ON SEQUENTIALLY RAMSEY SETS

BY

ANNA BRZESKA (Katowice)

Abstract. We consider sequentially completely Ramsey and sequentially nowhere Ramsey sets on ω^{ω} with the topology generated by a free filter \mathcal{F} on ω . We prove that if \mathcal{F} is an ultrafilter, then the σ -algebra of Baire sets is the σ -algebra $S_{\mathcal{F}}\mathcal{C}\mathcal{R}$ of sequentially completely Ramsey sets. Further we study additivity and cofinality of the σ -ideal $S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0$ of sequentially nowhere Ramsey sets. We prove that if \mathcal{F} is a $P(\mathfrak{b})$ -ultrafilter then $\mathrm{add}(S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0) = \mathfrak{b}$, and if \mathcal{F} is a P-ultrafilter then $\mathrm{cof}(S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0)$ is the point π -character of the space $\mathrm{Seq}(\mathcal{F})$.

1. Introduction. Ramsey and completely Ramsey sets (or in other terminology: completely and nowhere Ramsey sets) were studied by many authors (e.g. [L], [GP], [P], [Sz]) in the context of open, Borel and analytic sets ([El], [GP], [Si], [P]) and cardinal coefficients of ideals ([BSh]). In this paper we study sequentially completely Ramsey sets $(S_{\mathcal{F}}C\mathcal{R})$ and sequentially nowhere Ramsey sets $(S_{\mathcal{F}}C\mathcal{R}^0)$ on ω^{ω} equipped with the topology generated by a free filter \mathcal{F} . These notions are generalizations of the notions of completely Ramsey sets $(\mathcal{C}\mathcal{R}_{\mathcal{F}})$ and nowhere Ramsey sets $(\mathcal{C}\mathcal{R}_{\mathcal{F}})$ on $[\omega]^{\omega}$ (or on $\omega^{\omega\uparrow}$).

Let Seq and ω^{ω} denote respectively the set of all finite and all infinite sequences of non-negative integers. We will call them *sequences* and *branches* respectively. Note that we have a natural partial order on Seq: if s, t are two sequences then $s \leq t$ whenever $s = t \upharpoonright \text{dom}(s)$.

Let \mathcal{F} be a free filter on ω . We consider the standard topology on Seq generated by all sets of the form

$$U(s,\phi) = \bigcup \{U_n(s,\phi) : n \in \omega\}$$

where $U_0(s,\phi) = \{s\}$ and $U_{n+1}(s,\phi) = \bigcup \{t \cap \phi(t) : t \in U_n(s,\phi)\}, s$ is a sequence and $\phi(t) \in \mathcal{F}$ for each sequence t.

Note that each $U(s, \phi)$ is clopen and Seq endowed with this topology is Lindelöf and normal because of its cardinality. It is also known ([BSz]) that it is extremally disconnected if and only if \mathcal{F} is an ultrafilter.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A20, 54D35; Secondary 54A25, 54D70, 54D80.

Key words and phrases: Seq, sequence, filter, completely Ramsey set.

We will write $\phi \subseteq \psi$ when $\phi(s) \subseteq \psi(s)$ for each sequence s. Analogously $(\phi \cap \psi)(s) = \phi(s) \cap \phi(s)$ for every sequence s.

LEMMA 1.1. Let $s,t \in \text{Seq} \ and \ \phi,\psi: \text{Seq} \to \mathcal{F}$. Then the following statements hold:

- (1) If $s \in U(t, \psi)$, then $t \leq s$ and $U(s, \psi) \subseteq U(t, \psi)$.
- (2) If $U(s,\phi) \cap U(t,\psi) \neq \emptyset$ then either $s \leq t$ or $t \leq s$.
- (3) If dom(s) = dom(t) and $s \neq t$ then $U(s, \phi) \cap U(t, \psi) = \emptyset$.
- (4) If $dom(t) \leq dom(s)$ and $s \notin U(t, \psi)$ then $U(s, \phi) \cap U(t, \psi) = \emptyset$.

Take a collection $\{\phi_n : \text{Seq} \to \mathcal{F} : n \in \omega\}$ and a sequence s. Then $\{U(s,\phi_n) : n \in \omega\}$ is a fusion sequence if $U(s,\phi_{n+1}) \subseteq U(s,\phi_n)$ and $U_k(s,\phi_{n+1}) = U_k(s,\phi_n)$ for every $k \leq n$.

PROPOSITION 1.2 (Fusion Lemma). If $\{U(s,\phi_n): n \in \omega\}$ is a fusion sequence then $\bigcap \{U(s,\phi_n): n \in \omega\}$ is open.

