NON-MEAGER P-FILTERS ARE COUNTABLE DENSE HOMOGENEOUS

BY
RODRIGO HERNÁNDEZ-GUTIÉRREZ and MICHAEL HRUŠÁK (Morelia)

Abstract

We prove that if \mathcal{F} is a non-meager P-filter, then both \mathcal{F} and ${ }^{\omega} \mathcal{F}$ are countable dense homogeneous spaces.

1. Introduction. All spaces considered are separable and metrizable.

A separable space X is countable dense homogeneous ($C D H$ for short) if whenever D and E are countable dense subsets of X, there exists a homeomorphism $h: X \rightarrow X$ such that $h[D]=E$. Using the now well-known back-and-forth argument, Cantor [3] gave the first example of a CDH space: the real line. In fact, many other important spaces are CDH, e.g. the Euclidean spaces, the Hilbert cube and the Cantor set. Results from [2] and [13] provide general classes of CDH spaces that include the examples mentioned. In [6] and [11] the reader can find summaries of past research and bibliography about CDH spaces.

In [5], Fitzpatrick and Zhou posed the following problems.
1.1. Question. Does there exist a CDH metrizable space that is not completely metrizable?
1.2. Question. For which 0 -dimensional subsets X of \mathbb{R} is ${ }^{\omega} X \mathrm{CDH}$?

Concerning these two problems, the following results have been obtained.
1.3. THEOREM ([6]). Let X be a separable metrizable space.

- If X is $C D H$ and Borel, then X is completely metrizable.
- If ${ }^{\omega} X$ is $C D H$, then X is a Baire space.
1.4. Theorem ([4]). There is a $C D H$ set of reals X of size ω_{1} that is a λ-set $\left(^{1}\right)$ and thus not completely metrizable.

The techniques used in the proof of Theorem 1.4 produce spaces that are not Baire spaces, so by Theorem 1.3 they cannot answer Question 1.2 ,

2010 Mathematics Subject Classification: 54D80, 54H05, 54B10, 54A35.
Key words and phrases: countable dense homogeneous, non-meager P-filter.
$\left({ }^{1}\right)$ Recall that a set of reals X is a λ-set if every countable subset of X is a relative G_{δ} set.

There is a natural bijection between the Cantor set ${ }^{\omega} 2$ and $\mathcal{P}(\omega)$ via characteristic functions. In this way we may identify $\mathcal{P}(\omega)$ with the Cantor set. Thus, any subset of $\mathcal{P}(\omega)$ can be thought of as a separable metrizable space.

Recall that a set $\mathcal{F} \subset \mathcal{P}(\omega)$ is a filter (on ω) if (a) $X \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$; (b) if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$ and (c) if $A \in \mathcal{F}$ and $A \subset B \subset \omega$, then $B \in \mathcal{F}$. For $\mathcal{X} \subset \mathcal{P}(\omega)$, let $\mathcal{X}^{*}=\{x \subset \omega: \omega \backslash x \in \mathcal{X}\}$. Then a set $\mathcal{I} \subset \mathcal{P}(\omega)$ is an ideal if and only if \mathcal{I}^{*} is a filter. We will assume that all filters contain the Fréchet filter $\{x \subset \omega: \omega \backslash x$ is finite\} (dually, all ideals contain the set of finite subsets of ω). An ultrafilter is a maximal filter with respect to inclusion.

If A, B are sets, $A \subset^{*} B$ means that $A \backslash B$ is finite. A filter \mathcal{F} is called a P-filter if given $\left\{X_{n}: n<\omega\right\} \subset \mathcal{F}$ there exists $X \in \mathcal{F}$ such that $X \subset^{*} X_{n}$ for all $n<\omega$. Such an X is called a pseudo-intersection of $\left\{X_{n}: n<\omega\right\}$. Dually, \mathcal{I} is a P-ideal if \mathcal{I}^{*} is a P-filter. An ultrafilter that is a P-filter is called a P-point.

