for n ≥ 7.

Theorem 2.16. Let G be a finite graph. If G is 7-ac, then G is one of
the following graphs: arc, simple closed curve, figure eight, lollipop, dumbbell
or theta curve.

Proof. Let G be a finite graph. Suppose that G is n-ac for n ≥ 7. We
will show that G is (homeomorphic to) one of the listed graphs.

Let K be the reduced graph of G. By Corollary 2.4, K is n-ac and
contains no terminal edges. By Theorem 2.12, K has at most two branch
points, and by Corollary 2.10, the degree of each branch point is at most 4.
We consider the cases when K has no branch points, one branch point or
two branch points.

Case 1: K has no branch points. In this case K is either homeomorphic
to the arc, I, or to the simple closed curve, S1.

Assume first that K is homeomorphic to I; then, by the way K is ob-
tained, K = G. Otherwise, reattaching the last terminal edge that was
removed gives a simple triod which is not 7-ac, contrary to the hypothesis.
In this case G is on the list.

Next assume K is homeomorphic to S1. If K = G, then G is on the
list. So assume G 6= K, and let e denote the last terminal edge that was
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removed. Then K ∪ e is homeomorphic to the lollipop curve. Furthermore,
G = K ∪ e, otherwise reattaching the penultimate terminal edge will give a
homeomorphic copy of the graph (a) of Example 1.1(E), which is not 7-ac,
or a simple closed curve with two arcs attached to it at the same point at
one of their end-points, which is not 7-ac either. Hence, again, G is on the
list.

Case 2: K has one branch point. Note that the only possibility for K
to have a single branch point of degree 3 is for K to be homeomorphic to a
simple triod or to the lollipop curve; the former is not 7-ac and the latter
is not a reduced graph. Hence the degree of the branch point of K is 4. In
this case K is homeomorphic either to a simple 4-od, a simple closed curve
with two arcs attached to it at the same point at one of their end-points, or
the figure eight curve. The first two cases are not 7-ac. Therefore K must
be homeomorphic the figure eight curve. If G = K, then G is on the list. In
fact, since attaching an arc to the figure eight curve yields a non-7-ac curve,
we must have G = K.

Case 3: K has two branch points. Since the sum of the degrees in a
graph is always even and K has no terminal edges, K cannot have one
branch point of degree 3 and another of degree 4. Hence the only options
are that K has two branch points of either degree 3 or degree 4. However,
by Corollary 2.15, K has only two branch points of degree 3.

If K has two branch points of degree 3, then it could be homeomorphic
to one of the following graphs:

(a) (b) (c) (d) (e)

However the graphs (a), (b), and (c) contain terminal edges. So K can only
be homeomorphic to the dumbbell (d) or the theta curve (e); in any case,
if G = K, then G is on the list. Note that neither curve, (d) nor (e), can
be obtained from a n-ac graph (n ≥ 7) by removing a terminal edge since
by Theorem 2.12 the edge has to be attached to one of the existing branch
points; it is easy to see that such a graph is not 4-ac, just take a point in the
interior of each edge. Hence G = K. This ends the proof of the theorem.

2.2. ℵ0-ac continua. Call a space κ-ac, where κ is a cardinal, if every
subset of size no more than κ is contained in an arc. Note that for finite
κ = n and κ = ℵ0 this coincides with the earlier definitions. For infinite κ we
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have a complete description of κ-ac continua (not necessarily metrizable),
extending Theorem 1.4. To start, let us observe that the arc is κ-ac for
every cardinal κ. We will see shortly that the arc is the only separable κ-ac
continuum when κ is infinite. In particular, the triod and circle are not
ℵ0-ac, and so any continuum containing a triod or a circle is also not ℵ0-ac.
This observation will be used below.

