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SOME REMARKS ON THE
DYADIC RADEMACHER MAXIMAL FUNCTION

BY

MIKKO KEMPPAINEN (Helsinki)

Abstract. Properties of a maximal function for vector-valued martingales were stud-
ied by the author in an earlier paper. Restricting here to the dyadic setting, we prove the
equivalence between (weighted) Lp inequalities and weak type estimates, and discuss an
extension to the case of locally finite Borel measures on Rn. In addition, to compensate
for the lack of an L∞ inequality, we derive a suitable BMO estimate. Different dyadic
systems in different dimensions are also considered.

1. Introduction. The Rademacher maximal function was originally in-
troduced by Hytönen, McIntosh and Portal [10] in order to prove a ‘Carleson
embedding theorem’ for functions with values in infinite-dimensional Banach
spaces. It provided a vector-valued analogue for the standard dyadic maxi-
mal function by replacing the suprema of local averages with their R-bounds.
More precisely, for locally integrable vector-valued functions f on Rn they
set

M f(x) = sup
{(

E
∥∥∥∑
Q3x

εQλQ〈f〉Q
∥∥∥2)1/2 :

(∑
Q

|λQ|2
)1/2

≤ 1
}
, x ∈ Rn,

where E denotes the expectation for independent random variables εQ at-
taining values +1 and −1, each with probability 1/2, and the vector 〈f〉Q is
the average of f over a dyadic cube Q ⊂ Rn. The RMF property of a Banach
space X was then defined by requiring that for functions f with values in
X we have (1) �

Rn
M f(x)p dx .

�

Rn
‖f(x)‖p dx,

where 1 < p <∞.
In [10] this property was shown to be independent of p ∈ (1,∞) and also

to be non-trivial in the sense that while many spaces have it, some (e.g. `1)
do not.
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(1) By α . β we mean that there exists a constant C such that α ≤ Cβ. Quantities
α and β are comparable, α h β, if α . β and β . α.
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The author studied this maximal function in a more general setting of
martingales [12] and showed, employing somewhat lengthy arguments along
the lines of [13] and [4], that the RMF property is characterized by a cer-
tain weak type estimate. A significantly simpler approach is available if one
restricts considerations to the original setting of dyadic cubes. Doing so en-
ables us to extend the characterization of the RMF property and answer
also other natural questions concerning the Rademacher maximal function.
Nevertheless, the question remains whether the RMF property follows from
the better known UMD property—a requirement for unconditional conver-
gence of Haar decompositions of vector-valued functions (see the Remark
on page 115).

Recently, the Rademacher maximal function has found applications in
vector-valued Tb theorems, where one is typically led to study paraprod-
uct operators, whose boundedness relies on Carleson’s embedding theorems.
This was the case in an earlier version of [7] concerning a (global) vector-
valued non-homogeneous Tb theorem and in a current version of its local
counterpart [11].

The extended characterization of the RMF property is stated in The-
orem 1 below, whereas Theorem 2 entails the BMO estimate. Theorem 3
states the equivalence of Lp inequalities with respect to different dyadic sys-
tems, and the corresponding result for different dimensions is presented in
Theorem 4. The characterization provided by Theorem 1 is discussed in a
more general setting of locally finite Borel measures in Section 5.

R-bounds. Let X be a Banach space and write (εk) for a sequence
of independent random variables attaining values +1 and −1, each with
probability 1/2. Comparison of randomized sums (and their expectations E)
with square sums lies at the heart of our interest.

Definition. A set S ⊂ X is said to be R-bounded (2) if there exists a
constant C such that(

E
∥∥∥∑

k

εkλkξk

∥∥∥2)1/2 ≤ C(∑
k

|λk|2
)1/2

for all (finite) collections of vectors {ξk} ⊂ S and scalars {λk}. The smallest
such C is the R-bound R(S).

Remark. • R-bounds satisfy the following ‘triangle inequality’: For
S, S′ ⊂ X one has

|R(S)−R(S′)| ≤ R(S ± S′) ≤ R(S) + R(S′).

(2) This coincides with the R-property in [2, (2.4) Definition] when vectors ξ are
viewed as operators λ 7→ λξ from scalars to X. The concept of R-boundedness appeared
implicitly already in [3].
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Furthermore, R-bounds are monotone and subadditive in the sense that

R(S) ≤
∑
m

R(Sm) whenever S ⊂
⋃
m

Sm ⊂ X.

In particular, for any sequence (ξk)
∞
k=1 ⊂ X one has R(ξ1, ξ2, . . .) ≤∑∞

k=1 ‖ξk‖.
• R-bounds always exceed uniform bounds, that is,

sup
ξ∈S
‖ξ‖ ≤ R(S).