Considering ultrafilters as topological spaces, the following results were obtained recently by Medini and Milovich.
1.5. Theorem ([10, Theorems 15, 21, 24, 41, 43 and 44]). Assume MA(countable). Then there are ultrafilters $\mathcal{U} \subset \mathcal{P}(\omega)$ with any of the following properties:
(a) \mathcal{U} is $C D H$ and a P-point,
(b) \mathcal{U} is $C D H$ and not a P-point,
(c) \mathcal{U} is not $C D H$ and not a P-point, and
(d) ${ }^{\omega} \mathcal{U}$ is $C D H$.

Since ultrafilters do not even have the Baire property ([1, 4.1.1]), Theorem 1.5 gives a consistent answer to Question 1.1 and a consistent example for Question 1.2

The purpose of this note is to extend these results on ultrafilters to a wider class of filters on ω. In particular, we prove the following result, which answers Questions 3, 5 and 11 of [10].
1.6. Theorem. Let \mathcal{F} be a non-meager P-filter on $\mathcal{P}(\omega)$ extending the Fréchet filter. Then both \mathcal{F} and ${ }^{\omega} \mathcal{F}$ are $C D H$.

It is known that non-meager filters do not have the Baire property (1), 4.1.1]). However, the existence of non-meager P-filters is an open question (in ZFC). It is known that the existence of non-meager P-filters follows from $\boldsymbol{\operatorname { c o f }}\left([\mathfrak{d}]^{\omega}\right)=\mathfrak{d}$ (where \mathfrak{d} is the dominating number, see [1, 1.3.A]). Hence, if all P-filters are meager then there is an inner model with large cardinals. See [1, 4.4.C] or [7] for a detailed description of this problem.

Note that every CDH filter has to be non-definable in the following sense.
1.7. Proposition. Let \mathcal{F} be a filter on $\mathcal{P}(\omega)$ extending the Fréchet filter. If one of \mathcal{F} or ${ }^{\omega \mathcal{F}}$ is $C D H$, then \mathcal{F} is non-meager.

Proof. If ${ }^{\omega} \mathcal{F}$ is CDH , then \mathcal{F} is non-meager by [6, Theorem 3.1]. Assume that \mathcal{F} is CDH . If \mathcal{F} is the Fréchet filter, then \mathcal{F} is countable, hence not CDH . If \mathcal{F} is not the Fréchet filter, there exists $x \in \mathcal{F}$ such that $\omega \backslash x$ is infinite. Thus, $C=\{y: x \subset y \subset \omega\}$ is a copy of the Cantor set contained in \mathcal{F}.

If \mathcal{F} were meager, we arrive at a contradiction as follows: Let $D \subset \mathcal{F}$ be a countable dense subset of \mathcal{F} such that $D \cap C$ is dense in C. Since \mathcal{F} is meager in itself, by [6, Lemma 2.1], there is a countable dense subset E of \mathcal{F} that is a G_{δ} set relative to \mathcal{F}. Let $h: \mathcal{F} \rightarrow \mathcal{F}$ be a homeomorphism such that $h[D]=E$. Then $h[D \cap C]$ is a countable dense subset of the Cantor set $h[C]$ that is a relative G_{δ} subset of $h[C]$, which is impossible. So \mathcal{F} is non-meager and the proof is complete.

Notice that $(\mathcal{P}(\omega), \triangle, \emptyset)$ is a topological group (where $A \triangle B$ denotes the symmetric difference of A and B) as it corresponds to addition modulo 2 in ${ }^{\omega} 2$. Given a filter $\mathcal{F} \subset \mathcal{P}(\omega)$, the dual ideal \mathcal{F}^{*} is homeomorphic to \mathcal{F} by means of the map that sends each subset of ω to its complement. Notice that $\emptyset \in \mathcal{F}^{*}$ and \mathcal{F}^{*} is closed under \triangle. Moreover, for each $x \in \mathcal{P}(\omega)$, the function $y \mapsto y \Delta x$ is an autohomeomorphism of $\mathcal{P}(\omega)$. From this it is easy to see that \mathcal{F} is homogeneous. Thus, by [10, Proposition 3], "non-meager" in Proposition 1.7 can be replaced by "a Baire space".

In [9, Theorem 1.2] it is proved that a filter \mathcal{F} is hereditarily Baire if and only if \mathcal{F} is a non-meager P-filter. By Theorem 1.5 , it is consistent that not all CDH ultrafilters are P-points so it is consistent that there are CDH filters that are not hereditarily Baire. These observations answer Question 4 in [10].