To state the theorem precisely we need to make a few definitions. Recall
that ω1 is the first uncountable ordinal, or equivalently the set of all count-
able ordinals, with the induced order topology. Note that a subset of ω1 is
bounded if and only if the set is countable. The long ray, R, is the lexico-
graphic product of ω1 with [0, 1) with the order topology. We can identify
ω1 (with its usual order topology) with ω1 × {0}. Evidently ω1 is cofinal in
the long ray. Write R− for R with each point x relabeled −x. The long line,
L, is the space obtained by identifying 0 in the long ray, R, with −0 in R−.
The topology on the long ray and long line ensures that for any x < y in
R (or L) the subspace [x, y] = {z ∈ R : x ≤ z ≤ y} is (homeomorphic to)
an arc. Note that any countable subset of the long ray, or the long line, is
bounded, hence both the long ray and long line are ℵ0-ac. To see this for
the long ray take any countable subset S; then since ω1 is cofinal in R, the
set S has an upper bound, x say, and then S is contained in [0, x], which is
an arc.

Let αR be the one-point compactification of R, and γL be the corre-
sponding two-point compactification of L. The long circle and long lollipop
are the spaces obtained from αR by identifying the point at infinity to 0, or
any other point, respectively. The long dumbbell, long figure eight and long
theta curves come from γL by respectively identifying the negative (−∞)
and positive (+∞) end-points to −1 and +1, 0 and 0, or +1 and −1. As
continuous injective images of the ℵ0-ac spaces R and L, all the above spaces
are also ℵ0-ac.

Theorem 2.17. Let K be a continuum.

(1) If K is separable and ℵ0-ac then K is an arc.
(2) If K is non-separable, then the following are equivalent:

(i) K is ℵ0-ac,
(ii) K is a continuous injective image of a closed subinterval of the

long line, and
(iii) K is one of: long circle, long lollipop, long dumbbell, long figure

eight curve, or long theta curve.

(3) If K is κ-ac for some κ > ℵ0, then K is an arc.

For part (1) just take a dense countable set; then any arc containing
the dense set is the whole space. Part (2) is proved in Propositions 2.18
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((i)⇒(ii)) and 2.21 ((ii)⇒(iii)) below, while (iii)⇒(i) was observed above
when defining the curves in (2)(iii). For part (3) note that all non-separable
ℵ0-ac spaces (as listed in part (2)(iii)) have a dense set of size ℵ1, and so
are not ℵ1-ac. Thus κ-ac continua for κ ≥ ℵ1 are separable, hence arcs, by
part (1).

It is traditional to use Greek letters (α, β et cetera) for ordinals. Con-
sequently we will use the letter ‘A’ and variants for arcs, and because in
Proposition 2.18 we need to construct a map, in this subsection by an ‘arc’
we mean any homeomorphism between the closed unit interval and a subset
of a given space. If K is a space, then by ‘A is an arc in K’ we mean that
the arc A maps into K. When A is an arc in a space K, then write im(A)
for the image of A (it is, of course, a subspace of K homeomorphic to the
closed unit interval). For any function f , we write dom(f) for the domain
of f .

Proposition 2.18. Let K be an ℵ0-ac non-separable continuum. Then
there is a continuous bijection A∞ : J∞ → K where J∞ is a closed un-
bounded subinterval of the long line L.

We prove this by an application of Zorn’s Lemma. The following lemmas
help to establish that Zorn’s Lemma is applicable, and that the maximal
object produced is as required.

Lemma 2.19. Let K be an ℵ0-ac non-separable continuum. If K is a
countable collection of separable subspaces of K then there is an arc A in K
such that

⋃
K ⊆ im(A).

Proof. Let K = {Sn : n ∈ N} be a countable family of subspaces of K,
and, for each n, let Dn be a countable dense subset of Sn. Let D =

⋃
nDn;

it is countable. Since K is ℵ0-ac there is an arc A in K such that D ⊆ im(A).
As D is dense in

⋃
K and im(A) is closed, we see that

⋃
K ⊆ im(A).

Lemma 2.20. Let K be an ℵ0-ac non-separable continuum. Suppose [a, b]
is a proper closed subinterval of L (or R), A : [a, b]→ K is an arc in K and
y ∈ K \ im(A). Then either

(i) for every c > b in L there is an arc A′ : [a, c] → K such that
A′�[a,b] = A and A′(c) = y, or

(ii) for every c < a in L there is an arc A′ : [c, b] → K such that
A′�[a,b] = A and A′(c) = y.

