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Abstract. The aim of this paper is to obtain a generalization of W. A. Woyczynski
and B. Ram results concerning integrability of power series in terms of their coefficients
for the class GM of general monotonic sequences.

1. Introduction. Let @ be a nondecreasing continuous real valued func-
tion defined on Ry = [0; +00) and vanishing only at the origin. If @ is convex
and lim, 0 @(u)/u = 0, limy oo P(u)/u = 0o, then @ is called an N-function
(IKR]). It is well known that every N-function ¢ admits a representation
®(u) = {; @(t) dt, where ¢(t) is a positive, right-continuous nondecreasing
function with ¢(0) = 0 and limy_,+, ¢(t) = +oc. In particular, @ is absolutely
continuous on every finite interval of R and

(a) &(z)/x is increasing on (0;00).

Further we also require
(b) there exists ¢ > 1 such that @(x)/x¢ is decreasing on (0;00).
Generalizing several results on LP-integrability with weight =7 (see [Bol,

§4]), Y.-M. Chen [Ch1] proved

THEOREM 1.1. Let {a,};2, be a sequence decreasing to zero and g(t) =
Yool apsinnt. If 0 < v < 1 and ¢ satisfies conditions (a) and (b) above,
then a necessary and sufficient condition for x=7®(g(x)) to belong to L|0; 7]
is the convergence of the series Y oo i n) " 2®@(nay,).

Note that Lemma 3 in [Chl], applied in the proof of Theorem 1.1, was
proved with the help of integration by parts. Therefore, it seems that The-
orem 1.1 also requires the assumption @ is absolutely continuous.
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Let Lg(X,dp) be the Orlicz class, i.e. the set of all complex valued
measurable functions f on a measure space (X, u) such that the modular
§x @(|f(x)]) du is finite. The Hardy-Orlicz class Hg[0; 27 is the closed sub-
set of Lg([0;27], dx) spanned by all trigonometric polynomials of the form

N
— § :aneznt
n=0

W. Woyczynski [Wo] proved

THEOREM 1.2. Let f(2) = Y oo axz, 2| < 1, and let & be an N-
function satisfying the Ag-condition. Also, suppose that for some a € (0;1)
and a convex function A the function @ satisfies A(u) < &*(u) < cA(u) for
all w € [0;00). If ay, | 0, then the following four statements are equivalent:

(i) f e La([0;1), dp);

(i) g(t) = f(e") € Hal0; 27T]

(iil) >°0° n=2d(nay) <

(iv) 2202 1” “20(4,) <
where Ap, =Y 11 a;.

If for {a,}5°; there exists 7 > 0 such that {a,n~7}>2, is decreasing,

then {a,}°2 is called quasi monotone (written {a,}>2; € QM). If for all
n € N we have

2n—1
> lak — apa| < Cay,
k=n
then we write {a,}5°; € GM. Finally, if for all n € N we have
o0
> lax — ara| < Ca,
k=n

then {a,}>2,; € RBVS. These classes were introduced by A. A. Konyushkov
[Kol, S. Tikhonov [T2] and L. Leindler [Le] respectively.

In [T2] it is proved that QM C GM, and the embedding RBVS C GM is
obvious. The example of a positive GM sequence belonging neither to QM
nor to RBVS can be found in [LT]. P. Jain [Ja] generalized Theorem 1.2 to
the case of weighted Orlicz classes with power weight and {a,}5°; € QM
with additional restriction 0 < B; < nfa, < By for some 6 > 0. A more
general result was obtained by B. Ram [Ra].

Let 1(x) be a nondecreasing positive function on (0;00) such that

(z)/x° decreases on (0;00) for some § € (0;1) (we then write 1» € M;).
Under these assumptions @ and 1) satisfy the Ag-condition: @(2z) < CP(x)
and ¥ (2z) < CY(x).
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THEOREM 1.3. Let @ and f(z) be as in Theorem 1.2, and v be as above.
If{an}2, € QMNRBVS, then the following four statements are equivalent:

(L.1) (| f (2)]) /(1 —z) € L(0;1);
(1.2) B(|f(e)))/¢(x) € L(0; m);
. &(nay) o
(1.3) ;n%u/n) < o0;
o D(An) ~
(1.4) ;an(l/n) < oco0.

The aim of our paper is to extend Theorem 1.3 to the case {a,}32; € GM
whenever @ is an N-function satisfying condition (b).

2. Auxiliary results. A function f is called almost increasing on the
interval P if there exists C' > 0 such that for any =,y € P, = < y, we have
f(z) < Cf(y).

Lemma 2.1 may be found in |Ch2] without proof. For the convenience of
the reader we provide a proof.

