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NON-MEAGER P -FILTERS ARE COUNTABLE DENSE
HOMOGENEOUS

BY

RODRIGO HERNÁNDEZ-GUTIÉRREZ and MICHAEL HRUŠÁK (Morelia)

Abstract. We prove that if F is a non-meager P -filter, then both F and ωF are
countable dense homogeneous spaces.

1. Introduction. All spaces considered are separable and metrizable.
A separable space X is countable dense homogeneous (CDH for short) if

whenever D and E are countable dense subsets of X, there exists a home-
omorphism h : X → X such that h[D] = E. Using the now well-known
back-and-forth argument, Cantor [3] gave the first example of a CDH space:
the real line. In fact, many other important spaces are CDH, e.g. the Eu-
clidean spaces, the Hilbert cube and the Cantor set. Results from [2] and
[13] provide general classes of CDH spaces that include the examples men-
tioned. In [6] and [11] the reader can find summaries of past research and
bibliography about CDH spaces.

In [5], Fitzpatrick and Zhou posed the following problems.

1.1. Question. Does there exist a CDH metrizable space that is not
completely metrizable?

1.2. Question. For which 0-dimensional subsets X of R is ωX CDH?

Concerning these two problems, the following results have been obtained.

1.3. Theorem ([6]). Let X be a separable metrizable space.

• If X is CDH and Borel, then X is completely metrizable.
• If ωX is CDH, then X is a Baire space.

1.4. Theorem ([4]). There is a CDH set of reals X of size ω1 that is a
λ-set (1) and thus not completely metrizable.

The techniques used in the proof of Theorem 1.4 produce spaces that
are not Baire spaces, so by Theorem 1.3 they cannot answer Question 1.2.
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(1) Recall that a set of reals X is a λ-set if every countable subset of X is a relative
Gδ set.
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There is a natural bijection between the Cantor set ω2 and P(ω) via
characteristic functions. In this way we may identify P(ω) with the Cantor
set. Thus, any subset of P(ω) can be thought of as a separable metrizable
space.

Recall that a set F ⊂ P(ω) is a filter (on ω) if (a) X ∈ F and ∅ /∈ F ;
(b) if A,B ∈ F , then A ∩ B ∈ F and (c) if A ∈ F and A ⊂ B ⊂ ω, then
B ∈ F . For X ⊂ P(ω), let X ∗ = {x ⊂ ω : ω \ x ∈ X}. Then a set I ⊂ P(ω)
is an ideal if and only if I∗ is a filter. We will assume that all filters contain
the Fréchet filter {x ⊂ ω : ω \ x is finite} (dually, all ideals contain the
set of finite subsets of ω). An ultrafilter is a maximal filter with respect to
inclusion.

If A,B are sets, A ⊂∗ B means that A \B is finite. A filter F is called a
P -filter if given {Xn : n < ω} ⊂ F there exists X ∈ F such that X ⊂∗ Xn

for all n < ω. Such an X is called a pseudo-intersection of {Xn : n < ω}.
Dually, I is a P -ideal if I∗ is a P -filter. An ultrafilter that is a P -filter is
called a P -point.

Considering ultrafilters as topological spaces, the following results were
obtained recently by Medini and Milovich.

1.5. Theorem ([10, Theorems 15, 21, 24, 41, 43 and 44]). Assume
MA(countable). Then there are ultrafilters U ⊂ P(ω) with any of the fol-
lowing properties:

(a) U is CDH and a P -point,
(b) U is CDH and not a P -point,
(c) U is not CDH and not a P -point, and
(d) ωU is CDH.

Since ultrafilters do not even have the Baire property ([1, 4.1.1]), Theo-
rem 1.5 gives a consistent answer to Question 1.1 and a consistent example
for Question 1.2.

The purpose of this note is to extend these results on ultrafilters to a
wider class of filters on ω. In particular, we prove the following result, which
answers Questions 3, 5 and 11 of [10].

1.6. Theorem. Let F be a non-meager P -filter on P(ω) extending the
Fréchet filter. Then both F and ωF are CDH.

It is known that non-meager filters do not have the Baire property ([1,
4.1.1]). However, the existence of non-meager P -filters is an open question
(in ZFC). It is known that the existence of non-meager P -filters follows from
cof([d]ω) = d (where d is the dominating number, see [1, 1.3.A]). Hence, if
all P -filters are meager then there is an inner model with large cardinals.
See [1, 4.4.C] or [7] for a detailed description of this problem.