Moreover, that R(S) . supξ∈S ‖ξ‖ holds for all S ⊂ X is equivalent with X
having type 2 (see [1, Proposition 1.13]). Recall that X is said to have type
p ∈ [1, 2] if (

E
∥∥∥∑

k

εkξk

∥∥∥2)1/2 . (∑
k

‖ξk‖p
)1/p

for all (finite) collections {ξk} ⊂ X.

The Rademacher maximal function. Let us consider a system D =⋃
k∈Z Dk of dyadic cubes, where each Dk partitions Rn into cubes of side-

length 2−k and every Q ∈ Dk is a union of 2n smaller cubes R ∈ Dk+1. A
standard example of such a system is given by Dk = {2−k([0, 1)n + m) :
m ∈ Zn}. Note that every Q ∈ D is contained in a unique larger cube Q∗

with |Q∗| = 2n|Q| (| · | refers to the Lebesgue measure) and that for any
two Q,R ∈ D the intersection Q ∩ R is either ∅, Q or R. By maximality
of a dyadic cube Q in a given subcollection of D we mean that there does
not exist a cube R in the same subcollection for which Q ( R. Note that
maximal cubes are always disjoint and cover the same area as the whole sub-
collection. Unless otherwise stated, Q and R will always stand for dyadic
cubes in a given system.

For 1 ≤ p ≤ ∞, we denote by Lp(X) the Lebesgue–Bochner space of
p-integrable functions (essentially bounded for p =∞) on Rn taking values
in a Banach space X.

Definition. The Rademacher maximal function of f ∈ L1
loc(X) is given

by

M f(x) = R(〈f〉Q : Q 3 x), x ∈ Rn, where 〈f〉Q =
1

|Q|

�

Q

f(y) dy.

Remark. • If X has type 2, then R-bounds are comparable with uni-
form bounds and so M f is controlled pointwise by the standard dyadic
maximal function

Mf(x) = sup
Q3x
‖〈f〉Q‖.
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• Functions with finite Haar decomposition form a dense subspace of
Lp(X) when 1 < p <∞ and for such f we have ‖M f‖Lp <∞. Recall that
every f ∈ Lp(X) can be decomposed as

f = lim
N→∞

∑
Q∈Dk
|k|≤N

∑
θ

〈f, hθQ〉hθQ,

where the sum converges in Lp(X) and the Haar functions hθQ with θ ∈
{0, 1}n \ {0} are defined as in [8, Section 3]. In particular, each hθQ is sup-

ported in Q, has
	
hθQ = 0 and satisfies |hθQ(x)| = |Q|−1/2 for all x ∈ Q.

Furthermore, X is said to have the UMD property if the convergence in the
decomposition is unconditional in Lp(X).
• Averages over large cubes have finite R-bounds for any f ∈ Lp(X) with

1 ≤ p <∞, that is, given any dyadic cube Q we have R(〈f〉R : R ⊃ Q) <∞.
•M preserves the dyadic support of functions with zero mean: If supp b

⊂ Q and
	
b = 0, then for every x 6∈ Q and every R 3 x we have 〈b〉R = 0,

since either R ∩Q = ∅ of R ⊃ Q. Consequently, M b(x) = 0 for x 6∈ Q.

2. Lp inequalities and weak type estimates. In this section we
prove that for any Banach space X and any 1 < p <∞, the Lp inequality�

Rn
M f(x)p dx .

�

Rn
‖f(x)‖p dx,

abbreviated as M : Lp(X)→ Lp, is equivalent to weak type estimates both
on L1(X) and on the Hardy space H1(X). Moreover, we consider weighted
Lp inequalities for weights in the (dyadic) Muckenhoupt classes Ap.

Weak type estimates. The Hardy space H1(X) is taken to consist of
those f ∈ L1(X) for which the dyadic maximal function Mf is integrable,
so that the norm ‖f‖H1(X) := ‖Mf‖L1 is finite. An equivalent description
is given in terms of atoms: A function a ∈ Lq(X), where 1 < q ≤ ∞, is said
to be a q-atom if there is a dyadic cube Q so that

supp a ⊂ Q,
�

Q

a(x) dx = 0, and ‖a‖Lq(X) ≤ |Q|−1/q
′
,

q′ being the Hölder conjugate of q. Note that every q-atom a satisfies
‖a‖H1(X) . 1. Now H1(X) consists of exactly those f ∈ L1(X) which
admit, for every q ∈ (1,∞], a decomposition into q-atoms ak so that

f =
∑
k

λkak with
∑
k

|λk| <∞.