Recall that Theorem 1.5 also shows that it is consistent that there exist non-CDH non-meager filters.
1.8. Question. Is there a combinatorial characterization of CDH filters?
1.9. Question. Is there a CDH filter (ultrafilter) in ZFC? Is there a non-CDH and non-meager filter (ultrafilter) in ZFC?
2. Proof of Theorem 1.6. For any set X, let $[X]^{<\omega}$ and $[X]^{\omega}$ denote the sets of its finite and countably infinite subsets, respectively. Also ${ }^{<\omega} X=$ $\bigcup\left\{{ }^{n} X: n<\omega\right\}$.

Since any filter is homeomorphic to its dual ideal, we may alternatively speak about a filter or its dual ideal. In particular, the following result is better expressed in the language of ideals. Its proof follows from [10, Lemma 20], we include it for the sake of completeness.
2.1. Lemma. Let $\mathcal{I} \subset \mathcal{P}(\omega)$ be an ideal, $f: \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$ a continuous function and D a countable dense subset of \mathcal{I}. If there exists $x \in \mathcal{I}$ such that $\{d \triangle f(d): d \in D\} \subset \mathcal{P}(x)$, then $f[\mathcal{I}]=\mathcal{I}$.

Proof. Since D is dense in $\mathcal{P}(\omega)$ and $d \triangle f(d) \subset x$ for all $d \in D$, by continuity it follows that $y \triangle f(y) \subset x$ for all $y \in \mathcal{P}(\omega)$. Then $y \triangle f(y) \in \mathcal{I}$ for all $y \in \mathcal{P}(\omega)$. Since \mathcal{I} is closed under \triangle and $a \triangle a=\emptyset$ for all $a \in \mathcal{P}(\omega)$, it is easy to see that $y \in \mathcal{I}$ if and only if $f(y) \in \mathcal{I}$ for all $y \in \mathcal{P}(\omega)$.

Let $\mathcal{X} \subset[\omega]^{\omega}$. A tree $T \subset{ }^{<\omega}\left([\omega]^{<\omega}\right)$ is called an \mathcal{X}-tree of finite sets if for each $s \in T$ there is $X_{s} \in \mathcal{X}$ such that for every $a \in\left[X_{s}\right]^{<\omega}$ we have $s \subset a \in T$. It turns out that non-meager P-filters have a very useful combinatorial characterization as follows.
2.2. Lemma ([8, Lemma 1.3]). Let \mathcal{F} be a filter on $\mathcal{P}(\omega)$ that extends the Fréchet filter. Then \mathcal{F} is a non-meager P-filter if and only if every \mathcal{F}-tree of finite sets has a branch whose union is in \mathcal{F}.

Next we prove a combinatorial property that will allow us to construct autohomeomorphisms of the Cantor set that restrict to a given ideal. For $x \in \mathcal{P}(\omega)$, let $\chi(x) \in{ }^{\omega} 2$ be its characteristic function.
2.3. Lemma. Let \mathcal{I} be a non-meager P-ideal and D_{0}, D_{1} be two countable dense subsets of \mathcal{I}. Then there exists $x \in \mathcal{I}$ such that
(i) for each $d \in D_{0} \cup D_{1}, d \subset^{*} x$ and
(ii) for each $i \in 2, d \in D_{i}, n<\omega$ and $t \in{ }^{n \cap x} 2$, there exists $e \in D_{1-i}$ such that $d \backslash x=e \backslash x$ and $\left.\chi(e)\right|_{n \cap x}=t$.
Proof. Let $\mathcal{F}=\mathcal{I}^{*}$. We will construct an \mathcal{F}-tree of finite sets T and use Lemma 2.2 to find $x \in \mathcal{I}$ with the properties listed. Let us give an enumeration $\left(D_{0} \cup D_{1}\right) \times{ }^{<\omega_{2}}=\left\{\left(d_{n}, t_{n}\right): n<\omega\right\}$ such that $\left\{d_{n}: n \equiv i\right.$ $(\bmod 2)\}=D_{i}$ for $i \in 2$.