Proof. Set $U = \bigcap \{U(s, \phi_n) : n \in \omega\}$. Of course U is not empty. Assume that ψ is such that $\psi(t) = \bigcap_{k \le n+1} \phi_k(t)$ for each t which satisfies $\operatorname{dom}(s) + n = \operatorname{dom}(t)$. To prove the statement it is enough to check that $U(s, \psi) = U$. By the definition of ψ it suffices to show that $U \subseteq U(s, \psi)$.

So assume that $t \in U(s, \psi)$ whenever $t \in U$ and dom(t) = dom(s) + n for some integer n > 0. If $t_1 \in U$ is such that $dom(t_1) = dom(s) + n + 1$ then there exists a sequence $t \in U$ such that $t \prec t_1$ and $dom(t) = dom(t_1) - 1$. So $t \in U(s, \psi)$ by the inductive assumption and $t_1 \in t \cap \psi(t)$ by the choice of ψ .

Let $s \in \text{Seq}$ and $\phi : \text{Seq} \to \mathcal{F}$ be given. We define the set of all branches of $U(s,\phi)$ as follows:

$$[U(s,\phi)] = \{ f \in \omega^{\omega} : \forall n \in \omega \ (f \upharpoonright (\operatorname{dom}(s) + n) \in U_n(s,\phi)) \}.$$

Lemma 1.3. For any sequences s and t:

- (1) $U(s,\phi) \subseteq U(t,\psi) \Rightarrow [U(s,\phi)] \subseteq [U(t,\psi)].$
- (2) $[U(s,\psi)] = \bigcup \{ [U(t,\phi)] : t \in U_n(s,\phi) \}.$

LEMMA 1.4. The family of all sets of branches is a base of a topology on the set ω^{ω} .

Proof. Note that every branch $f \in \omega^{\omega}$ is a member of $[U(\emptyset, \phi_{\omega})]$ where Seq $= \phi_{\omega}^{-1}[\{\omega\}]$. Further, the statement is a consequence of filter properties.

We will consider ω^{ω} to be equipped with the topology defined in Lemma 1.4 for the rest part of this paper.

2. The classes $S_{\mathcal{F}}\mathcal{CR}$ and $S_{\mathcal{F}}\mathcal{CR}^0$. A set $M \subseteq \omega^{\omega}$ is sequentially completely Ramsey if for every $U(s,\phi)$ there exists $\psi \subseteq \phi$ such that either $[U(t,\psi)] \subseteq M$ or $[U(t,\psi)] \cap M = \emptyset$. If for every $U(s,\phi)$ there exists $\psi \subseteq \phi$ which satisfies the latter condition then $M \subseteq \omega^{\omega}$ is sequentially nowhere Ramsey. The families of all sequentially completely Ramsey sets and all sequentially nowhere Ramsey sets will be denoted by $S_{\mathcal{F}}\mathcal{CR}$ and $S_{\mathcal{F}}\mathcal{CR}^0$ respectively.

LEMMA 2.1. $S_{\mathcal{F}}\mathcal{CR}^0$ is the ideal of all nowhere dense sets.

LEMMA 2.2. Let $\phi : \text{Seq} \to \mathcal{F}$. Then $[U(s,\phi)] \in S_{\mathcal{F}}\mathcal{CR}$ for any sequence s.

Proof. Assume $[U(t,\psi)] \cap [U(s,\phi)] \neq \emptyset$. Then by Lemma 1.1, $t \prec s$ or $s \prec t$. In the first case we put $\lambda(t) = \psi(t) \setminus s(\text{dom}(t))$, and $\lambda(u) = \psi(u)$ for $u \neq t$. Then $U(s,\phi) \cap U(t,\lambda) = \emptyset$ and $[U(s,\phi)] \cap [U(t,\lambda)] = \emptyset$.

The second case is a simple consequence of the filter properties. Namely if $\lambda(u) = \phi(u) \cap \psi(u)$ for every $u \in U(t, \psi)$ then $[U(t, \lambda)] \subseteq [U(s, \phi)]$.

Till the end of the paper, we assume that \mathcal{F} is an ultrafilter.

Proposition 2.3. Let $M \subseteq \omega^{\omega}$ and $U(s,\phi)$ be given. Then either

- (1) there exists a function $\psi \subseteq \phi$ such that $[U(s,\psi)] \subseteq M$, or
- (2) there exists a function $\psi \subseteq \phi$ such that $[U(t,\lambda)] \nsubseteq M$ for each $t \in U(s,\psi)$ and every λ with $\lambda \subseteq \psi$.