The weak type Hardy space estimate is the requirement that

|{x ∈ Rn : M f(x) > λ}| . 1

λ
‖f‖H1(X)
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for all λ > 0. We write this as M : H1(X) → L1,∞ (and similarly for
L1(X)).

The key to the derivation of an Lp inequality from a weak type estimate
is a suitable distributional inequality, where M is controlled by another
maximal operator. For 1 ≤ q <∞ we define

Mqf(x) = sup
Q3x

(
1

|Q|

�

Q

‖f(y)‖q dy
)1/q

.

Lemma 1. Suppose that M : H1(X) → L1,∞ and let 1 < q < ∞. If f
has a finite Haar decomposition and Q is maximal among cubes for which
R(〈f〉R : R ⊃ Q) > λ for a given λ > 0, then

|{x ∈ Q : M f(x) > 2λ, Mqf(x) ≤ δλ}| . δ

1− δ
|Q|

for all δ ∈ (0, 1). Consequently, for every λ > 0 and δ ∈ (0, 1), we have

|{x ∈ Rn : M f(x) > 2λ, Mqf(x) ≤ δλ}| . δ

1− δ
|{x ∈ Rn : M f(x) > λ}|.

Proof. Given a function f with a finite Haar decomposition and a λ > 0,
let Q be maximal among cubes for which R(〈f〉R : R ⊃ Q) > λ.

If M f(x) > 2λ for an x ∈ Q, then R(〈f〉R : R ⊂ Q,R 3 x) > λ, since
R(〈f〉R : R ⊃ Q∗) ≤ λ by maximality of Q. If also Mqf ≤ δλ somewhere
in Q, then

M ((f − 〈f〉Q)1Q)(x) = R(〈f〉R − 〈f〉Q : R ⊂ Q,R 3 x)

≥ R(〈f〉R : R ⊂ Q,R 3 x)− ‖〈f〉Q‖ > (1− δ)λ,
as ‖〈f〉Q‖ ≤Mqf(y) for any y ∈ Q.

Now (f − 〈f〉Q)1Q is a q-atom multiplied by 2|Q|1/q′‖f1Q‖Lq(X) and so

from M : H1(X)→ L1,∞ it follows that

|{x ∈ Q : M f(x) > 2λ, Mqf(x) ≤ δλ}|
≤ |{x ∈ Q : M ((f − 〈f〉Q)1Q)(x) > (1− δ)λ}|

.
1

(1− δ)λ
‖(f − 〈f〉Q)1Q‖H1(X) .

1

(1− δ)λ
|Q|1/q′‖f1Q‖Lq(X).

Assuming that Mqf ≤ δλ somewhere in Q, we obtain( �

Q

‖f(x)‖q dx
)1/q

≤ |Q|1/q inf
x∈Q

Mqf(x) ≤ |Q|1/qδλ,

so that from |Q|1/q′ |Q|1/q = |Q| we arrive at

|{x ∈ Q : M f(x) > 2λ, Mqf(x) ≤ δλ}| . δ

1− δ
|Q|.
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The set {x ∈ Rn : M f(x) > λ} can of course be decomposed into a
disjoint union of maximal cubes in the previous sense and so

|{x ∈ Rn : M f(x) > 2λ, Mqf(x) ≤ δλ}| . δ

1− δ
|{x ∈ Rn : M f(x) > λ}|

for all δ ∈ (0, 1).

Remark. From M : L1(X)→ L1,∞ one can deduce a similar distribu-
tional inequality for q = 1.

Weights. For 1 < p < ∞, the (dyadic) Muckenhoupt class Ap consists
of weights w (non-negative and locally integrable) such that(

1

|Q|

�

Q

w(x) dx

)(
1

|Q|

�

Q

w(x)1−p
′
dx

)p−1
. 1

for every dyadic cube Q. This is equivalent to the requirement that, for any
Banach space X, M1 : Lp(w;X)→ Lp(w), i.e.�

Rn
M1f(x)pw(x) dx .

�

Rn
‖f(x)‖pw(x) dx.

Due to the ‘reverse Hölder property’ of Muckenhoupt weights (see [5, Chap-
ter IV]), every weight in Ap belongs to a smaller class Ap/q for some q > 1.
Furthermore, every such weight w satisfies the following: There exists a
γ > 0 such that, whenever E ⊂ Q for a dyadic cube Q, we have

(∗) w(E)

w(Q)
.

(
|E|
|Q|

)γ
.

Here, as usual, w is also used to denote the measure w(x) dx.