The definition of T will be by recursion. For each $s \in T$ we also define $n(s)<\omega, F_{s} \in \mathcal{F}$ and $\phi_{s}: \operatorname{dom}(s) \rightarrow D_{0} \cup D_{1}$ so that the following properties hold:
(1) $\forall s, t \in T(s \subsetneq t \Rightarrow n(s)<n(t))$,
(2) $\forall s \in T \forall k<\operatorname{dom}(s)\left(s(k) \subset n\left(s \upharpoonright_{k+1}\right) \backslash n\left(s \upharpoonright_{k}\right)\right)$,
(3) $\forall s, t \in T\left(s \subset t \Rightarrow F_{t} \subset F_{s}\right)$,
(4) $\forall s \in T\left(F_{s} \subset \omega \backslash n(s)\right)$,
(5) $\forall s, t \in T\left(s \subset t \Rightarrow \phi_{s} \subset \phi_{t}\right)$,
(6) $\forall s \in T$, if $k=\operatorname{dom}(s)\left(\left(d_{k-1} \cup \phi_{s}(k-1)\right) \backslash n(s) \subset \omega \backslash F_{s}\right)$.

Since $\emptyset \in T$, let $n(\emptyset)=0$ and $F_{\emptyset}=\omega$. Assume we have $s \in T$ and $a \in F_{s}$, we have to define everything for $s \smile a$. Let $k=\operatorname{dom}(s)$. We start by defining $n(s \frown a)=\max \left\{k, \max (a), \operatorname{dom}\left(t_{k}\right)\right\}+1$. Next we define $\phi_{s}{ }^{a}$. We only have to do it at k because of (5). We have two cases.

CASE 1: There exists $m<\operatorname{dom}\left(t_{k}\right)$ with $t_{k}(m)=1$ and $m \in s(0) \cup \cdots \cup$ $s(k-1)$. We simply declare $\phi_{s{ }^{\prime} a}(k)=d_{k}$.

Case 2: Not Case 1. We define $r_{s{ }^{\sim}-a} \in{ }^{n\left(s^{\sim} a\right)} 2$ in the following way.

$$
r_{s \rightarrow a}(m)= \begin{cases}d_{k}(m) & \text { if } m \in s(0) \cup \cdots \cup s(k-1) \cup a \\ t_{k}(m) & \text { if } m \in \operatorname{dom}\left(t_{k}\right) \backslash(s(0) \cup \cdots \cup s(k-1) \cup a) \\ 1 & \text { in any other case }\end{cases}
$$

Let $i \in 2$ be such that $i \equiv k(\bmod 2)$. So $d_{k} \in D_{i}$, let $\phi_{s{ }^{-}{ }_{a}}(k) \in D_{1-i}$ be such that $\phi_{s \supset a}(k) \cap n\left(s^{\frown} a\right)=\left(r_{s \supset a}\right)^{-1}(1)$, this is possible because D_{1-i} is dense in $\mathcal{P}(\omega)$. Finally, define

$$
F_{s \frown a}=\left(F_{s} \cap\left(\omega \backslash d_{k-1}\right) \cap\left(\omega \backslash \phi_{s \frown a}(k-1)\right)\right) \backslash n\left(s^{\frown} a\right) .
$$

Clearly, $F_{s \sim a} \in \mathcal{F}$ and it is easy to see that conditions (1)-(6) hold.
By Lemma 2.2, there exists a branch $\left\{\left(y_{0}, \ldots, y_{n}\right): n<\omega\right\}$ of T whose union $y=\bigcup\left\{y_{n}: n<\omega\right\}$ is in \mathcal{F}. Let $x=\omega \backslash y \in \mathcal{I}$. We prove that x is the element we were looking for. It is easy to prove that (6) implies (i).