Proof. Assume that (1) does not hold. We shall construct a fusion sequence $\{U(s, \psi_n) : n \in \omega\}$ such that for every n there is no $t \in U(s, \psi_n)$ and no $\lambda \subseteq \psi_n$ with $[U(t, \lambda)] \subseteq M$.

Take $\psi_0 = \phi$ and assume that we have defined $U(s, \psi_0), \dots, U(s, \psi_{n-1})$ so that the above statement is true. If $t \in U_{n-1}(s, \psi_{n-1})$ we denote by X_t the set of all $m \in \psi_{n-1}(t)$ such that there exists a function λ with $U(t \cap m, \lambda) \subseteq U(t \cap m, \psi_{n-1})$ and $[U(t \cap m, \lambda)] \subseteq M$.

Then either X_t or $\psi_{n-1}(t) \setminus X_t$ is in \mathcal{F} . In the first case there would be a function $\lambda \subseteq \psi_{n-1}$ such that $[U(t,\lambda)] \subseteq M$, contradicting the inductive assumption. So $\psi_{n-1}(t) \setminus X_t \in \mathcal{F}$. To finish the construction we define

$$\psi_n(t) = \begin{cases} \psi_{n-1}(t) \setminus X_t, & t \in U_{n-1}(s, \psi_{n-1}), \\ \psi_{n-1}(t), & \text{other } t. \end{cases}$$

By the Fusion Lemma we are done.

Proposition 2.4.

$$S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0 = \{ M \subseteq \omega^\omega : \forall U(s,\phi) \ \exists \psi \subseteq \phi \ ([U(s,\psi)] \cap M = \emptyset) \}.$$

Proof. This follows directly from the previous proposition.

Recall ([En]) that M is nowhere dense if for every non-empty open set U there exists a non-empty open set $V \subseteq U$ such that $V \cap M = \emptyset$. Hence every nowhere dense set in ω^{ω} is an $S_{\mathcal{F}}\mathcal{CR}^0$ -set.

PROPOSITION 2.5. $S_{\mathcal{F}}C\mathcal{R}^0$ is the σ -ideal of nowhere dense sets.

Proof. Consider a family $\{M_n : n \in \omega\}$ of $S_{\mathcal{F}}\mathcal{CR}^0$ -sets.

Let $M = \bigcup \{M_n : n \in \omega\}$ and take an arbitrary sequence s and a function ϕ . We shall define a fusion sequence $\{U(s,\phi_n) : n \in \omega\}$ such that $\phi_n \subseteq \phi$ and $[U(s,\phi_n)] \cap M_n = \emptyset$ for every n. We choose $U(s,\phi_0)$ already by the definition of $S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0$ -set with respect to M_0 . Assume $U(s,\phi_0),\ldots,U(s,\phi_n)$ are already defined. Then we take a function ψ_t for every $t \in U_n(s,\phi_n)$ such that $\psi_t \subseteq \phi_n$ and $[U(t,\psi_t)] \cap M_{n+1} = \emptyset$. We put $\phi_{n+1}(u) = \phi_n(u)$ if $\mathrm{dom}(u) < \mathrm{dom}(s) + n$ and $\phi_{n+1}(u) = \psi_{u \upharpoonright (\mathrm{dom}(s)+n)}(u)$ if $\mathrm{dom}(u) \geq \mathrm{dom}(s) + n$. Note that if $f \in [U(s,\phi_{n+1})]$ then there exists $t \in U_n(s,\phi_n)$ such that $f \in [U(t,\phi_{n+1})]$. So by the Fusion Lemma there exists a function ψ such that $U(s,\psi) \subseteq U(s,\phi_n)$ for each $n \in \omega$ and $[U(s,\psi)] \cap M = \emptyset$.

Summarizing the foregoing results, every set $A \subseteq \omega^{\omega}$ with Baire property is the union of an open set U and an $S_{\mathcal{F}}\mathcal{CR}^0$ -set M_0 . We shall show that if \mathcal{F} is an ultrafilter, the class $S_{\mathcal{F}}\mathcal{CR}$ coincides with the class of Baire sets.