Characterization of the RMF property. We are now in a position
to characterize the RMF property of a Banach space by the equivalent con-
ditions in the following statement:

Theorem 1. The following conditions are equivalent for any Banach
space X:

(i) M : Lp(w;X)→ Lp(w) for all p ∈ (1,∞) and any w ∈ Ap,
(ii) M : Lp(X)→ Lp for some p ∈ (1,∞),

(iii) M : L1(X)→ L1,∞,
(iv) M : H1(X)→ L1,∞.

Proof. As (ii) is a special case of (i), the equivalence is obtained by
proving that (ii)⇒(iii)⇒(iv)⇒(i).

(ii)⇒(iii): To perform the Calderón–Zygmund decomposition for a func-
tion f ∈ L1(X) at height λ, let C denote the collection of maximal cubes
among dyadic cubes Q for which (1/|Q|)

	
Q ‖f(x)‖ dx > λ. We decompose
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f into the ‘good’ and ‘bad’ parts according to

g = 1Rn\
⋃

C f +
∑
Q∈C

〈f〉Q1Q, b = f − g =
∑
Q∈C

(f − 〈f〉Q)1Q =
∑
Q∈C

bQ.

A standard argument employing the assumption M : Lp(X) → Lp applies
to the good part and gives

|{x ∈ Rn : M g(x) > λ/2}| . 1

λ
‖f‖L1(X).

For the bad part we observe that M b = 0 outside
⋃

C . Indeed, if x 6∈
⋃

C
and R 3 x, then 〈bQ〉R = 0 for all Q ∈ C and so 〈b〉R = 0. Consequently,
also

|{x ∈ Rn : M b(x) > λ/2}| ≤
∣∣∣⋃C

∣∣∣ ≤ 1

λ
‖f‖L1(X).

(iii)⇒(iv): This is immediate from the fact that ‖ · ‖L1(X) ≤ ‖ · ‖H1(X).

(iv)⇒(i): Given a p ∈ (1,∞) and a w ∈ Ap, we choose a q ∈ (1, p) such
that w ∈ Ap/q. Any f with a finite Haar decomposition will then satisfy, for
all λ > 0 and δ ∈ (0, 1), the inequality

w({x ∈ Rn : M f(x) > 2λ, Mqf(x) ≤ δλ})

.

(
δ

1− δ

)γ
w({x ∈ Rn : M f(x) > λ})

with some γ > 0. Indeed, we may write {x ∈ Rn : M f(x) > λ} as a
disjoint union of dyadic cubes Q that are maximal with respect to R(〈f〉R :
R ⊃ Q) > λ, and then appeal to Lemma 1 and to (∗) with E = {x ∈ Q :
M f(x) > 2λ, Mqf(x) ≤ δλ} to see that there exists a γ > 0 so that

w({x ∈ Q : M f(x) > 2λ, Mqf(x) ≤ δλ}) .
(

δ

1− δ

)γ
w(Q)

for all δ ∈ (0, 1).

Now, writing α(δ) = (δ/(1− δ))γ , we obtain

‖M f‖pLp(w) = 2p
∞�

0

pλp−1w({x ∈ Rn : M f(x) > 2λ}) dλ

. 2pα(δ)

∞�

0

pλp−1w({x ∈ Rn : M f(x) > λ}) dλ

+ 2p
∞�

0

pλp−1w({x ∈ Rn : Mqf(x) > δλ}) dλ

= 2pα(δ)‖M f‖pLp(w) +
2p

δp
‖Mqf‖pLp(w).
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Observing that Mqf(x)p = M1g(x)p/q for the scalar function g(x)=‖f(x)‖q,
we may deduce from w ∈ Ap/q that

‖Mqf‖pLp(w) =
�

Rn
M1g(x)p/qw(x) dx

≤ Cp,q
�

Rn
|g(x)|p/qw(x) dx = Cp,q‖f‖pLp(w;X).

Choosing δ small enough so that α(δ) < 1/2p, after rearrangement we obtain

‖M f‖pLp(w) .
2p(Cp,q)

p

(1− 2pα(δ))δp
‖f‖pLp(w;X).

Remark. • Condition (i) can also be seen to follow from (iii) by using
a distributional inequality as in Lemma 1, but with q = 1.

• From condition (ii) it also follows that M : H1(X)→ L1, as can easily
be seen from the action of M on a p-atom a supported in Q:

�

Rn
M a(x) dx ≤ |Q|1/p′

( �

Q

M a(x)p dx
)1/p

. |Q|1/p′
( �

Q

‖a(x)‖p dx
)1/p

≤ 1.