Proof. Fix a, b, the arc A and y. Let K = {im(A), {y}}. Lemma 2.19
yields an arc A0 : [0, 1] → K in K such that im(A0) ⊇ im(A) ∪ {y}. Let
J = A−10 (im(A)), a′ = minJ , b′ = maxJ and c′ = A−10 (y). Without loss of
generality (replacing A0 with A0 ◦ρ, where ρ(t) = 1− t, if necessary) we can
suppose that A0(a

′) = A(a) and A0(b
′) = b.
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Since y 6∈ im(A), either c′ > b′ or c′ < a′. Let us suppose that c′ > b′.
This will lead to case (i) in the statement of the lemma. The other choice will
give, by a very similar argument which we omit, case (ii). Take any c in L
such that c > b. Let A1 be a homeomorphism of the closed subinterval [a, c]
of L onto the subinterval [a′, c′] of [0, 1] such that A1(a) = a′, A1(b) = b′ and
A1(c) = c′. Set A2 = A0 ◦ A1 : [a, c] → K. So A2 is an arc in K such that
A2(a) = A(a), A2(b) = A(b), A2(c) = y and A2([a, b]) = im(A). The arc A2

is almost what we require for A′ but it may traverse the (set) arc im(A) at
a ‘different speed’ than A. Thus we define A′ : [a, c] → K to be equal to A
on [a, b] and equal to A2 on [b, c]. Then A′ is the required arc.

Proof of Proposition 2.18. Let A be the set of all continuous injective
maps A : J → K where J is a closed subinterval of L, ordered by: A ≤ A′ if
and only if dom(A) ⊆ dom(A′) and A′�dom(A) = A. Then A is the set of all
candidates for the map A∞ we seek. We will apply Zorn’s Lemma to (A,≤)
to extract A∞. To do so we need to verify that (A,≤) is non-empty, and all
non-empty chains have upper bounds.

As K is ℵ0-arc connected we know there are many arcs in K, so the
set A is not empty. Now take any non-empty chain C in A. We show that
C has an upper bound. Let J = {dom(A′) : A′ ∈ C}. Since J is a chain
of subintervals in L, the set J =

⋃
J is also a subinterval of L. Define

A : J → K by A(x) = A′(x) for any A′ in C with x ∈ dom(A′). Since C
is a chain of injections, A is well-defined and injective. Since the domains
of the functions in C form a chain of subintervals, any point x in J is in
the J-interior of some dom(A′) (there is a set U , open in J , such that
x ∈ U ⊆ dom(A′)), where A′ ∈ C, and so A coincides with A′ on some
J-neighborhood of x, thus, since A′ is continuous at x, the map A is also
continuous at x. If J is closed, then we are done: A is in A and A ≥ A′ for
all A′ in C.

If the interval J is not closed then it has at least one endpoint (in L)
not in J . We will suppose J = (a,∞). The other cases, J = (a, b) and
J = (−∞, a), can be dealt with similarly. We show that we can continuously
extend A to [a,∞). If so then A will be injective, hence in A, and an upper
bound for C. Indeed, the only way the extended A could fail to be injective
would be if A(a) = A(c) for some c > a, and then A([a, c]) is a circle in K,
contradicting the fact that K is ℵ0-ac.

Evidently it suffices to continuously extend A′ = A�(a,b] to [a, b]. Let
K = {A((a, b])} and apply Lemma 2.19 to see that A′ maps the half-open
interval, (a, b], into IK , a homeomorphic copy of the unit interval. Let h :
[0, 1]→ IK be a homeomorphism. So we can apply some basic real analysis
to get the extension. Indeed, the map A′ ◦ h−1 is continuous and injective,
and hence strictly monotone. By the inverse function theorem, A′ has a
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continuous inverse, and so it is a homeomorphism of (a, b] with some half-
open interval, (c, d] or [d, c) in the closed unit interval. Defining A(a) = h(c)
gives the desired continuous extension.