Note that every CDH filter has to be non-definable in the following sense.
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1.7. Proposition. Let F be a filter on P(ω) extending the Fréchet
filter. If one of F or ωF is CDH, then F is non-meager.

Proof. If ωF is CDH, then F is non-meager by [6, Theorem 3.1]. Assume
that F is CDH. If F is the Fréchet filter, then F is countable, hence not
CDH. If F is not the Fréchet filter, there exists x ∈ F such that ω \ x is
infinite. Thus, C = {y : x ⊂ y ⊂ ω} is a copy of the Cantor set contained
in F .

If F were meager, we arrive at a contradiction as follows: Let D ⊂ F be
a countable dense subset of F such that D ∩ C is dense in C. Since F is
meager in itself, by [6, Lemma 2.1], there is a countable dense subset E of
F that is a Gδ set relative to F . Let h : F → F be a homeomorphism such
that h[D] = E. Then h[D ∩ C] is a countable dense subset of the Cantor
set h[C] that is a relative Gδ subset of h[C], which is impossible. So F is
non-meager and the proof is complete.

Notice that (P(ω),4, ∅) is a topological group (where A4B denotes the
symmetric difference of A and B) as it corresponds to addition modulo 2
in ω2. Given a filter F ⊂ P(ω), the dual ideal F∗ is homeomorphic to F
by means of the map that sends each subset of ω to its complement. Notice
that ∅ ∈ F∗ and F∗ is closed under 4. Moreover, for each x ∈ P(ω), the
function y 7→ y4 x is an autohomeomorphism of P(ω). From this it is easy
to see that F is homogeneous. Thus, by [10, Proposition 3], “non-meager”
in Proposition 1.7 can be replaced by “a Baire space”.

In [9, Theorem 1.2] it is proved that a filter F is hereditarily Baire if and
only if F is a non-meager P -filter. By Theorem 1.5, it is consistent that not
all CDH ultrafilters are P -points so it is consistent that there are CDH filters
that are not hereditarily Baire. These observations answer Question 4 in [10].

Recall that Theorem 1.5 also shows that it is consistent that there exist
non-CDH non-meager filters.

1.8. Question. Is there a combinatorial characterization of CDH fil-
ters?

1.9. Question. Is there a CDH filter (ultrafilter) in ZFC? Is there a
non-CDH and non-meager filter (ultrafilter) in ZFC?

2. Proof of Theorem 1.6. For any set X, let [X]<ω and [X]ω denote
the sets of its finite and countably infinite subsets, respectively. Also <ωX =⋃
{nX : n < ω}.

Since any filter is homeomorphic to its dual ideal, we may alternatively
speak about a filter or its dual ideal. In particular, the following result
is better expressed in the language of ideals. Its proof follows from [10,
Lemma 20], we include it for the sake of completeness.
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2.1. Lemma. Let I ⊂ P(ω) be an ideal, f : P(ω)→ P(ω) a continuous
function and D a countable dense subset of I. If there exists x ∈ I such
that {d4 f(d) : d ∈ D} ⊂ P(x), then f [I] = I.

Proof. Since D is dense in P(ω) and d 4 f(d) ⊂ x for all d ∈ D, by
continuity it follows that y4 f(y) ⊂ x for all y ∈ P(ω). Then y4 f(y) ∈ I
for all y ∈ P(ω). Since I is closed under 4 and a4 a = ∅ for all a ∈ P(ω),
it is easy to see that y ∈ I if and only if f(y) ∈ I for all y ∈ P(ω).

Let X ⊂ [ω]ω. A tree T ⊂ <ω([ω]<ω) is called an X -tree of finite sets
if for each s ∈ T there is Xs ∈ X such that for every a ∈ [Xs]

<ω we
have s_a ∈ T . It turns out that non-meager P -filters have a very useful
combinatorial characterization as follows.

2.2. Lemma ([8, Lemma 1.3]). Let F be a filter on P(ω) that extends the
Fréchet filter. Then F is a non-meager P -filter if and only if every F-tree
of finite sets has a branch whose union is in F .

Next we prove a combinatorial property that will allow us to construct
autohomeomorphisms of the Cantor set that restrict to a given ideal. For
x ∈ P(ω), let χ(x) ∈ ω2 be its characteristic function.