• The UMD property of a Banach space X can be characterized by an
analogous result for the dyadic square function given for f ∈ L1

loc(X) by

Sf(x) = lim
N→∞

(
E
∥∥∥ ∑
Q∈Dk
|k|≤N

∑
θ

εθQ〈f, hθQ〉hθQ(x)
∥∥∥2)1/2, x ∈ Rn,

where hθQ are the Haar functions:

Theorem. The following conditions are equivalent for any Banach
space X:

(i) S : Lp(w;X)→ Lp(w) for all p ∈ (1,∞) and any w ∈ Ap,
(ii) S : Lp(X)→ Lp for some p ∈ (1,∞),

(iii) S : L1(X)→ L1,∞,
(iv) S : H1(X)→ L1,∞.

The proof proceeds as that of Theorem 1 once one has a suitable version
of Lemma 1. In order to prove a distributional inequality—assuming that
(iv) holds—take any f with a finite Haar decomposition and a λ > 0. The set
{x ∈ Rn : Sf(x) > λ} decomposes into disjoint cubes Q that are maximal
with respect to (

E
∥∥∥∥ ∑
R⊃Q

∑
θ

εθR
〈f, hθR〉
|R|1/2

∥∥∥∥2)1/2

> λ.
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Now, if Sf(x) > 2λ for an x in such a cube Q, then

S((f − 〈f〉Q)1Q)(x) =
(
E
∥∥∥ ∑
R⊂Q

∑
θ

εθR〈f, hθR〉hθR(x)
∥∥∥2)1/2

≥ Sf(x)−
(
E
∥∥∥∥ ∑
R⊃Q∗

∑
θ

εθR
〈f, hθR〉
|R|1/2

∥∥∥∥2)1/2

> λ,

where the identity follows from the fact that 〈(f −〈f〉Q)1Q, h
θ
R〉 = 〈f, hθR〉 if

R ⊂ Q and otherwise 〈(f − 〈f〉Q)1Q, h
θ
R〉 = 0. As in the proof of Lemma 1,

we then find for any q ∈ (1,∞) that

|{x ∈ Q : Sf(x) > 2λ, Mqf(x) ≤ δλ}|
≤ |{x ∈ Q : S((f − 〈f〉Q)1Q)(x) > λ}|

.
1

λ
‖(f − 〈f〉Q)1Q‖H1(X) .

1

λ
|Q|1/q′‖f1Q‖Lq(X) . δ|Q|,

where the last step holds under the assumption that Mqf ≤ δλ somewhere
in Q.

Observe, in addition, that from ‖Sf‖Lp(w) . ‖f‖Lp(w;X) one can deduce
the reverse inequality ‖f‖Lp(w;X) . ‖Sf‖Lp(w) by duality (cf. [6, Theorem
5.4.7]).

Application to paraproducts. Let us briefly note how the weighted
Lp inequalities for M can be applied to vector-valued paraproducts. We
define the paraproduct operator Πb associated to a given b ∈ BMO by

Πbf =
∑
Q,θ

〈f〉Q〈b, hθQ〉hθQ,

where, strictly speaking, one considers finite sums and defines Πbf as a func-
tional on a dense subspace of the dual. A standard argument via Carleson’s
embedding theorem (see [10, Theorem 8.2, Corollary B.1] or [9, Lemma 13,
Theorem 14]) gives

‖S(Πbf)‖Lp(w) h
(
E
∥∥∥∑
Q,θ

εθQ〈f〉Q〈b, hθQ〉hθQ
∥∥∥p
Lp(w;X)

)1/p
. ‖b‖BMO‖M f‖Lp(w)

for w ∈ Ap and f ∈ Lp(w;X) with 1 < p < ∞. Assuming that X has
UMD, we have ‖Πbf‖Lp(w;X) . ‖S(Πbf)‖Lp(w). If, in addition, X has RMF,
then ‖M f‖Lp(w) . ‖f‖Lp(w;X) according to Theorem 1, which establishes
the boundedness of Πb on Lp(w;X). See [10, Appendix B] for historical
remarks.
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3. A BMO estimate. In contrast to other, more usual maximal oper-
ators (such as Mq), M does not in general map L∞(X) boundedly into L∞.
Indeed, according to [12, Proposition 4.1] we have:

Proposition. For any Banach space X, M : L∞(X)→ L∞ if and only
if X has type 2.

On the other hand, a linearized version of M was shown in [10, Propo-
sition 7.1] to map L∞(X) into a certain vector-valued BMO space. Recall
that by the John–Nirenberg inequality the (dyadic) BMO norm of a function
f ∈ L1

loc(X) can be given by any of the equivalent quantities

‖f‖BMO(X) h sup
Q∈D

(
1

|Q|

�

Q

‖f(x)− 〈f〉Q‖p dx
)1/p

, 1 ≤ p <∞.