Let A∞ be a maximal element of A. Then its domain is a closed subin-
terval of the long line L. We first check that dom(A∞) is not bounded. Then
we prove that A∞ maps onto K.

If A∞ had a bounded domain, then it is an arc. So it has separable
image. As K is not separable we can pick a point y in K \ im(A∞). Applying
Lemma 2.20 we can properly extend A∞ to an arc A′. But then A′ is in A,
A∞ ≤ A′ and A∞ 6= A′, contradicting maximality of A∞.

We complete the proof by showing that A∞ is surjective. We go for a
contradiction and suppose that instead there is a point y in K \ im(A∞).
Two cases arise depending on the domain of A∞.

Suppose first that dom(A∞) = L. Pick a point x in im(A∞). Pick an arc
A from x to y. Taking a subarc if necessary, we can suppose A : [0, 1]→ K,
A(0) = x and A(t) /∈ im(A∞) for all t > 0. Let x′ = A−1∞ (x). Pick any a′, b′

from L such that a′ < x′ < b′. Then the subspace A∞([a′, b′]) ∪ A([0, 1]) is
a triod in K, which contradicts K being ℵ0-ac.

Now suppose that dom(A∞) is a proper subset of L. Let us assume
that dom(A∞) = [a,∞). (The other case, dom(A∞) = (−∞, a], follows
similarly.) Pick any b > a, and apply Lemma 2.20 to A = A∞�[a,b] and y. If
case (ii) holds then pick any c < a and A can be extended ‘to the left’ to an
arc A′ with domain [c, b]. This gives a proper extension of A∞ defined on
[c,∞) (which is A′ on [c, a] and A∞ on [a,∞)), contradicting maximality
of A∞.

So case (i) must hold. Pick any c > b, and get an arc A′ : [a, c] → K in
K extending A. Let T = A∞([a, c]) ∪A′([a, c]). Observe that T has at least
three non-cut-points, namely A′(a) = A∞(a), A∞(c) and A′(c). So T is not
an arc, but it is a separable subcontinuum of the ℵ0-ac continuum K, which
is the desired contradiction.

To complete the proof of Theorem 2.17 it remains to identify the contin-
uous injective images of closed subintervals of the long line. We recall some
basic definitions and facts connected with the space of countable ordinals, ω1

(see [5], for example). A subset of ω1 is closed and unbounded if it is cofinal
in ω1 and closed in the order topology. A countable intersection of closed
and unbounded sets is closed and unbounded. The set Λ of all limit ordinals
in ω1 is a closed and unbounded set. A subset of ω1 is non-stationary if
it is contained in the complement of a closed and unbounded set. A sub-
set of ω1 is stationary if it is not non-stationary, or equivalently if it meets
every closed and unbounded set. The Pressing Down Lemma (also known
as Fodor’s Lemma) states than if S is a stationary set and f : S → ω1 is
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regressive (for every α in S we have f(α) < α) then there is a β in ω1 such
that f−1(β) is cofinal in ω1.

Proposition 2.21. If K is a non-separable continuum and is the con-
tinuous injective image of a closed subinterval of long line, then K is one
of: long circle, long lollipop, long dumbbell, long figure eight, or long theta
curve.

Proof. The closed non-separable subintervals of the long line are (up to
homeomorphism) just the long ray and the long line itself.

Let us suppose for the moment that K is the continuous injective image
of the long ray R. We may identify points of K with points in R. Note that
on any closed subinterval, [a, b] say, of R, (by compactness of [a, b] in R,
and Hausdorffness of K) the standard order topology and the K-topology
coincide. It follows that at any point with a bounded K-open neighborhood
the standard topology and K-topology agree. We will show that there is a
point x in R such that every K-open U containing x contains a tail, (t,∞),
for some t. Assuming this, by Hausdorffness of K, every point distinct from
x has bounded neighborhoods, and so x is the only point where the K-
topology differs from the usual topology. Then K is either the long circle
or the long lollipop depending on where x is in R (in particular, if it equals
0). The corresponding result for continuous injective images of the long line
follows immediately.

