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THE EXISTENCE OF RELATIVE PURE INJECTIVE ENVELOPES

BY

FATEMEH ZAREH-KHOSHCHEHREH and KAMRAN DIVAANI-AAZAR (Tehran)

Abstract. Let S be a class of finitely presented R-modules such that R ∈ S and S
has a subset S∗ with the property that for any U ∈ S there is a U∗ ∈ S∗ with U∗ ∼= U.
We show that the class of S-pure injective R-modules is preenveloping. As an application,
we deduce that the left global S-pure projective dimension of R is equal to its left global
S-pure injective dimension. As our main result, we prove that, in fact, the class of S-pure
injective R-modules is enveloping.

1. Introduction. Throughout this paper, R denotes a ring with identity
and all modules are assumed to be left and unitary. The notion of purity plays
a substantial role in algebra and model theory. It was introduced by P. M.
Cohn [1] for left R-modules and by J. Łoś [12] for abelian groups; see also
J. M. Maranda [13].

In 1967, R. Kiełpiński [10] introduced the notion of relative Γ -purity and
proved that any R-module possesses a relative Γ -pure injective envelope.
Also, he has shown that the relative Γ -pure injectivity coincides with the
relative Γ -algebraic compactness.

Two years later, R. B. Warfield [18] proved that any R-module admits a
pure injective envelope and the pure injectivity coincides with the algebraic
compactness. Also, he introduced a notion of S-purity for any class S of
R-modules.

One can check that for an appropriate Γ , the Γ -purity and RD-purity
coincide. However, for a general class S of finitely presented R-modules, the
relationship between Γ -purity and S-purity is ambiguous.

For a survey of results on various notions of purity, we refer the reader
to the interesting articles [5], [6], [8]–[15] and [18], where among other things
the algebraic compactness and pure homological dimensions are discussed.

We call a class S of R-modules set-presentable if it has a subset S∗ with
the property that for any U ∈ S there is a U∗ ∈ S∗ with U∗ ∼= U. It is
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easy to see that any class of finitely presented R-modules which is closed
under isomorphism is set-presentable. So, the classes of finitely presented R-
modules, cyclic cyclically-presented R-modules and cyclically-presented R-
modules are set-presentable. Also, note that each of these classes contains R.

Let S be a set-presentable class of finitely presented R-modules con-
taining R. Warfield [18, Proposition 1] showed that every R-module has an
S-pure projective precover. It is natural to ask whether any R-module has
an S-pure injective preenvelope. For the set-presentable classes of finitely
presented R-modules, cyclic cyclically-presented R-modules and cyclically-
presented R-modules, even more is proven to be true. Warfield [18, Proposi-
tion 6] has proved that every R-module has a pure injective envelope. Also,
he showed that every R-module has an RD-pure injective envelope (see e.g.
[4, Chapter XIII, Theorem 1.6]). More recently, Divaani-Aazar, Esmkhani
and Tousi [2, Corollary 4.7, Definition 4.8 and Theorem 4.10] showed that
every R-module has a cyclically pure injective envelope.

Our main aim in this paper is to prove that for any set-presentable class S
of finitely presented R-modules containing R, the class of S-pure injective R-
modules is enveloping. We essentially use the technique and ideas introduced
by Kiełpiński [10] and Warfield [18] and developed in [3], [5], [9], [2] and
[11]–[15].

First in Proposition 2.4, for a general class S of finitely presented R-
modules, we give a characterization of S-pure exact sequences. Let S be a
set-presentable class of finitely presented R-modules containing R. In Propo-
sition 2.8, we show that the class of S-pure injective R-modules is preen-
veloping. This, in particular, implies that the left global S-pure projective
dimension of R is equal to its left global S-pure injective dimension (see
Corollary 2.9). Finally, in Theorem 3.8, we prove that every R-module has
an S-pure injective envelope.

We continue the introduction by recalling some basic definitions and
notions that we use in this paper. Let S be a class of R-modules. An exact
sequence 0 → A

f→ B
g→ C → 0 of R-modules and R-homomorphisms is

called S-pure if for all U ∈ S the induced homomorphism HomR(U,B) →
HomR(U,C) is surjective. In this situation, f , g, f(A) and C are called an
S-pure monomorphism, S-pure epimorphism, S-pure submodule of B, and
S-pure homomorphic image of B, respectively.