Moreover, the dyadic averages 〈g〉Q in the BMO norm of a scalar function
g ∈ L1

loc can be replaced by other scalars cQ according to the formula

‖g‖BMO h sup
Q∈D

inf
cQ

1

|Q|

�

Q

|g(x)− cQ| dx.

Theorem 2. Suppose that M : Lp(X)→ Lp for some 1 < p <∞. Then

‖M f‖BMO . ‖f‖BMO(X)

for any f ∈ L1
loc(X) with M f <∞ almost everywhere.

Proof. For every dyadic cube Q and every x ∈ Q we have

R(〈f〉R : R 3 x) ≤ R(〈f〉R − 〈f〉Q + 〈f〉R′ : R ⊂ Q,R 3 x,R′ ⊃ Q)

≤ R(〈f〉R − 〈f〉Q : R ⊂ Q,R 3 x) + R(〈f〉R′ : R′ ⊃ Q),

where the first term in the last expression equals M ((f−〈f〉Q)1Q)(x). Since
M f <∞ almost everywhere, the constant

cQ = R(〈f〉R′ : R′ ⊃ Q)

is finite and so for x ∈ Q,

0 ≤M f(x)− cQ ≤M ((f − 〈f〉Q)1Q)(x).

Consequently, since M : Lp(X)→ Lp,

1

|Q|

�

Q

|M f(x)− cQ| dx ≤
1

|Q|

�

Q

M ((f − 〈f〉Q)1Q)(x) dx

≤
(

1

|Q|

�

Q

M ((f − 〈f〉Q)1Q)(x)p dx

)1/p

.

(
1

|Q|

�

Q

‖f(x)− 〈f〉Q‖p dx
)1/p

. ‖f‖BMO(X),

as required.
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4. Different dyadic systems and dimensions. Up until now, we
have considered the Rademacher maximal function with respect to a fixed
dyadic system on the Euclidean space of fixed dimension. In this section it is
shown that the Lp boundedness of M (as described in Theorem 1) depends
neither on the system nor on the dimension.

Different dyadic systems. Different dyadic systems on Rn can be
expressed by using a parameter β = (βj) ∈ ({0, 1}n)Z according to Dβ =⋃
k∈Z Dβ

k , with

Dβ
k =

{
2−k([0, 1)n +m) +

∑
j>k

2−jβj : m ∈ Zn
}
.

The standard system corresponds to β = 0 and we refer to it by omitting
β altogether. Lp boundedness of the Rademacher maximal operator with
respect to Dβ is equivalent to uniform Lp boundedness of the truncated
operators defined by

M β,Nf(x) = R(Aβkf(x) : k ≥ N), N ∈ Z,
where

Aβkf =
∑
Q∈Dβ

k

〈f〉Q1Q

stands for an averaging operator with respect to Dβ
k . A direct calculation

shows that averages with respect to Dβ
k can be obtained from those of the

standard system by translations:

Aβk = τ−1k Akτk, where τkf(x) = f
(
x+

∑
j>k

2−jβj

)
.

Moreover, large (dyadic) translations commute with averaging so that for
k ≥ j we have

Akσj = σjAk, where σjf(x) = f(x+ 2−jβj).

Now that τk−1 = σkτk, we see that actually

Aβk = τ−1N AkτN whenever k ≥ N,
and hence

M β,Nf = τ−1N MN (τNf).

Translations preserve Lp norms and so we have arrived at the following
result:

Theorem 3. Let 1 < p < ∞. If the Rademacher maximal operator is
Lp bounded with respect to some dyadic system on Rn, then it is Lp bounded
with respect to any dyadic system on Rn.
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Different dimensions. Let us now consider the Rademacher maximal
operator in different dimensions and prove the following result:

Theorem 4. Let n be a positive integer and 1 < p < ∞. The Rade-
macher maximal operator is Lp bounded on Rn if and only if it is Lp bounded
on R (or even on [0, 1)).

We restrict our attention to the standard dyadic system on Rn and
note that it divides Rn into 2n ‘quadrants’ {x ∈ Rn : αjxj ≥ 0}, where
α ∈ {−1, 1}n, in the sense that every cube in the standard system is
contained in one of the (essentially disjoint) quadrants. For Lp bounded-
ness of M on Rn, it thus suffices to consider one of these quadrants, say
{x ∈ Rn : xj ≥ 0}. By density of functions with bounded support, we may,
using a scaling argument, restrict to functions supported in the unit cube
[0, 1)n and consider only averages over cubes contained in [0, 1)n. Writing
C n =

⋃∞
k=0 C n

k , where C n
k consists of (standard) dyadic cubes Q ⊂ [0, 1)n

of sidelength 2−k, we have reduced the question to Lp boundedness of

M f(x) = R(〈f〉Q : Q ∈ C n, Q 3 x), x ∈ [0, 1)n.