We next prove that (ii) holds. Let $i \in 2, n<\omega, t \in{ }^{n \cap x} 2$ and $d \in D_{i}$. Let $k<\omega$ be such that $\left(d_{k}, t_{k}\right)=\left(d, t^{\prime}\right)$, where $t^{\prime} \in{ }^{n} 2$ is such that $t^{\prime} \upharpoonright_{n \cap x}=t$ and $t^{\prime} \upharpoonright_{n-x}=\underline{0}$. Consider step $k+1$ in the construction of y, that is, the step when $y(k+1)$ was defined. Notice that we are in Case 2 of the construction and $r_{y \upharpoonright_{k+1}}$ is defined. Then $\phi_{y \upharpoonright_{k+1}}(k)=e$ is an element of D_{1-i}. It is not hard to see that $d \backslash x=e \backslash x$ and $\chi(e) \upharpoonright_{n \cap x}=t$. This completes the proof of the lemma.

We will now show that it is enough to prove Theorem 1.6 for \mathcal{F}. Recall the following characterization of non-meager filters.
2.4. Lemma ([1, Theorem 4.1.2]). Let \mathcal{F} be a filter. Then \mathcal{F} is nonmeager if and only if for every partition of ω into finite sets $\left\{J_{n}: n<\omega\right\}$, there is $X \in \mathcal{F}$ such that $\left\{n<\omega: X \cap J_{n}=\emptyset\right\}$ is infinite.

The following was originally proved by Shelah (see [12, Fact 4.3, p. 327]). We include a proof for the convenience of the reader.
2.5. Lemma. If \mathcal{F} is a non-meager P-filter, then ${ }^{\omega} \mathcal{F}$ is homeomorphic to a non-meager P-filter.

Proof. Let

$$
\mathcal{G}=\{A \subset \omega \times \omega: \forall n<\omega(A \cap(\{n\} \times \omega) \in \mathcal{F})\}
$$

Notice that \mathcal{G} is homeomorphic to ${ }^{\omega} \mathcal{F}$. It is easy to see that G is a filter on $\omega \times \omega$. We next prove that \mathcal{G} is a non-meager P-filter.

Let $\left\{A_{k}: k<\omega\right\} \subset \mathcal{G}$. For each $\{k, n\} \subset \omega$, we define $A_{k}^{n}=\{x \in \omega$: $\left.(n, x) \in A_{k}\right\} \in \mathcal{F}$. Since \mathcal{F} is a P-filter, there is $A \in \mathcal{F}$ such that $A \subset^{*} A_{k}^{n}$
for all $\{k, n\} \subset \omega$. Let $f: \omega \rightarrow \omega$ be such that $A \backslash f(n) \subset A_{k}^{n}$ for all $k \leq n$. Let

$$
B=\bigcup\{\{n\} \times(A \backslash f(n)): n<\omega\}
$$

Then it is easy to see that $B \in \mathcal{G}$ and B is a pseudointersection of $\left\{A_{n}\right.$: $n<\omega\}$. So \mathcal{G} is a P-filter.

Let $\left\{J_{k}: k<\omega\right\}$ be a partition of $\omega \times \omega$ into finite subsets. Recursively, we define a sequence $\left\{F_{n}: n<\omega\right\} \subset \mathcal{F}$ and a sequence $\left\{A_{n}: n<\omega\right\} \subset[\omega]^{\omega}$ such that $A_{n+1} \subset A_{n}$ and $A_{n} \subset\left\{k<\omega: J_{k} \cap\left(\{n\} \times F_{n}\right)=\emptyset\right\}$ for all $n<\omega$.

For $n=0$, since \mathcal{F} is non-meager, by Lemma 2.4 there is $F_{0} \in \mathcal{F}$ such that $\left\{k<\omega: J_{k} \cap\left(\{0\} \times F_{0}\right)=\emptyset\right\}$ is infinite; call this last set A_{0}. Assume that we have the construction up to $m<\omega$, then $\mathcal{B}=\left\{J_{k} \cap(\{m+1\} \times \omega)\right.$: $\left.k \in A_{m}\right\}$ is a family of pairwise disjoint finite subsets of $\{m+1\} \times \omega$. If $\bigcup \mathcal{B}$ is finite, let $F_{m+1} \in \mathcal{F}$ be such that $F_{m+1} \cap \bigcup \mathcal{B}=\emptyset$ and let $A_{m+1}=A_{m}$. If $\bigcup \mathcal{B}$ is infinite, let $\left\{B_{k}: k \in A_{m}\right\}$ be any partition of $(\{m+1\} \times \omega) \backslash \bigcup \mathcal{B}$ into finite subsets (some possibly empty). For each $k \in A_{m}$, let $C_{k}=\left(J_{k} \cap\right.$ $(\{m+1\} \times \omega)) \cup B_{k}$. Then $\left\{C_{k}: k \in A_{m}\right\}$ is a partition of $\{m+1\} \times \omega$ into finite sets, so by Lemma 2.4 there is $F_{m+1} \in \mathcal{F}$ such that $\left\{k \in A_{m}\right.$: $\left.C_{k} \cap\left(\{m+1\} \times F_{m+1}\right)=\emptyset\right\}$ is infinite; call this set A_{m+1}. This completes the recursion.