An R-module P (resp. E) is called S-pure projective (resp. S-pure in-
jective) if for any S-pure exact sequence 0 → A

f→ B
g→ C → 0, the

induced homomorphism HomR(P,B)→ HomR(P,C) (resp. HomR(B,E)→
HomR(A,E)) is surjective. Also, a right R-module F is called S-pure flat if
for any S-pure exact sequence 0 → A

f→ B
g→ C → 0, the induced homo-

morphism F ⊗R A→ F ⊗R B is injective.
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An R-module M is called cyclically-presented if it is isomorphic to a
module of the form Rn/G for some n ∈ N and some cyclic submodule G of
Rn. If S is the class of all finitely presented (resp. cyclic cyclically-presented)
R-modules, then S-purity is called purity (resp. RD-purity). If S is the class
of all cyclically-presented R-modules, then S-purity is called cyclic purity.

Let X be a class of R-modules and M an R-module. An R-homomor-
phism φ : M → X where X ∈ X is called an X -preenvelope of M if for
any X ′ ∈ X , the induced homomorphism HomR(X,X

′) → HomR(M,X ′)
is surjective. Also, an R-homomorphism φ : X → M where X ∈ X is
called an X -precover of M if for any X ′ ∈X , the induced homomorphism
HomR(X

′, X)→ HomR(X
′,M) is surjective.

If φ : M → X (resp. φ : X → M) is an X -preenvelope (resp. X -pre-
cover) of M and any R-homomorphism f : X → X such that fφ = φ
(resp. φf = φ) is an automorphism, then φ is called an X -envelope (resp.
X -cover) of M . The class X is called (pre)enveloping (resp. (pre)covering)
if every R-module admits an X -(pre)envelope (resp. X -(pre)cover).

By definition, it is clear that if X -envelopes (resp. X -covers) exist, then
they are unique up to isomorphism. Also, it is obvious that if the class X
contains all injective (resp. projective) R-modules, then any X -preenvelope
(resp. X -precover) is injective (resp. surjective).

2. S-pure exact sequences. Propositions 2.4 and 2.8 are the main
results of this section. We will use them several times to prove our main
result in the next section.

One can easily deduce the following result from the definitions.

Lemma 2.1. Let S be a class of R-modules and {Mγ}γ∈Γ an indexed
family of R-modules. Also, let {Nγ}γ∈Γ be an indexed family of right R-
modules.

(i)
∏
γ∈Γ Mγ is S-pure injective if and only if Mγ is S-pure injective for

all γ ∈ Γ .
(ii)

⊕
γ∈Γ Nγ is S-pure flat if and only if Nγ is S-pure flat for all γ ∈ Γ .

In what follows we denote the Pontryagin duality functor HomZ(−,Q/Z)
by (−)+.

Lemma 2.2. Let S be a class of R-modules. A right R-module M is
S-pure flat if and only if M+ is S-pure injective.

Proof. Let X : 0 → X1 → X2 → X3 → 0 be an S-pure exact sequence.
As Q/Z is a faithful injective Z-module, M ⊗R X is exact if and only if
(M ⊗R X)+ ∼= HomR(X,M

+) is exact. This implies the conclusion.

Next, for any general class S of R-modules, we show that the class of
S-pure flat R-modules is covering.
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Corollary 2.3. Let S be a class of R-modules. Then every right R-
module admits an S-pure flat cover.

Proof. Let M be a right S-pure flat R-module and

0→ N
f−→M

g−→ L→ 0

a pure exact sequence of right R-modules. Then we get the split exact se-
quence

0→ L+ g+−−→M+ f+−−→ N+ → 0.

Lemma 2.2 implies thatM+ is S-pure injective, and so by Lemma 2.1(i), one
deduces that L+ is S-pure injective. So, using Lemma 2.2 again shows that
L is S-pure flat. Hence, the class of S-pure flat right R-modules is closed
under pure quotient modules. On the other hand, by Lemma 2.1(ii), any
direct sum of S-pure flat right R-modules is S-pure flat. Therefore, by [7,
Theorem 2.5], every right R-module has an S-pure flat cover.