Suppose, for a contradiction, that for every x in R, there is a K-open
set Ux containing x such that Ux contains no tail. By compactness of K,
some finite collection, Ux1 , . . . , Uxn , covers K. Let Si = Uxi ∩ Λ, where Λ
is the set of limits in ω1. Then (since the finitely many Si cover the closed
unbounded set Λ) at least one of the Si is stationary. Take any α in Si,
and consider it as a point of the closed subinterval [0, α] of R, where we
know the standard topology and the K-topology agree. Since α is a limit
point which is in Uxi ∩ [0, α], and this latter set is open, we know there
is an ordinal f(α) < α such that (f(α), α] ⊆ Uxi . Thus we have a regres-
sive map, f , defined on the stationary set Si, so by the Pressing Down
Lemma there is a β such that f−1(β) is cofinal in ω1. Hence Uxi contains⋃
{(f(α), α] : α ∈ f−1(β)} = (β,∞), and so Uxi does indeed contain a

tail.

3. Complexity of characterizations. Theorem 1.5 from the Intro-
duction makes certain claims about the complexity of characterizing, for
various n, the n-ac graphs which are not (n+ 1)-ac. We introduce the nec-
essary technology from descriptive set theory to make these claims precise.
Then Theorem 3.1 is the formalized version of Theorem 1.5.
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Recall (see [4]) that the Borel subsets of a space ramify into a hierar-
chy, Πα,Σα, indexed by countable ordinals. Sets lower in the hierarchy are
less complex than those found higher up. Most relevant here are: Π3, the
set of Fσδ subsets; Σ3, the set of all Gδσ subsets; and D2(Σ3), the set of
intersections of one Π3 and one Σ3 set.

The complexity of a set in terms of its position in the Borel hierarchy is
precisely correlated to the complexity of the logical formulae needed to define
it. A Π3 set, S, can be defined by a formula, φ (via S = {x : φ(x) is true}),
of the form ∀p ∃q ∀r (something simple), where the quantifiers run over
countable sets, and ‘something simple’ is boolean. A Σ3 set, T , can be defined
by a formula, ψ, of the form ∃p ∀q ∃r (something simple). Furthermore a
D2(Σ3) set can be defined by a formula of the form φ ∧ ψ, where φ and ψ
are as above.

For example, let S∗3 = {α ∈ 2N×N : ∃J ∀j > J ∃k α(j, k) = 0}, and
P3 = {β ∈ 2N×N : ∀j ∃K ∀k ≥ K β(j, k) = 0}. Then S∗3 is Σ3, and P3 is Π3

in 2N×N. And S∗3 × P3 is a D2(Σ3) subset of (2N×N)2.
For a class Γ of subsets, a set A is Γ -hard if A is not in any proper

subclass, while it is Γ -complete if it Γ -hard and in Γ . In other words, A
is Γ -complete if and only if it has complexity precisely Γ . It is known [4]
that S∗3 is Σ3-complete, P3 is Π3-complete, and S∗3 ×P3 is D2(Σ3)-complete.
We can rephrase these last two statements as follows: there is a formula
characterizing P3 of the form ∀∃∀, but we can be certain that no logically
simpler characterizing formula exists, and there is a formula characterizing
S∗3 × P3 of the form (∃∀∃) ∧ (∀∃∀), but no logically simpler characterizing
formula exists.

Let A ⊆ X, B ⊆ Y and f a continuous map of X to Y such that
f−1(B) = A (such an f is a Wadge reduction). Note that if B is in some
Borel class Γ , then by continuity so is A = f−1(B). Hence if A is Γ -hard,
then so is B.

We work inside the hyperspace C(IN ) of all subcontinua of IN with
the Vietoris topology, which makes it a continuum. In light of the remarks
above, it should now be clear that the following is indeed a formal version
of Theorem 1.5.

Theorem 3.1. Fix N ≥ 2. Inside the space C(IN ):

(1) the set of graphs which are ω-ac is Π3-complete,
(2) any family of homeomorphism classes of graphs is Π3-hard and al-

ways D2(Σ3), and
(3) the set of n-ac non-(n + 1)-ac graphs is D2(Σ3)-complete for n =

2, 3, 4, 5.