LEMMA 2.1. Let @ be an N-function satisfying condition (b) for some
c>1, and letp € My, an, >0, A, =3 1 | a; for alln € N. Then

> (Pe(1/n) ' B(A,) < CY(n*(1/n)) T B(nay).
n=1 n=1

Proof. Let b, = (n?¥(1/n))7L, op = Y52 bi, n € N, and Ag = 0. For
a continuous increasing function w on [0; 1] with w(0) = 0, N. K. Bari and
S. B. Stechkin [BS] established that the condition

[e.e]

Y iTtw(1/i) = O(w(1/n)), neN,

i=n
is equivalent to w(t)/t* being almost increasing for some o € (0;1). If w(t) =
t/1(t), then 1p € M; implies that for all § € (0;1) the function w(t)/t% is
increasing for any « € (0;1 — 0). Therefore

[e.o]

(21) o= (i*(1/) =0 P(1/n)"") = O(nb,), neN.

i=n

Using Abel’s transform, we obtain, for NV € N,

N N N
Z@(An)bn = Z@(Anxan —0opt1) < Z(@(An) — D(Ap-1))on.
n=1 n=1 n=1
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Since k(z) = P(x)/x¢ is decreasing and ¢ > 1, in virtue of (2.1) and La-
grange’s mean value theorem we have

N N N
Z@(An)bn < (Ank(An) — A _16(Ap-1))on < Z“(An)(Afz — AL _1)on
n=1 n=1 n=1

N N
<) R(An)AL  (Ap — Ap1)on < C1 Y p(An)nanbn,
1 n=1

where ¢(x) = ®(x)/x. Applying the idea of H. P. Mulholland [Mu] and using
the fact that ¢(x) is increasing, we obtain

o(Ap)na, =t (tna,p(Ay)) <t max(tna,p(tna,), Anp(Ay))
<t Y (®(tnay,) + B(Ay)).

But &(z)/z¢ is decreasing and for t > 1 we have &(tz) < t°@(z). Thus,
o(Ap)nay, § te"1d(na,) + t~1®(A,) and

N N
Zgzs Yon <Cl(Ztc’lq‘ﬁ(nan)bn+t’12d5(An)bn),
n=1 n=1

whence (1 —t71C) SN &(A,)b, < Cit ' SN | &(nay,)b,. Taking suffi-
ciently large t and letting N tend to oo, we get the inequality of the lemma. u

Lemma 2.2 below contains the main properties of {a,}°°; € GM proved
by S. Tikhonov [T2].

LEMMA 2.2.
(i) Suppose {a,}>2, € GM and X i ta; < co. Then

D lak = aggal| < C<an+zak/k‘>7 ne€N.
k=n k=n

(ii) Let {an}s>, € GM. Then ai < Ciay, for n <k < 2n.
COROLLARY 2.3. If {a;};2, € GM, then there exists f > 0 such that
(k+1)n—1
> a;=0(k"4,), kneN.
i=kn
Proof. Let [logy k] = j, k> 2. 1f i € [kn,(k+ 1)n — 1), then i < 2F!n
and a; < C{+1an, where C} is the constant from Lemma 2.2(ii). Thus,

(k+1)n—1 n
Z a; < n2(j+1) log, Clan < CQ . 2210g2 k-logy C1 Z a; < CgkﬁAn,
i=kn i=[n/2]

where 8 = 2log, C. For k = 1 one can use similar arguments. m
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Lemma 2.4 is a generalization of the classical Hardy inequality (see [HLP,
Theorem 330]). It can be found in [Ch2] without proof and in [Ra] in the
case when @ satisfies the assumptions of Theorem B (with proof).

LEMMA 2.4. Let @ and i be as in Lemma 2.1, and suppose that f is a
nonnegative measurable function on (0,a). Then

Jo (a7 § () dt) @) dz < Cla) [ @ (@) (2) " da.

0 0 0

3. Main result

MAIN THEOREM 3.1. Let @ be an N -function satisfying condition (b),
and let i € My, {an}22, € GM, and f(z) = Y .2, anz™. Then the state-
ments (1.1), (1.3) and (1.4) are equivalent. If, in addition,

(3.1) Zak/k::Oa
k=n

then all four statements (1.1)—(1.4) are equivalent.
Proof. We first prove (1.1)=-(1.4), (1.4)=(1.1) and (1.3)<(1.4), and
then (1.4)=(1.2) and (1.2)=(1.3).
(1.1)=(14). fl—x=yandy € (n+1)"Ln =1, ne {23, .1,
then
>Zak 1—y)*>@0-1/n)" Zak>4 LA,.
k=1

Since f is increasing, and since @ and 1) satisfy the Ag-condition and @(A,,)
< P(4f(1 —wu)) for u € I,, n > 2, we have

i qS(An)n SCHiTT t20(Ay) "