For any two natural numbers n, k and any R-homomorphism µ : Rk →
Rn, let µt : Rn → Rk denote the R-homomorphism given by the transpose
of the matrix corresponding to µ. Let U be a finitely presented R-module
and Rk

µ→ Rn
π→ U → 0 a finite presentation of U . Then the Auslander

transpose of U is defined by tr(U) := Cokerµt. It is unique up to projective
direct summands. For further information on this notion, we refer the reader
to [16, Section 11.4] and in particular to Remark in [16, p. 185].

The following result is an analogue of [18, Proposition 3] for a general
class of finitely presented R-modules; see also [10, Lemma 1 and Theorem 1],
[9, Proposition 1.1 and Corollary 1.2] and [15, Lemma 4.2].

Proposition 2.4. Let S be a class of finitely presented R-modules and

E : 0→ A
i
↪→B

ψ−→ C → 0

an exact sequence of R-modules and R-homomorphisms. The following are
equivalent:

(i) E is S-pure exact.
(ii) tr(U)⊗R E is exact for all U ∈ S.
(iii) µ(Ak) = An ∩ µ(Bk) for all matrices µ ∈ HomR(R

k, Rn) with
Cokerµt ∈ S.

(iv) For any matrix (rij) ∈ HomR(R
n, Rk) with Coker (rij) ∈ S and any

a1, . . . , an ∈ A, if the linear equations
∑k

i=1 rijxi = aj, 1 ≤ j ≤ n,
are soluble in B, then they are also soluble in A.

Proof. (i)⇒(iv). Let (rij) ∈ HomR(R
n, Rk) be a matrix with U :=

Coker (rij) ∈ S and a1, . . . , an ∈ A. Then U has generators u1, . . . , uk which
satisfy the relations

∑k
i=1 rijui = 0, 1 ≤ j ≤ n. Assume that the linear

equations
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k∑
i=1

rijxi = aj , 1 ≤ j ≤ n,

are soluble in B. We show that they are also soluble in A.
Let y1, . . . , yk ∈ B be a solution of these equations. The map f ∈

HomR(U,C) given by f(ui) := ψ(yi) for all 1 ≤ i ≤ k is a well-defined
R-homomorphism. As E is S-pure exact, the induced homomorphism
HomR(U,B) → HomR(U,C) is surjective, and so there exists an R-homo-
morphism g ∈ HomR(U,B) such that f = ψg. Let zi := yi − g(ui) for all
i = 1, . . . , k. Then each zi belongs to Kerψ = A and

∑k
i=1 rijzi = aj for all

j = 1, . . . , n.

(iv)⇒(i). Let U be an element of S which is generated by elements
u1, . . . , uk which satisfy the relations

∑k
i=1 rijui = 0, 1 ≤ j ≤ n. Let f ∈

HomR(U,C). For each i = 1, . . . , k, choose yi ∈ B such that ψ(yi) = f(ui).

Then
∑k

i=1 rijyi ∈ Kerψ = A for all j = 1, . . . , n. Therefore, we have a set
of linear equations

k∑
i=1

rijxi = aj , 1 ≤ j ≤ n,

with constants in A which are soluble in B. Let z1, . . . , zk be a solution of
these equations in A. We define g ∈ HomR(U,B) by g(ui) := yi−zi for all i =
1, . . . , k. Then ψg = f, and so the induced homomorphism HomR(U,B) →
HomR(U,C) is surjective.

(ii)⇔(iii). Let µ=(rij) ∈ HomR(R
k, Rn) be a matrix with U := Cokerµt

∈ S. Tensoring the exact sequence Rk µ−→ Rn
π−→ tr(U) → 0 first by A and

then by B yield the commutative diagram

Ak

ik

��

µ
// An

in

��

πA // tr(U)⊗R A

1tr(U)⊗Ri

��

// 0

Bk µ
// Bn πB // tr(U)⊗R B // 0

in which all maps are natural, rows are exact and the left and middle vertical
maps are injective. Clearly, 1tr(U) ⊗R i is injective if and only if KerπA =
Ker((1tr(U) ⊗R i)(πA)). On the other hand, we have

Ker((1tr(U) ⊗R i)(πA)) = Ker(πBi
n) = An ∩KerπB = An ∩ µ(Bk).