To see that M is Lp bounded on [0, 1)n if and only if it is Lp bounded
on [0, 1) we first note that ‘only if’ is immediate from the fact that functions
on [0, 1) can be naturally viewed as functions on [0, 1)n depending only on
the first coordinate. For sufficiency, we provide a way to associate dyadic
subcubes of [0, 1)n with dyadic subintervals of [0, 1) in a suitable manner:

Lemma 2. There exists a measure preserving map ϕ : C n → C 1 which
respects the partial order of inclusions in the sense that, for all Q ∈ C n, we
have ϕ(R) ⊂ ϕ(Q) if and only if R ⊂ Q. Moreover, for every k ≥ 0, the
restriction ϕk : C n

k → C 1
nk is bijective.

Proof. Agreeing first that ϕ([0, 1)n) = [0, 1), we proceed inductively.
Namely, if Q = 2−k([0, 1)n +m) ∈ C n

k is mapped to ϕ(Q) = 2−nk([0, 1) + l)
∈ C 1

nk, then each subcube R ∈ C n
k+1 of Q is of the form

R = 2−k−1([0, 1)n + 2m+ (δ1, . . . , δn)) with δj ∈ {0, 1},
and we map it to the interval

ϕ(R) = 2−n(k+1)([0, 1) + 2nl + δ12
n−1 + · · ·+ δn20),

which is a subinterval of ϕ(Q). Note that each subinterval I ∈ C 1
n(k+1)

of ϕ(Q) is an image of exactly one subcube R ∈ C n
k+1 of Q so that each

restriction ϕk is bijective.

Again, by switching to a truncation of M , it suffices to consider, for
each N ≥ 1, functions on [0, 1)n that are constant on cubes of C n

N . Every
such f , when viewed as a function on cubes of C n

N , can be transferred, using
Lemma 2, to the function f ◦ ϕ−1N on [0, 1) (which is constant on cubes



DYADIC RADEMACHER MAXIMAL FUNCTION 125

of C 1
nN ). Dyadic averages of f ◦ ϕ−1N include the dyadic averages of f ; for

every Q ∈ C n
k with 0 ≤ k ≤ N we have

〈f〉Q = 〈f ◦ ϕ−1N 〉ϕ(Q).

A calculation shows that the Lp norm of M f is at most the Lp norm of
M (f ◦ ϕ−1N ):

‖M (f ◦ ϕ−1N )‖pLp([0,1)) =
1

2nN

∑
J∈C 1

nN

R(〈f ◦ ϕ−1N 〉I : I ⊃ J)p

≥ 1

2nN

∑
J∈C 1

nN

R(〈f ◦ ϕ−1N 〉ϕ(Q) : ϕ(Q) ⊃ J)p

=
1

2nN

∑
R∈CnN

R(〈f ◦ ϕ−1N 〉ϕ(Q) : ϕ(Q) ⊃ ϕ(R))p

=
1

2nN

∑
R∈CnN

R(〈f〉Q : Q ⊃ R)p = ‖M f‖pLp([0,1)n).

Since the Lp norms of f and f ◦ ϕ−1N are equal, Theorem 4 follows.

5. More general measures. It was shown in [12, Theorem 5.1] that
the RMF property of a Banach space X, as described here by the equivalent
conditions in Theorem 1, guarantees the boundedness of the Rademacher
maximal operator with respect to any filtration on any σ-finite measure
space. It is nevertheless interesting to see that the proof of Theorem 1 is also
directly applicable to a more general (possibly non-homogeneous) setting,
where Rn is equipped with a locally finite Borel measure µ. We adjust our
averages accordingly by writing

〈f〉Q =
1

µ(Q)

�

Q

f(y) dµ(y), Q ∈ D ,

which we agree to be zero if µ(Q) = 0, and put

Akf =
∑
Q∈Dk

〈f〉Q1Q, k ∈ Z.

In order to obtain a collection of Haar functions hθQ adapted to µ, recall
that every f ∈ Lp(µ;X) with 1 ≤ p <∞ can be approximated by averages
so that Akf → f in Lp(µ;X) as k →∞. For each N ∈ Z we can then write
the truncated (adapted) Haar decomposition

f =
∞∑
k=N

(Ak+1f −Akf) +ANf =
∑
Q∈Dk
k≥N

∑
θ

〈f, hθQ〉hθQ +
∑
Q∈DN

〈f〉Q1Q,
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which converges (possibly conditionally) in Lp(µ;X), and functions with
finite decomposition are dense in Lp(µ;X) (see [7, Section 4]). Again, each
hθQ is supported in Q and satisfies

	
hθQ dµ = 0.