2.3. Lemma. Let I be a non-meager P -ideal and D0, D1 be two count-
able dense subsets of I. Then there exists x ∈ I such that

(i) for each d ∈ D0 ∪D1, d ⊂∗ x and
(ii) for each i ∈ 2, d ∈ Di, n < ω and t ∈ n∩x2, there exists e ∈ D1−i

such that d \ x = e \ x and χ(e)�n∩x = t.

Proof. Let F = I∗. We will construct an F-tree of finite sets T and
use Lemma 2.2 to find x ∈ I with the properties listed. Let us give an
enumeration (D0 ∪ D1) × <ω2 = {(dn, tn) : n < ω} such that {dn : n ≡ i
(mod 2)} = Di for i ∈ 2.

The definition of T will be by recursion. For each s ∈ T we also define
n(s) < ω, Fs ∈ F and φs : dom(s)→ D0∪D1 so that the following properties
hold:

(1) ∀s, t ∈ T (s ( t⇒ n(s) < n(t)),
(2) ∀s ∈ T ∀k < dom(s) (s(k) ⊂ n(s�k+1) \ n(s�k)),
(3) ∀s, t ∈ T (s ⊂ t⇒ Ft ⊂ Fs),
(4) ∀s ∈ T (Fs ⊂ ω \ n(s)),
(5) ∀s, t ∈ T (s ⊂ t⇒ φs ⊂ φt),
(6) ∀s ∈ T, if k = dom(s) ((dk−1 ∪ φs(k − 1)) \ n(s) ⊂ ω \ Fs).
Since ∅ ∈ T , let n(∅) = 0 and F∅ = ω. Assume we have s ∈ T and

a ∈ Fs, we have to define everything for s_a. Let k = dom(s). We start by
defining n(s_a) = max {k,max (a), dom(tk)}+ 1. Next we define φs_a. We
only have to do it at k because of (5). We have two cases.
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Case 1: There exists m < dom(tk) with tk(m) = 1 and m ∈ s(0)∪ · · · ∪
s(k − 1). We simply declare φs_a(k) = dk.

Case 2: Not Case 1. We define rs_a ∈ n(s_a)2 in the following way.

rs_a(m) =


dk(m) if m ∈ s(0) ∪ · · · ∪ s(k − 1) ∪ a,

tk(m) if m ∈ dom(tk) \ (s(0) ∪ · · · ∪ s(k − 1) ∪ a),

1 in any other case.

Let i ∈ 2 be such that i ≡ k (mod 2). So dk ∈ Di, let φs_a(k) ∈ D1−i be
such that φs_a(k) ∩ n(s_a) = (rs_a)

−1(1), this is possible because D1−i is
dense in P(ω). Finally, define

Fs_a = (Fs ∩ (ω \ dk−1) ∩ (ω \ φs_a(k − 1))) \ n(s_a).

Clearly, Fs_a ∈ F and it is easy to see that conditions (1)–(6) hold.

By Lemma 2.2, there exists a branch {(y0, . . . , yn) : n < ω} of T whose
union y =

⋃
{yn : n < ω} is in F . Let x = ω \ y ∈ I. We prove that x is the

element we were looking for. It is easy to prove that (6) implies (i).

We next prove that (ii) holds. Let i ∈ 2, n < ω, t ∈ n∩x2 and d ∈ Di. Let
k < ω be such that (dk, tk) = (d, t′), where t′ ∈ n2 is such that t′�n∩x = t
and t′�n−x = 0. Consider step k+1 in the construction of y, that is, the step
when y(k+ 1) was defined. Notice that we are in Case 2 of the construction
and ry�k+1

is defined. Then φy�k+1
(k) = e is an element of D1−i. It is not

hard to see that d \ x = e \ x and χ(e)�n∩x = t. This completes the proof of
the lemma.

We will now show that it is enough to prove Theorem 1.6 for F . Recall
the following characterization of non-meager filters.

2.4. Lemma ([1, Theorem 4.1.2]). Let F be a filter. Then F is non-
meager if and only if for every partition of ω into finite sets {Jn : n < ω},
there is X ∈ F such that {n < ω : X ∩ Jn = ∅} is infinite.

The following was originally proved by Shelah (see [12, Fact 4.3, p. 327]).
We include a proof for the convenience of the reader.

2.5. Lemma. If F is a non-meager P -filter, then ωF is homeomorphic
to a non-meager P -filter.

Proof. Let

G = {A ⊂ ω × ω : ∀n < ω (A ∩ ({n} × ω) ∈ F)}.
Notice that G is homeomorphic to ωF . It is easy to see that G is a filter on
ω × ω. We next prove that G is a non-meager P -filter.