Therefore, tr(U)⊗R E is exact if and only if µ(Ak) = An ∩ µ(Bk).

(iii)⇒(iv). Assume that (rij)∈HomR(R
n, Rk) is a matrix with Coker (rij)

∈ S. Consider the linear equations
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k∑
i=1

rijxi = aj , 1 ≤ j ≤ n,

with constants in A. Let b1, . . . , bk be a solution of these equations in B. Set
µ := (rij)

t. Then the hypothesis yields µ(Ak) = An∩µ(Bk).As (a1, . . . , an) ∈
An ∩ µ(Bk), there exists (a′1, . . . , a

′
k) ∈ Ak such that µ((a′1, . . . , a′k)) =

(a1, . . . , an). Consequently, a′1, . . . , a′k is a solution of the above equations
in A.

(iv)⇒(iii). Let µ = (rij) ∈ HomR(R
k, Rn) be a matrix with U :=

Cokerµt∈S. Let (a1, . . . , an) ∈ An∩µ(Bk). Then µ(b1, . . . , bk)=(a1, . . . , an)
for some b1, . . . , bk ∈ B. Hence, b1, . . . , bk is a solution of the equations

k∑
i=1

rjixi = aj , 1 ≤ j ≤ n.

Let a′1, . . . , a′k ∈ A be a solution of the above equations. Then µ(a′1, . . . , a′k) =
(a1, . . . , an), and so (a1, . . . , an) ∈ µ(Ak).

Now, we deduce a couple of corollaries of Proposition 2.4.
Corollary 2.5. Let S be a class of finitely presented R-modules and

X : 0→ X1 → X2 → X3 → 0

an exact sequence of R-modules and R-homomorphisms. Then the following
conditions are equivalent:

(i) X is S-pure exact.
(ii) HomR(P,X) is exact for all S-pure projective R-modules P.
(iii) HomR(X, E) is exact for all S-pure injective R-modules E.
(iv) F ⊗R X is exact for all S-pure flat R-modules F.

Proof. (i)⇒(ii) and (i)⇒(iii) are clear. (ii)⇒(i) comes from the fact that
every U ∈ S is S-pure projective.

(iii)⇒(iv). Let F be an S-pure flat R-module. Then, by Lemma 2.2, F+

is S-pure injective. So,
HomR(X, F

+) ∼= HomZ(F ⊗R X,Q/Z) = (F ⊗R X)+

is exact. Since Q/Z is a faithful injective Z-module, it follows that F ⊗R X
is exact.

(iv)⇒(i). By Proposition 2.4, tr(U) is S-pure flat for all U ∈ S. Hence,
Proposition 2.4 implies that the sequence X is S-pure exact.

In what follows, for a class S of finitely presented R-modules, we denote
the class {tr(U) | U ∈ S} by tr(S).

Corollary 2.6. Assume that R is commutative and S is a set-present-
able class of finitely presented R-modules containing R. If S ⊆ tr(S), then
every S-pure projective R-module is S-pure flat.
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Proof. Assume that S ⊆ tr(S). Then, by Proposition 2.4, any element of
S is S-pure flat. By [18, Proposition 1], an R-moduleM is S-pure projective
if and only if it is a summand of a direct sum of copies of modules in S.
Thus, by Lemma 2.1(ii), every S-pure projective R-module is S-pure flat.

Example 2.7. Let S be a class of finitely presented R-modules.

(i) If S is the class of all cyclic free R-modules, then S-pure exact
sequences are the usual exact sequences. So, S-pure projective, S-
pure injective and S-pure flat R-modules are the usual projective,
injective and flat R-modules, respectively.

(ii) If S is the class of all finitely presented R-modules, then S-purity
coincides with the usual purity.

(iii) If S is the class of all cyclic cyclically-presented R-modules, then
S-purity coincides with RD-purity.

(iv) If S is the class of all cyclically-presented R-modules, then S-purity
coincides with cyclic purity.