Zenzg(i/m) = Tt ) Ty
=M a(4,)
=C "L du
1nZ:l 1/(7§+1) ¥(w)
{ B(ar) =M B(f(1 - u))
<C du + C — 2 du
1%¢mo QZ;UAH) W (u)
1
< Oy <1+Sif(—:)c))d$>

0

(1.4)=(1.1). It is easy to see that (1 —1/n)’ < (1 —1/n)™ < e7* for
nk <i < n(k+ 1) — 1. Using Corollary 2.3 and the As-condition on &, we
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have
(o) Y et - a)
ey R DI e N
oo 1/(n—-1)
D iy an(l = 1/m)")
< dz
2 ) §(
oo 1/(n—1) oo (k+1)n—1
<> | (Z“k+z Y a ) (1/n)"tdx
n=2 1/n i=kn
<C’4Zn *p( 4, +C5Zkﬁ A )e(n)™!
n=2

= a4 _
=G0 2 i) <

(1.4)<(1.3). By Lemma 2.2(ii) we have

n
(3.2) na, < Cy Z ap < CrA,,
k=[n/2]
proving (1.4)=-(1.3). The inverse implication follows from Lemma 2.1.
(1.4)=(1.2). If Di(z) = 1/2 + Zle cosiz, then it is well known that
|Di(z)| < 7/x. Using Abel’s transform and Lemma 2.2(i), we obtain

(3.3) IRf(e™)] = ’iakcoskx‘

< A+ Cgat (an + i ak/k)
k=n

§ An + C9nan S ClOArw T € (7‘[‘/(71 + 1); 77/”]7

by (3.1) and (3.2). Using (3.3) and the Ag-condition on @ and 1), we conclude
™ o0 TI'/TL %)
& !%f )| D(Cr0Ay) D(Ay)
I e < PC0dn) 4o < 0, 52
§> @) - Z ﬂ/gﬂ o) Z n?(1/n)

Similarly we can prove that {§ @(|Sf (™)) (x) ! do < oc.
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(1.2)=(1.3). Since ¥(x)~! is decreasing and not vanishing on (0;7), we
have (] @(|f(e")|) dz < oo, whence f(¢”) € L[0;]. Using the standard
method of double integration and (3.2), we obtain for r(t) = Rf(e'), r1(t) =

Sé r(u)du and ro(t) = Xg r1(u) du,

o0 n
= Zaj(l —cos jt)j 2> 22]’72@]- sin?(jt/2)

j—l

>22] jt/ﬂ >t20122aj
7=1
ZClgt nap, te (r/(n+1);7/n].
Using Lemma 2.4 similarly to the paper [AW], where ®(x) = 2P, p > 1,
Y(x) = z¢, we obtain

d(nay) > D (2 2ro(z))
Lomqm < N T
(2 ?rs () Tt 5 (1)) db)
=C de < C
§ e § (@)
< Cus| Pz o lr®)ldt) | 016§de o n

)T @) =0 @)

COROLLARY 3.2. If the conditions of Theorem 3.1 hold and, in addition,
{an}2, € RBVS, then all statements (1.1)—(1.4) are equivalent.

Proof. The inequality (3.1) was used in the implication (1.4)=-(1.2) only.
In this case instead of (3.3) we have
[e.@]
[RF(e™)] < An+ Cra™ "D lag — apq1| < An + Cozan
k=n
and further we proceed as in the proof of Theorem 3.1. =

REMARK. Let us note that the part (1.3)=(1.4)=-(1.2) of Corollary 3.2
was shown in [T1] for a very general function @. A necessary and sufficient
conditions for (1.2) in terms of summability properties of {a,} in the case
&(t) = tP, Y(t) = t*, can be found in [Bo], and the sharp result for {a,} €
GM in [T2]. Many interesting results for (1.1) in the case @(t) = ¥, ¢(t) =t
are in [MP].

COROLLARY 3.3. If the conditions of Theorem 3.1 hold and {an}32, €
QM, then (1.1), (1.3), (1.4) are equivalent. If, in addition, (3.1) holds, then
all statements (1.1)—(1.4) are equivalent.
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REMARK. It would be of interest to prove the equivalence of (1.1)—(1.4)
without condition (3.1). Note that the inequality

(3.4) Z@(Z ) 1<CZ¢ )1 (nay)
n=1

in the classical case @(z) = 2P, 1 < p < oo, Y(z) = ¢, is valid only for
¢ < 1 [HLP, Th. 346]. Since n?y¥(1/n)/n — oo as n — oo, the inequality
(3.4) with (n?y(1/n))~! instead of ¥(n)~! seems to be false.
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