Let {Ak : k < ω} ⊂ G. For each {k, n} ⊂ ω, we define Ank = {x ∈ ω :
(n, x) ∈ Ak} ∈ F . Since F is a P -filter, there is A ∈ F such that A ⊂∗ Ank
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for all {k, n} ⊂ ω. Let f : ω → ω be such that A \ f(n) ⊂ Ank for all k ≤ n.
Let

B =
⋃
{{n} × (A \ f(n)) : n < ω}.

Then it is easy to see that B ∈ G and B is a pseudointersection of {An :
n < ω}. So G is a P -filter.

Let {Jk : k < ω} be a partition of ω × ω into finite subsets. Recursively,
we define a sequence {Fn : n < ω} ⊂ F and a sequence {An : n < ω} ⊂ [ω]ω

such that An+1 ⊂ An and An ⊂ {k < ω : Jk ∩ ({n}×Fn) = ∅} for all n < ω.
For n = 0, since F is non-meager, by Lemma 2.4 there is F0 ∈ F such

that {k < ω : Jk ∩ ({0} × F0) = ∅} is infinite; call this last set A0. Assume
that we have the construction up to m < ω, then B = {Jk ∩ ({m+ 1}×ω) :
k ∈ Am} is a family of pairwise disjoint finite subsets of {m+ 1}×ω. If

⋃
B

is finite, let Fm+1 ∈ F be such that Fm+1 ∩
⋃
B = ∅ and let Am+1 = Am. If⋃

B is infinite, let {Bk : k ∈ Am} be any partition of ({m + 1} × ω) \
⋃
B

into finite subsets (some possibly empty). For each k ∈ Am, let Ck = (Jk ∩
({m + 1} × ω)) ∪ Bk. Then {Ck : k ∈ Am} is a partition of {m + 1} × ω
into finite sets, so by Lemma 2.4 there is Fm+1 ∈ F such that {k ∈ Am :
Ck ∩ ({m + 1} × Fm+1) = ∅} is infinite; call this set Am+1. This completes
the recursion.

Define an increasing function s : ω → ω such that s(0) = minA0 and
s(k + 1) = min(Ak+1 \ {s(0), . . . , s(k)}) for k < ω. Also, define t : ω → ω
such that t(0) = 0 and

t(n+ 1) = min{m < ω : (Js(0) ∪ · · · ∪ Js(n))∩ ({n+ 1}×ω) ⊂ {n+ 1}×m}.
Finally, let

G =
⋃
{{n} × (Fn \ t(n)) : n < ω}.

Then G ∈ G and for all k < ω, G ∩ Js(k) = ∅. Thus, G is non-meager by
Lemma 2.4.

We now have everything ready to prove our result.

Proof of Theorem 1.6. By Lemma 2.5, it is enough to prove that F is
CDH, equivalently that I = F∗ is CDH. Let D0 and D1 be two countable
dense subsets of I and let x ∈ I be given by Lemma 2.3.

We will construct a homeomorphism h : P(ω) → P(ω) such that h[D0]
= D1 and

(?) ∀d ∈ D (d4 h(d) ⊂ x).

By Lemma 2.1, h[I] = I and we will have finished.
We shall define h by approximations. By this we mean the following. We

will give a strictly increasing sequence {n(k) : k < ω} ⊂ ω and in step k < ω
a homeomorphism (permutation) hk : P(n(k))→ P(n(k)) such that

(∗) ∀j < k < ω ∀a ∈ P(n(k)) (hk(a) ∩ n(j) = hj(a ∩ n(k))).
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By (∗), we can define h : P(ω) → P(ω) to be the inverse limit of {hk :
k < ω}, which is a homeomorphism.

Let D0∪D1 = {dn : n < ω} in such a way that {dn : n ≡ i (mod 2)} = Di

for i ∈ 2. To make sure that h[D0] = D1, in step k we have to decide the
value of h(dk) when k is even and the value of h−1(dk) when k is odd. We
do this by approximating a bijection π : D0 → D1 in ω steps by a chain of
finite bijections {πk : k < ω} and letting π =

⋃
{πk : k < ω}. In step k < ω,

we would like to have πk defined on some finite set so that the following
conditions hold whenever πk ⊂ π:

(a)k if j < k is even, then hk(dj ∩ n(k)) = π(dj) ∩ n(k), and

(b)k if j < k is odd, then hk(dj ∩ n(k)) = π−1(dj) ∩ n(k).