Claims (1)–(3) are the contents of Lemmas 3.3, 3.2 and Proposition 3.4,
respectively.
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Lemma 3.2. Let C be any collection of graphs. Then H(C), the set of all
subcontinua of IN homeomorphic to some member of C, is Π3-hard and in
D2(Σ3).

Proof. That H(C) is Π3-hard is immediate from Theorem 7.3 of [1]. It
remains to show it is in D2(Σ3).

For spaces X and Y , write X ≤ Y if X is Y -like, X < Y if X ≤ Y but
Y 6≤ X, and X ∼ Y if X ≤ Y and Y ≤ X. Further write LX = {Y : Y ≤ Y }
and Q(X) = {Y : X ∼ Y }.

Let C0 be a maximal family of pairwise non-homeomorphic members of C.
Up to homeomorphism there are only countably many graphs. So enumerate
C0 = {Gm : m ∈ N}. According to Theorem 1.7 of [1], for a graph G and a
Peano continuum P , we observe that P is G-like if and only if P is a graph
obtained from G by identifying disjoint (connected) subgraphs to points.
For a fixed graph G, then, there are, up to homeomorphism, only finitely
many G-like graphs. For each Gm in C pick graphs Gm,i for i = 1, . . . , km
such that Gm,i < G for each i, and if G′ is a graph such that G′ < G then
for some i we have H(G′) = H(Gm,i).

For a graph G, H(G) = Q(G) (see [3]). Hence, writing P for the class of
Peano continua, we have H(C) =

⋃
mQ(Gm) = P ∩

⋃
mRm, where

Rm = LGm \
km⋃
i=1

LGm,i = LGm ∩
(
C(IN ) \

km⋃
i=1

LGm,i

)
.

By Corollary 5.4 of [1], for a graph G, the set LG is Π2. Hence each Rm,
as the intersection of a Π2 and a Σ2, is Σ3, and so is their countable union.
Since P is Π3, we see that H(C) is indeed the intersection of a Π3 set and a
Σ3 set.

Lemma 3.3. The set ACω of all subcontinua of IN which are ω-ac graphs
is Π3-complete.

Proof. For a graph G, H(G) is Π3. By Theorem 1.3, ACω is a finite
union of H(G) for graphs G, and so is also Π3. Hence by Lemma 3.2, ACω
is Π3-complete.

Proposition 3.4. For any n, let ACn be the set of subcontinua of IN

which are n-ac but not (n + 1)-ac graphs. Then for n = 2, 3, 4, 5 the sets
ACn are D2(Σ3)-complete.

Proof. According to Lemma 3.2, ACn is D2(Σ3), so it suffices to show
that ACn is D2(Σ3)-hard.

To show that ACn is D2(Σ3)-hard it suffices to show that there is a
continuous map F : (2N×N)2 → C(IN ) such that F−1(ACn) = S∗3 × P3. We
do the construction for N = 2. Since R2 embeds naturally in general RN ,
the proof obviously extends to all N ≥ 2.
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We first deal with the case when n = 5. Then we will explain how to
make the minor modifications needed for the other cases, n = 2, 3, 4.

For x, y in R2, let xy be the straight line segment from x to y. Set
O = (0, 0), T = (3, 1), B1 = (1, 0), B2 = (4/3, 0), B3 = (5/3, 0), B4 =
(2, 0) and T1 = (1, 1), T2 = (4/3, 1), T3 = (5/3, 1), T4 = (2, 1). Let K0 =

OB4 ∪B4T ∪ TT1 ∪ T1O ∪B2T2 ∪B3T3. Then K0 is a 5-ac non-6-ac graph.
Define bj = (1/j, 0), tj = (1/j, 1/j), tkj = (1/j, 1/j − 1/(kj)) and skj =

(1/j − 1/(kj(j + 1)), 0). Then KJ = K0 ∪
⋃J
j=1 bjtj—for each J—is also a

5-ac non-6-ac graph.
Let K ′0 be K0 with the interior of the line from O to B1, and the interior

of the line from T4 to T , deleted.
We now define F at some α and β in 2N×N. Fix j. If α(j, k) = 1 for all k,

then let Rj = bjtj ∪ bjbj+1. Otherwise, let k0 = min{k : α(j, k) = 0}, and

let Rj = bjt
k0
j ∪ t

k0
j s

k0
j ∪ s

k0
j bj+1.