(v) Assume that R is commutative. Obliviously, if R ∈ S, then R ∈
tr(S). It is easy to see that if S is set-presentable, then tr(S) has a
subclass S̃, which is a set, and tr(S)-purity coincides with S̃-purity.
In cases (i)–(iii) above, one can easily verify that S = tr(S). In (iv),
tr(S)-purity coincides with S̃-purity, where S̃ is the set

{R/I | I is a finitely generated ideal of R}.
Proposition 2.8. Let S be a set-presentable class of finitely presented

R-modules containing R. Then every R-moduleM admits an S-pure injective
preenvelope.

Proof. Since S is set-presentable, it has a subclass S∗, which is a set,
with the property that for any U ∈ S there is a U∗ ∈ S∗ with U∗ ∼= U. Let
Γ be the set of all pairs (U, f) with U ∈ S∗ and f ∈ HomR(M, tr(U)+),
and for each γ ∈ Γ denote the corresponding U and f by Uγ and fγ . Let
E :=

∏
γ∈Γ tr(Uγ)

+ and let φ :M → E be the R-homomorphism defined by
φ(x) = (fγ(x))γ . Then, by Proposition 2.4 and Lemmas 2.2 and 2.1(i), E is
an S-pure injective R-module. As R ∈ S, it is easy to see that φ is injective.

We show that φ is our desired S-pure injective preenvelope. By Corol-
lary 2.5, it is enough to check that φ is an S-pure monomorphism. For any
U ∈ S∗, the homomorphism

1tr(U) ⊗R φ : tr(U)⊗RM → tr(U)⊗R E
is injective if and only if

(1tr(U) ⊗R φ)+ : (tr(U)⊗R E)+ → (tr(U)⊗RM)+

is surjective. Now, consider the following commutative diagram:
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(tr(U)⊗R E)+

∼=
��

(1tr(U)⊗Rφ)
+

// (tr(U)⊗RM)+

∼=
��

HomR(E, tr(U)+)
HomR(φ,1tr(U)+ )

// HomR(M, tr(U)+)

Since the vertical maps are isomorphisms and, by our construction, the bot-
tom map is surjective, we deduce that 1tr(U) ⊗R φ is injective. Thus, by
Proposition 2.4, φ is an S-pure monomorphism.

Let F and G be two classes of R-modules. The functor HomR(−,∼) is
said to be right balanced by F×G if for any R-moduleM , there are complexes

F• : · · · → Fn → Fn−1 → · · · → F0 →M → 0

and
G• : 0→M → G0 → · · · → Gn → Gn+1 → · · ·

in which Fn ∈ F , Gn ∈ G for all n ≥ 0, and for any F ∈ F and any G ∈ G,
the complexes HomR(F•, G) and HomR(F,G

•) are exact.
The concept of pure homological dimensions was introduced in a special

case by Griffith [6], and in a general setting by Kiełpiński and Simson [11].
For an R-module M , we define the S-pure projective dimension of M as the
infimum of the lengths of left S-pure exact resolutions of M which consist of
S-pure projective R-modules. Then the left global S-pure projective dimen-
sion of R is defined to be the supremum of the S-pure projective dimensions
of all R-modules. The S-pure injective dimension of R-modules and the left
global S-pure injective dimension of R are defined dually.

We end this section by recording the following useful application.

Corollary 2.9. Let S be a set-presentable class of finitely presented
R-modules containing R. Denote the class of all S-pure projective (resp. S-
pure injective) R-modules by SP (resp. SI). Then the functor HomR(−,∼)
is right balanced by SP × SI. In particular, the left global S-pure projective
dimension of R is equal to its left global S-pure injective dimension.

Proof. Let M and N be two R-modules. In view of [18, Proposition 1]
and Corollary 2.5, we can construct an exact complex

P• : · · · → Pn → Pn−1 → · · · → P0 →M → 0

such that each Pn is S-pure projective, and for any S-pure projective R-
module P and any S-pure injective R-module I, the complexes HomR(P,P•)
and HomR(P•, I) are exact. Also, by Proposition 2.8 and Corollary 2.5, we
can construct an exact complex

I• : 0→ N → I0 → · · · → In → In+1 → · · ·
such that each In is S-pure injective, and for any S-pure injective R-module
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I and any S-pure projective R-module P, the complexes HomR(I
•, I) and

HomR(P, I
•) are exact. Thus, HomR(−,∼) is right balanced by SP × SI.