Notice that once π is completely defined, if (a)k and (b)k hold for all
k < ω, then h[D] = E. During the construction, we need to make sure that
the following two conditions hold:

(c)k ∀i ∈ n(k) \ x ∀a ∈ P(n(k)) (i ∈ a⇔ i ∈ hk(a)), and

(d)k ∀d ∈ dom(πk) (d \ x = πk(d) \ x).

Condition (c)k is a technical condition that will help us carry out the
recursion. Notice that if we have condition (d)k for all k < ω, then (?) will
hold.

Assume that we have defined n(0) < · · · < n(s − 1), h0, . . . , hs−1 and a
finite bijection πs ⊂ D0 × D1 with {dr : r < s} ⊂ dom(πs) ∪ dom(π−1

s ) in
such a way that if π ⊃ πs, then (a)s−1–(d)s−1 hold. Let us consider the case
when s is even; the other case can be treated in a similar fashion.

If ds = π−1
s (dr) for some odd r < s, let n(s) = n(s − 1) + 1. If we let

πs+1 = πs, it is easy to define hs so that it is compatible with hs−1 in the
sense of (∗), in such a way that (a)s–(d)s hold for any π ⊃ πs+1. So we may
assume this is not the case.

Notice that the set S = {dr : r < s+1}∪{πs(dr) : r < s, r ≡ 0 (mod 2)}∪
{π−1

s (dr) : r < s, r ≡ 1 (mod 2)} is finite. Choose p < ω so that ds \ p ⊂ x.
Let r0 = hs−1(ds ∩ n(s− 1)) ∈ P(n(s− 1)). Choose n(s− 1) < m < ω and
t ∈ m∩x2 in such a way that t−1(1) ∩ n(s − 1) = r0 ∩ n(s − 1) ∩ x and t is
not extended by any element of {χ(a) : a ∈ S}. By Lemma 2.3, there exists
e ∈ E such that ds \ x = e \ x and χ(e)�m∩x = t. Notice that e /∈ S and
χ(e)�n(s−1) = r0. We define πs+1 = πs ∪ {(ds, e)}. Notice that (d)s holds in
this way.

Now that we have decided where π will send ds, let n(s) > max {p,m}
be such that there are no two distinct a, b ∈ S ∪ {πs+1(ds)} with a∩ n(s) =
b∩n(s). Topologically, all elements of S∪{πs+1(ds)} are contained in distinct
basic open sets of measure 1/(n(s) + 1).
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Finally, we define the bijection hs : P(n(s)) → P(n(s)). For this part
of the proof we will use characteristic functions instead of subsets of ω
(otherwise the notation would become cumbersome). Therefore, we may say
hr : n(r)2→ n(r)2 is a homeomorphism for r < s.

Let (q, q′) ∈ n(s−1)2 × n(s)\x2 be a pair of compatible functions. Notice
that (hs−1(q), q′) are also compatible by (c)s−1. Consider the following con-
dition:

O(q, q′) : ∀a ∈ n(s)2 (q ∪ q′ ⊂ a⇔ hs−1(q) ∪ q′ ⊂ hs(a)).

Notice that if we define hs so that O(q, q′) holds for each pair (q, q′) ∈
n(s−1)2× n(s)\x2 of compatible functions, then (∗) and (c)s hold as well.

Then for each pair (q, q′) ∈ n(s−1)2× n(s)\x2 of compatible functions we
only have to find a bijection g : T 2 → T 2, where T = (n(s) ∩ x) \ n(s − 1)
(this bijection will depend on the pair) and define hs : n(s)2→ n(s)2 as

hs(a) = hs−1(q) ∪ q′ ∪ g(f�T )

whenever a ∈ n(s)2 and q ∪ q′ ⊂ a. There is only one restriction in the
definition of g and it is imposed by conditions (a)s and (b)s; namely that g
is compatible with the bijection πs+1 already defined. However by the choice
of n(s) this is not hard to achieve. This finishes the inductive step and the
proof.
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E-mail: rod@matmor.unam.mx

michael@matmor.unam.mx

Received 27 April 2012;
revised 28 February 2013 (5676)

http://dx.doi.org/10.1016/S0166-8641(97)00216-2
http://dx.doi.org/10.1016/j.topol.2011.12.009
http://dx.doi.org/10.4064/fm214-3-2



	1 Introduction
	2 Proof of Theorem 1.6
	References