A suitable version of Lemma 1, with

M1f(x) = sup
Q3x

1

µ(Q)

�

Q

‖f(y)‖ dµ(y),

can then be formulated as follows:

Lemma 3. Suppose that M : L1(µ;X) → L1,∞(µ) and let N ∈ Z. If
f has a finite (adapted) Haar decomposition, then for every λ > 0 and
δ ∈ (0, 1), we have

µ({x ∈ Rn : MNf(x) > 2λ, M1f(x) ≤ δλ})

.
δ

1− δ
µ({x ∈ Rn : MNf(x) > λ}),

where MNf(x) = R(〈f〉Q : Q 3 x, Q ∈ Dk, k ≥ N) is the truncated
Rademacher maximal function.

The truncation is needed in order to guarantee the existence of maximal
cubes Q, which are now defined by the requirement that R(〈f〉R : R ⊃ Q,
R ∈ Dk, k ≥ N) > λ. Otherwise the proof proceeds similarly to that of
Lemma 1.

With these observations, the proof of Theorem 1 can be adjusted to show
the following generalization:

Theorem 5. Suppose that µ is a locally finite Borel measure on Rn. The
following conditions are equivalent for any Banach space X:

(i) M : Lp(µ;X)→ Lp(µ) for all p ∈ (1,∞),
(ii) M : Lp(µ;X)→ Lp(µ) for some p ∈ (1,∞),
(iii) M : L1(µ;X)→ L1,∞(µ),

Proof. (ii)⇒(iii): We may argue as in [12, Proposition 6.3]. Given a func-
tion f ∈ L1(µ;X) and a λ > 0, we show that

µ({x ∈ Rn : MNf(x) > λ}) . 1

λ
‖f‖L1(µ;X)

independently of N ∈ Z. Gundy’s decomposition (see [14, Chapter IV, Sec-
tion 2] or [12, Theorem 6.2]) allows us to write f = g + h+ b, where

(1) ‖g‖L1(µ;X) . ‖f‖L1(µ;X) and ‖g‖L∞(µ;X) . λ,

(2) ‖ANh‖L1(µ;X) +
∑∞

k=N ‖Ak+1h−Akh‖L1(µ;X) . ‖f‖L1(µ;X),

(3) µ({x ∈ Rn : Mb(x) > 0}) . λ−1‖f‖L1(µ;X).



DYADIC RADEMACHER MAXIMAL FUNCTION 127

From M : Lp(µ;X)→ Lp(µ) and (1) it is straightforward to see that

µ({x ∈ Rn : MNg(x) > λ/3}) . 1

λ
‖f‖L1(µ;X).

Also,

µ({x ∈ Rn : MNb(x) > λ/3}) . 1

λ
‖f‖L1(µ;X)

follows immediately from (3) and the fact that M b(x) = 0 if and only if
Mb(x) = 0.

In order to handle MNh, we first observe that for any sequence of vectors
(ξk)

∞
k=1 in X we have

R
( j∑
k=1

ξk : j ≥ 1
)
≤
∞∑
k=1

‖ξk‖.

Thus for all x ∈ Rn,

MNh(x) ≤ ‖ANh(x)‖+

∞∑
k=N

‖Ak+1h(x)−Akh(x)‖,

so that (2) gives

µ({x ∈ Rn : MNh(x) > λ/3})

.
1

λ

(
‖ANh‖L1(µ;X) +

∑
k≥N
‖Ak+1h−Akh‖L1(µ;X)

)
.

1

λ
‖f‖L1(µ;X).

Combining the estimates for g, h and b we obtain the desired result.
(iii)⇒(i): Given a p ∈ (1,∞) and an N ∈ Z we may use Lemma 3 to see

that for any f with finite (adapted) Haar decomposition and any δ ∈ (0, 1)
we have

‖MNf‖pLp(µ) . 2p
δ

1− δ
‖MNf‖pLp(µ) +

2p

δp
‖M1f‖pLp(µ),

where both sides of the inequality are finite. Choosing δ small enough, we
see that ‖MNf‖Lp(µ) . ‖f‖Lp(µ;X) independently of N .
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[11] T. Hytönen and A. Vähäkangas, The local non-homogeneous Tb theorem for vector-
valued functions, arXiv:1201.0648, 2012.

[12] M. Kemppainen, On the Rademacher maximal function, Studia Math. 203 (2011),
1–31.
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