Denote the complexes

· · · → Pn → Pn−1 → · · · → P0 → 0

and
0→ I0 → · · · → In → In+1 → · · ·

by P◦ and I◦, respectively. Then [3, Theorem 8.2.14] implies that the com-
plexes HomR(P◦, N) and HomR(M, I◦) have isomorphic homology modules.

Let n be a non-negative integer. In view of [3, Theorem 8.2.3(2) and
Corollary 8.2.4(2)], it is straightforward to check that the S-pure projective
dimension of M is less than or equal to n if and only if Hn+1(HomR(P◦, L))
= 0 for all R-modules L. Also, by [3, Theorem 8.2.5(1) and Corollary
8.2.6(1)], the S-pure injective dimension of N is less than or equal to n
if and only if Hn+1(HomR(L, I

◦)) = 0 for all R-modules L. These facts show
that the left global S-pure projective dimension of R is equal to its left global
S-pure injective dimension.

3. S-pure injective envelopes. To prove Theorem 3.8, which is our
main result, we need to prove five preliminary lemmas. We begin with the
following definition (compare with [3], [5], [10], [11], [15] and [18]).

Definition 3.1. Let S be a class of R-modules and N an S-pure sub-
module of an R-module M .

(i) We say M is an S-pure essential extension of N if any R-homomor-
phism ϕ :M → L with ϕ|N an S-pure monomorphism is injective.

(ii) We say M is a maximal S-pure essential extension of N if M is an
S-pure essential extension of N and no proper extension of M is an
S-pure essential extension of N .

(iii) We say M is a minimal S-pure injective extension of N if M is
S-pure injective and no proper S-pure injective submodule of M
contains N .

Lemma 3.2. Let S be a class of R-modules. Let M and M ′ be R-modules
and f : M → M ′ an R-isomorphism. Let N be a submodule of M and
N ′ := f(N).

(i) N is an S-pure submodule of M if and only if N ′ is an S-pure
submodule of M ′.

(ii) M is an S-pure essential extension of N if and only if M ′ is an
S-pure essential extension of N ′.

(iii) M is a maximal S-pure essential extension of N if and only if M ′
is a maximal S-pure essential extension of N ′.
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Proof. (i) is clear.
(ii) Assume that M is an S-pure essential extension of N . By (i), N ′

is an S-pure submodule of M ′. Let ϕ : M ′ → L be an R-homomorphism
such that ϕ|N ′ is an S-pure monomorphism. Then ϕf : M → L is an R-
homomorphism such that (ϕf)|N is an S-pure monomorphism. Now, asM is
an S-pure essential extension of N , it follows that ϕf is injective, and so ϕ is
also injective. The converse follows by symmetry. Note that f−1 : M ′ → M
is an R-isomorphism with f−1(N ′) = N.

(iii) By symmetry, it is enough to show the “only if” part. Suppose that
M is a maximal S-pure essential extension of N . By (ii), M ′ is an S-pure
essential extension of N ′. Let L′ be an extension of M ′ which is an S-pure
essential extension of N ′. By [17, Proposition 1.1], there are an extension L
of M and an R-isomorphism g : L → L′ such that the following diagram
commutes:

N

f |N
��

� � //M

f
��

� � // L

g
��

N ′ //� � //M ′ �
�

// L′

It follows by (ii) that L is an S-pure essential extension of N . Hence, by the
maximality assumption on M , we obtain L = M . Therefore L′ = M ′, as
required.

Lemma 3.3. Let S be a class of finitely presented R-modules and N an
S-pure submodule of an R-module M . Then there exists a submodule K of
M such that K ∩ N = 0 and M/K is an S-pure essential extension of
(K +N)/K.

Proof. Let Σ denote the set of all submodules U of M which satisfy the
following conditions:

(i) U ∩N = 0; and
(ii) (U +N)/U is an S-pure submodule of M/U .