Define an increasing function $s: \omega \rightarrow \omega$ such that $s(0)=\min A_{0}$ and $s(k+1)=\min \left(A_{k+1} \backslash\{s(0), \ldots, s(k)\}\right)$ for $k<\omega$. Also, define $t: \omega \rightarrow \omega$ such that $t(0)=0$ and
$t(n+1)=\min \left\{m<\omega:\left(J_{s(0)} \cup \cdots \cup J_{s(n)}\right) \cap(\{n+1\} \times \omega) \subset\{n+1\} \times m\right\}$.
Finally, let

$$
G=\bigcup\left\{\{n\} \times\left(F_{n} \backslash t(n)\right): n<\omega\right\}
$$

Then $G \in \mathcal{G}$ and for all $k<\omega, G \cap J_{s(k)}=\emptyset$. Thus, \mathcal{G} is non-meager by Lemma 2.4.

We now have everything ready to prove our result.
Proof of Theorem 1.6. By Lemma 2.5, it is enough to prove that \mathcal{F} is CDH , equivalently that $\mathcal{I}=\mathcal{F}^{*}$ is CDH. Let D_{0} and D_{1} be two countable dense subsets of \mathcal{I} and let $x \in \mathcal{I}$ be given by Lemma 2.3.

We will construct a homeomorphism $h: \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$ such that $h\left[D_{0}\right]$ $=D_{1}$ and

$$
\forall d \in D(d \triangle h(d) \subset x)
$$

By Lemma 2.1, $h[\mathcal{I}]=\mathcal{I}$ and we will have finished.
We shall define h by approximations. By this we mean the following. We will give a strictly increasing sequence $\{n(k): k<\omega\} \subset \omega$ and in step $k<\omega$ a homeomorphism (permutation) $h_{k}: \mathcal{P}(n(k)) \rightarrow \mathcal{P}(n(k))$ such that

$$
\begin{equation*}
\forall j<k<\omega \forall a \in \mathcal{P}(n(k))\left(h_{k}(a) \cap n(j)=h_{j}(a \cap n(k))\right) \tag{*}
\end{equation*}
$$

By $(*)$, we can define $h: \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$ to be the inverse limit of $\left\{h_{k}\right.$: $k<\omega\}$, which is a homeomorphism.

Let $D_{0} \cup D_{1}=\left\{d_{n}: n<\omega\right\}$ in such a way that $\left\{d_{n}: n \equiv i(\bmod 2)\right\}=D_{i}$ for $i \in 2$. To make sure that $h\left[D_{0}\right]=D_{1}$, in step k we have to decide the value of $h\left(d_{k}\right)$ when k is even and the value of $h^{-1}\left(d_{k}\right)$ when k is odd. We do this by approximating a bijection $\pi: D_{0} \rightarrow D_{1}$ in ω steps by a chain of finite bijections $\left\{\pi_{k}: k<\omega\right\}$ and letting $\pi=\bigcup\left\{\pi_{k}: k<\omega\right\}$. In step $k<\omega$, we would like to have π_{k} defined on some finite set so that the following conditions hold whenever $\pi_{k} \subset \pi$:
(a) ${ }_{k}$ if $j<k$ is even, then $h_{k}\left(d_{j} \cap n(k)\right)=\pi\left(d_{j}\right) \cap n(k)$, and
(b) $)_{k}$ if $j<k$ is odd, then $h_{k}\left(d_{j} \cap n(k)\right)=\pi^{-1}\left(d_{j}\right) \cap n(k)$.