For any j, k set pj = 3−1/j, qkj = 1−1/(j+k), lj = pj+(1/8)(pj+1−pj)
and rj = pj + (7/8)(pj+1 − pj). Fix j. Define

sj = (pj , 1)(pj , q1j ) ∪ (pj , q1j )(lj , q
1
j ) ∪ (lj , 1)(pj+1, 1)

∪
⋃
{(lj , qkj )(lj , q

k+1
j ) : β(j, k) = 0}

∪
⋃
{(lj , qkj )(rj , qkj ) ∪ (rj , qkj )(lj , q

k+1
j ) : β(j, k) = 1}.

Let F (α, β) = K ′0 ∪
⋃
j(Rj ∪ Sj). Then it is straightforward that F maps

(2N×N)2 continuously into C([0, 4]2).
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Take any α. For any j, the set Rj connects the bottom edge OB1 to the
diagonal edge OT1 if α(j, k) = 1 for all k, and otherwise it is an arc from
bj to bj+1. Hence

⋃
j>J Rj is a free arc from BJ+1 to O if α is in S∗3 , and

otherwise cannot be a subspace of a graph (because it contains infinitely
many points of order 3).

Take any β. For any j, Sj is an arc from (pj , 1) to (pj+1, 1) if β(j, k)
= 0 for all but finitely many k, but contains a ‘topologist’s sine curve’ if
β(j, k) = 1 for infinitely many k. Thus

⋃
j Sj is a free arc from T4 to T if β is

in P3, and otherwise it cannot be a subspace of a graph (because it contains
a topologist’s sine curve).

Hence if (α, β) is in S∗3 × P3, F (α, β) is homeomorphic to some KJ ,
which in turn means it is a graph which is 5-ac but not 6-ac. On the other
hand, if either α is not in S∗3 or β is not in P3, then F (α, β) contains
subspaces which cannot be subspaces of a graph—and so is not a graph.
Thus F−1(AC5) = S∗3 × P3 as required.

Let T+
1 = (1, 2), T+

2 = (4/3, 2) and T+
3 = (5/3, 2). Suppose now that

n = 4. Modify K0 by adding the line segment from T1 to T+
1 . Then this

modified K0 is 4-ac but not 3-ac. Further, for any J , the modified KJ ob-
tained by taking the modified K0 as a base is also 4-ac but not 5-ac. Thus
we get the desired reduction in the case when n = 4.

Similarly, for n = 3, modify K0 by adding both the line segments T1T
+
1

and T2T
+
2 . This gives a base graph, and a family of KJ , which are all 3-ac

but not 4-ac. Finally, by adding the three line segments T1T
+
1 , T2T

+
2 and

T3T
+
3 to K0 we get 2-ac non-3-ac graphs. The desired reductions for n = 3

and n = 2 follow.

4. Open problems. The main theorems, Theorems 1.3, 1.4 and 1.5,
raise some natural problems.

Problems 4.1.

• Find examples of continua which are n-ac but not (n+1)-ac for n ≥ 7.
Theorem 1.3 implies that no graph is an example. Are there regular
examples?
• Find a ‘simple’ (i.e. Π3) characterization of 6-ac graphs which are

non-7-ac. Alternatively, prove that no such characterization is possible,
and show that the set of 6-ac non-7-ac graphs is D2(Σ3). Note (Exam-
ple 1.1(G)) that there are infinitely many 6-ac non-7-ac graphs—rather
than the only finite family of 7-ac graphs—but this does not rule out
a ‘simple’ characterization.
• Characterize the ω-ac regular continua. The Sierpiński triangle is a

regular ω-ac continuum. The authors, with Kovan-Bakan, show in [2]
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that there is no Borel characterization of rational ω-ac continua. How-
ever the examples used in that argument are far from regular (not
even locally connected).
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