Then Σ is not empty, because 0 ∈ Σ. Let {Kα}α∈Ω be a totally ordered
subset of Σ and set K̃ :=

⋃
α∈ΩKα.We show that K̃ satisfies the conditions

(i) and (ii).
Clearly, K̃∩N=0. Let (rij)∈HomR(R

n, Rk) be a matrix with Coker (rij)
∈ S. Let

(∗)
k∑
i=1

rijxi = aj + K̃, 1 ≤ j ≤ n,

be a set of linear equations with constants in (K̃ +N)/K̃. Let y1 + K̃, . . . ,

yk + K̃ be a solution of these equations in M/K̃. Then
∑k

i=1 rijyi − aj ∈ K̃
for all j = 1, . . . , n. There exists β ∈ Ω such that

∑k
i=1 rijyi − aj ∈ Kβ
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for all j = 1, . . . , n. So, y1 +Kβ, . . . , yk +Kβ is a solution of the equations∑k
i=1 rijxi = aj + Kβ, 1 ≤ j ≤ n, in M/Kβ. Now, as (Kβ + N)/Kβ is an

S-pure submodule of M/Kβ, there exist z1, . . . , zk ∈ N such that
k∑
i=1

rijzi − aj ∈ Kβ ⊆ K̃

for all j = 1, . . . , n. Hence, z1 + K̃, . . . , zk + K̃ is a solution of (∗) in
(K̃ +N)/K̃. So, by Proposition 2.4, (K̃ +N)/K̃ is an S-pure submodule of
M/K̃. Thus, by Zorn’s Lemma, Σ has a maximal element K.

Suppose that ϕ : M/K → L is an R-homomorphism such that the re-
striction ϕ|(N+K)/K is an S-pure monomorphism. Let Kerϕ = K ′/K. Then
ϕ induces an R-monomorphism

ϕ∗ : (M/K)/(K ′/K)→ L.

Set P := ((N +K)/K+K ′/K)/(K ′/K). Since ϕ((N +K)/K) is an S-pure
submodule of L and

ϕ((N +K)/K) = ϕ∗(P ) ≤ ϕ∗((M/K)/(K ′/K)) ≤ L,
it follows that ϕ∗(P ) is an S-pure submodule of ϕ∗((M/K)/(K ′/K)), and
so by Lemma 3.2(i), (N +K ′)/K ′ is an S-pure submodule of M/K ′.

Now, K ′ is a submodule of M containing K and satisfying (ii). We can
easily check that K ′ also satisfies (i), i.e. K ′ ∩N = 0. Hence, by the maxi-
mality of K, we obtain K ′ = K, and so ϕ is injective.

Next, as an application of the above lemma, we present a characterization
of S-pure injective R-modules.

Corollary 3.4. Let S be a set-presentable class of finitely presented R-
modules containing R. Then for an R-module E, the following are equivalent:

(i) E is S-pure injective.
(ii) E has no proper S-pure essential extension.

Proof. (i)⇒(ii). LetM be an S-pure essential extension of E. Then 0→
E

i
↪→ M → M/E → 0 is an S-pure exact sequence. Since E is S-pure

injective, there is an R-homomorphism f : M → E such that fi = 1E .
Then M = E + Ker f and E ∩ Ker f = 0. Denote the R-homomorphism
if : M → M by ϕ. Then ϕ|E = i, and so ϕ|E is an S-pure monomorphism.
Hence ϕ is injective, because M is an S-pure essential extension of E. This
implies that Ker f = Kerϕ = 0, and so M = E.

(ii)⇒(i). By Proposition 2.8, there exists an S-pure injective extension
L of E. By Lemma 3.3, there is a submodule K of L such that L/K is an
S-pure essential extension of (E + K)/K and E ∩ K = 0. But E has no
proper S-pure essential extension, and so E + K = L. This implies that
L = E ⊕K. Hence, by Lemma 2.1(i), E is S-pure injective.
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Lemma 3.5. Let S be a class of finitely presented R-modules, E an S-
pure injective R-module and N an S-pure submodule of E. There is a sub-
module M of E which is a maximal S-pure essential extension of N .

Proof. Denote the inclusion map N ↪→ E by i. Let L be an S-pure
essential extension of N . Since E is an S-pure injective R-module and i is
an S-pure monomorphism, there exists an R-monomorphism ψ : L → E
such that ψ|N = i. So, |L| = |ψ(L)| ≤ |E|. If L is a maximal S-pure essential
extension of N, then by Lemma 3.2(iii), ψ(L) is also a maximal S-pure
essential extension of N . Hence, the proof will be completed if we show that
N has a maximal S-pure essential extension.