Notice that once π is completely defined, if (a) ${ }_{k}$ and (b) ${ }_{k}$ hold for all $k<\omega$, then $h[D]=E$. During the construction, we need to make sure that the following two conditions hold:
$(\mathrm{c})_{k} \forall i \in n(k) \backslash x \forall a \in \mathcal{P}(n(k))\left(i \in a \Leftrightarrow i \in h_{k}(a)\right)$, and
$(\mathrm{d})_{k} \forall d \in \operatorname{dom}\left(\pi_{k}\right)\left(d \backslash x=\pi_{k}(d) \backslash x\right)$.
Condition $(\mathrm{c})_{k}$ is a technical condition that will help us carry out the recursion. Notice that if we have condition $(\mathrm{d})_{k}$ for all $k<\omega$, then (\star) will hold.

Assume that we have defined $n(0)<\cdots<n(s-1), h_{0}, \ldots, h_{s-1}$ and a finite bijection $\pi_{s} \subset D_{0} \times D_{1}$ with $\left\{d_{r}: r<s\right\} \subset \operatorname{dom}\left(\pi_{s}\right) \cup \operatorname{dom}\left(\pi_{s}^{-1}\right)$ in such a way that if $\pi \supset \pi_{s}$, then $(\mathrm{a})_{s-1}-(\mathrm{d})_{s-1}$ hold. Let us consider the case when s is even; the other case can be treated in a similar fashion.

If $d_{s}=\pi_{s}^{-1}\left(d_{r}\right)$ for some odd $r<s$, let $n(s)=n(s-1)+1$. If we let $\pi_{s+1}=\pi_{s}$, it is easy to define h_{s} so that it is compatible with h_{s-1} in the sense of $(*)$, in such a way that $(\mathrm{a})_{s}-(\mathrm{d})_{s}$ hold for any $\pi \supset \pi_{s+1}$. So we may assume this is not the case.

Notice that the set $S=\left\{d_{r}: r<s+1\right\} \cup\left\{\pi_{s}\left(d_{r}\right): r<s, r \equiv 0(\bmod 2)\right\} \cup$ $\left\{\pi_{s}^{-1}\left(d_{r}\right): r<s, r \equiv 1(\bmod 2)\right\}$ is finite. Choose $p<\omega$ so that $d_{s} \backslash p \subset x$. Let $r_{0}=h_{s-1}\left(d_{s} \cap n(s-1)\right) \in \mathcal{P}(n(s-1))$. Choose $n(s-1)<m<\omega$ and $t \in{ }^{m \cap x} 2$ in such a way that $t^{-1}(1) \cap n(s-1)=r_{0} \cap n(s-1) \cap x$ and t is not extended by any element of $\{\chi(a): a \in S\}$. By Lemma 2.3, there exists $e \in E$ such that $d_{s} \backslash x=e \backslash x$ and $\chi(e) \upharpoonright_{m \cap x}=t$. Notice that $e \notin S$ and $\chi(e) \upharpoonright_{n(s-1)}=r_{0}$. We define $\pi_{s+1}=\pi_{s} \cup\left\{\left(d_{s}, e\right)\right\}$. Notice that $(\mathrm{d})_{s}$ holds in this way.

Now that we have decided where π will send d_{s}, let $n(s)>\max \{p, m\}$ be such that there are no two distinct $a, b \in S \cup\left\{\pi_{s+1}\left(d_{s}\right)\right\}$ with $a \cap n(s)=$ $b \cap n(s)$. Topologically, all elements of $S \cup\left\{\pi_{s+1}\left(d_{s}\right)\right\}$ are contained in distinct basic open sets of measure $1 /(n(s)+1)$.

Finally, we define the bijection $h_{s}: \mathcal{P}(n(s)) \rightarrow \mathcal{P}(n(s))$. For this part of the proof we will use characteristic functions instead of subsets of ω (otherwise the notation would become cumbersome). Therefore, we may say $h_{r}:{ }^{n(r)} 2 \rightarrow{ }^{n(r)} 2$ is a homeomorphism for $r<s$.

Let $\left(q, q^{\prime}\right) \in^{n(s-1)} 2 \times^{n(s) \backslash x} 2$ be a pair of compatible functions. Notice that $\left(h_{s-1}(q), q^{\prime}\right)$ are also compatible by $(\mathrm{c})_{s-1}$. Consider the following condition:

$$
\nabla\left(q, q^{\prime}\right): \quad \forall a \in{ }^{n(s)} 2\left(q \cup q^{\prime} \subset a \Leftrightarrow h_{s-1}(q) \cup q^{\prime} \subset h_{s}(a)\right) .
$$

Notice that if we define h_{s} so that $\nabla\left(q, q^{\prime}\right)$ holds for each pair $\left(q, q^{\prime}\right) \in$ ${ }^{n(s-1)} 2 \times^{n(s) \backslash x} 2$ of compatible functions, then $(*)$ and (c) ${ }_{s}$ hold as well.

Then for each pair $\left(q, q^{\prime}\right) \in{ }^{n(s-1)} 2 \times^{n(s) \backslash x} 2$ of compatible functions we only have to find a bijection $g:{ }^{T} 2 \rightarrow{ }^{T} 2$, where $T=(n(s) \cap x) \backslash n(s-1)$ (this bijection will depend on the pair) and define $h_{s}:{ }^{n(s)} 2 \rightarrow^{n(s)} 2$ as

$$
h_{s}(a)=h_{s-1}(q) \cup q^{\prime} \cup g\left(f \upharpoonright_{T}\right)
$$

whenever $a \in{ }^{n(s)} 2$ and $q \cup q^{\prime} \subset a$. There is only one restriction in the definition of g and it is imposed by conditions (a) ${ }_{s}$ and (b) $)_{s}$; namely that g is compatible with the bijection π_{s+1} already defined. However by the choice of $n(s)$ this is not hard to achieve. This finishes the inductive step and the proof.

Acknowledgements. This paper is part of the first-named author's doctoral dissertation. Research was supported by CONACyT scholarship for Doctoral Students. The second-named author acknowledges support from PAPIIT grant IN102311 and CONACyT grant 177758.

REFERENCES

[1] T. Bartoszyński and H. Judah, Set Theory. On the Structure of the Real Line, A K Peters, Wellesley, MA, 1995.
[2] R. Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), 189-194.
[3] G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann. 49 (1897), 207-246.
[4] I. Farah, M. Hrušák and C. Martínez Ranero, A countable dense homogeneous set of reals of size \aleph_{1}, Fund. Math. 186 (2005), 71-77.
[5] B. Fitzpatrick Jr. and H.-X. Zhou, Some open problems in densely homogeneous spaces, in: Open Problems in Topology, J. van Mill and M. Reed (eds.), NorthHolland, Amsterdam, 1984, 251-259.
[6] M. Hrušák and B. Zamora Avilés, Countable dense homogeneity of definable spaces, Proc. Amer. Math. Soc. 133 (2005), 3429-3435.
[7] W. Just, A. R. D. Mathias, K. Prikry and P. Simon, On the existence of large p-ideals, J. Symbolic Logic 55 (1990), 457-465.
[8] C. Laflamme, Filter games and combinatorial properties of strategies, in: Set Theory (Boise, ID, 1992-1994), Contemp. Math. 192, Amer. Math. Soc., Providence, RI, 1996, 51-67.
[9] W. Marciszewski, P-filters and hereditary Baire function spaces, Topology Appl. 89 (1998), 241-247.
[10] A. Medini and D. Milovich, The topology of ultrafilters as subspaces of 2^{ω}, Topology Appl. 159 (2012), 1318-1333.
[11] J. van Mill, On countable dense and strong n-homogeneity, Fund. Math. 214 (2011), 215-239.
[12] S. Shelah, Proper and Improper Forcing, 2nd ed., Perspectives Math. Logic, Springer, Berlin, 1998.
[13] G. S. Ungar, Countable dense homogeneity and n-homogeneity, Fund. Math. 99 (1978), 155-160.

Rodrigo Hernández-Gutiérrez, Michael Hrušák
Centro de Ciencias Matemáticas
UNAM, A.P. 61-3
Xangari, Morelia, Michoacán, 58089, México
E-mail: rod@matmor.unam.mx
michael@matmor.unam.mx

Received 27 April 2012; revised 28 February 2013