Suppose that the contrary is true. Then, by using transfinite induction,
we show that for any ordinal β, there is an S-pure essential extension Mβ

of N . Set M0 := N . Let β be an ordinal and assume that Mα is defined
for all α < β. Assume that β has a predecessor β − 1. As Mβ−1 is not a
maximal S-pure essential extension of N , there is a proper extension Mβ of
Mβ−1 such that Mβ is an S-pure essential extension of N .

If β is a limit ordinal, then in view of Proposition 2.4, it is easy to see
that Mβ :=

⋃
α<βMα is an S-pure essential extension of N .

Now, let β be an ordinal with |β| > |E|. Then |β| ≤ |Mβ| ≤ |E|, which
is a contradiction.

Lemma 3.6. Let S be a set-presentable class of finitely presented R-
modules containing R. Let M be an R-module and E a maximal S-pure
essential extension of M . Then E is an S-pure injective R-module.

Proof. In view of Proposition 2.8, Corollary 2.5 and Lemma 2.1(i), it is
enough to show that E is a direct summand of every R-module L which
contains E as an S-pure submodule.

Since L is also an S-pure extension of M , by Lemma 3.3, there exists a
submodule K of L such that K ∩M = 0 and L/K is an S-pure essential
extension of (K +M)/K. We will show that L ∼= K ⊕ E.

First, we show that K1 := K ∩ E = 0. Let π : E → E/K1 denote
the natural epimorphism. As K1 ∩M = 0, we see that π|M is an S-pure
monomorphism. Hence, π is injective, and so K1 = 0.

Now, let f : E → (K + E)/K denote the natural isomorphism. Then
f(M) = (K +M)/K. Thus, by Lemma 3.2(iii), (K + E)/K is a maximal
S-pure essential extension of (K +M)/K. But L/K is an S-pure essential
extension of (K +M)/K and (K +E)/K ⊆ L/K. Thus L = K +E, and so
L = K ⊕ E, as required.

Lemma 3.7. Let S be a set-presentable class of finitely presented R-
modules containing R. Let E be an R-module and M a submodule of E.
The following are equivalent:
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(i) E is a maximal S-pure essential extension of M .
(ii) E is an S-pure essential extension of M which is S-pure injective.
(iii) E is a minimal S-pure injective extension of M .

Proof. (i)⇒(ii) is clear by Lemma 3.6.
(ii)⇒(iii). Suppose E1 is a submodule of E containing M such that E1

is S-pure injective. By Lemma 3.5, there exists a submodule E2 of E1 which
is a maximal S-pure essential extension of M . Since E is an S-pure essential
extension of M , it follows that E2 = E. Hence E1 = E.

(iii)⇒(i). By Lemma 3.5, there is a submodule E1 of E such that E1 is
a maximal S-pure essential extension of M . Now, Lemma 3.6 shows that E1

is S-pure injective. Thus E1 = E by the minimality assumption.

Finally, we are ready to prove our main result.

Theorem 3.8. Let S be a set-presentable class of finitely presented R-
modules containing R. Then every R-module M has an S-pure injective en-
velope.

Proof. By Proposition 2.8 and Lemma 3.5, there exists a maximal S-
pure essential extension E of M . Let φ : M ↪→ E denote the inclusion
R-homomorphism. Let E′ be an S-pure injective R-module and ψ :M→E′

an R-homomorphism. Since E′ is S-pure injective, there exists an R-homo-
morphism f : E → E′ such that fφ = ψ.

Now, suppose f : E → E is an R-homomorphism such that fφ = φ.
Since f |M = φ is an S-pure monomorphism and E is an S-pure essential
extension of M , we see that f is injective. By Lemma 3.2(iii), f(E) is also
a maximal S-pure essential extension of M . Hence, by Lemma 3.6, f(E) is
S-pure injective. Now, as by Lemma 3.7, E is a minimal S-pure injective
extension of M , we deduce that f(E) = E. So, f is an automorphism.
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