Proposition 2.6.

$$S_{\mathcal{F}}\mathcal{C}\mathcal{R} = \{ M \subseteq \omega^{\omega} : \forall U(s, \phi) \ \exists \psi \subseteq \phi$$

$$([U(s, \psi)] \cap M = \emptyset \lor [U(s, \psi)] \subseteq M) \}.$$

Proof. Let $M \in S_{\mathcal{F}}\mathcal{CR}$. Then there exists an $S_{\mathcal{F}}\mathcal{CR}^0$ -set M_0 and a $U \in \mathcal{T}_p$ such that $M = M_0 \cup U$. Let $U(s,\phi)$ be given. By Proposition 2.3 there exists a function $\psi \subseteq \phi$ such that $[U(s,\psi)] \cap M_0 = \emptyset$. If $[U(s,\psi)] \cap U = \emptyset$ then we are done. Assume otherwise and suppose that there is no $\psi' \subseteq \psi$ such that $[U(s,\psi')] \subseteq M$. Since U is open, there exists a sequence t and a function λ such that $[U(t,\lambda)] \subseteq [U(s,\psi)] \cap U$, contrary to Proposition 2.1.

PROPOSITION 2.7. $M \subseteq \omega^{\omega}$ is a $S_{\mathcal{F}}\mathcal{CR}$ -set if and only if M is a Baire set.

Proof. If M is $S_{\mathcal{F}}\mathcal{CR}$ -set then it is not hard to see that $M_0 = M \setminus \text{Int } M$ is an $S_{\mathcal{F}}\mathcal{CR}^0$ -set.

Assume now M is a Baire set. Then we can find an open set U and a $S_{\mathcal{F}}\mathcal{CR}^0$ -set N such that $M = U \cup N$. Let $U(s,\phi)$ be such that $[U(s,\phi)] \cap N = \emptyset$ and $[U(s,\phi)] \cap U \neq \emptyset$. By Proposition 2.3, either (1) there exists a function ψ_1 such that $[U(s,\psi_1)] \subseteq U$, or (2) there exists a function ψ_2 such that $[U(t,\psi_2)] \not\subseteq U$ for every $t \in U(s,\psi_2)$. If (1) holds we are done since $U \subseteq M$. If (2) holds, then we get a contradiction, because $U \cap [U(s,\phi)]$ is open and non-empty.

LEMMA 2.8. $S_{\mathcal{F}}C\mathcal{R}$ is a σ -field of sets.

Proof. This follows from the previous proposition and Proposition 2.5.

3. Cardinal invariants. Let us recall some cardinal coefficients of non-trivial ideals $\mathcal{I} \subseteq \omega^{\omega}$ containing all singletons (see e.g. [BSh]):

$$add(\mathcal{I}) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \bigcup \mathcal{F} \notin \mathcal{I} \right\},$$

$$cov(\mathcal{I}) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \bigcup \mathcal{F} = \omega^{\omega} \right\},$$

$$non(\mathcal{I}) = \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega} \land \mathcal{F} \notin \mathcal{I} \}$$

$$cof(\mathcal{I}) = \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \land \mathcal{F} \text{ is a base of } \mathcal{I} \},$$

here \mathcal{F} is a base of \mathcal{I} if for each $A \in \mathcal{I}$ there exists $B \in \mathcal{F}$ such that $A \subseteq B$. These cardinals are referred to as the additivity, covering, uniformity and cofinality of \mathcal{I} . Observe that $S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0$ contains all singletons and hence $\bigcup S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0 = \omega^{\omega}$. So

$$\operatorname{add}(S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0) \leq \min(\operatorname{non}(S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0), \operatorname{cov}(S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0))$$

and

$$cof(S_{\mathcal{F}}C\mathcal{R}^0) \ge max(non(S_{\mathcal{F}}C\mathcal{R}^0), cov(S_{\mathcal{F}}C\mathcal{R}^0)).$$

By Proposition 2.5, if \mathcal{F} is an ultrafilter, then

$$\omega < \operatorname{add}(S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0).$$

Lemma 3.1.

(1) For any function ϕ ,

$$A_{\phi} = \omega^{\omega} \setminus \bigcup \{ [U(s, \phi)] : s \in \text{Seq} \}$$

is an $S_{\mathcal{F}}\mathcal{CR}^0$ -set.

(2) The collection of all A_{ϕ} 's is a base of $S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0$.

Let us recall that \mathfrak{b} is the minimal size of an unbounded subfamily of ω^{ω} , and \mathfrak{d} is the minimal size of a dominating subfamily of ω^{ω} ; we write $f \leq^{\star} g$ if $\{n \in \omega : f(n) > g(n)\}$ is finite. It is well known that $\mathfrak{b} \leq \mathfrak{d}$.

Proposition 3.2.

$$cov(S_{\mathcal{F}}\mathcal{CR}^0) \le \mathfrak{b} \le \mathfrak{d} \le non(S_{\mathcal{F}}\mathcal{CR}^0).$$

Proof. Let $\mathcal{U} \subseteq \omega^{\omega}$ realize \mathfrak{b} . If $f \in \mathcal{U}$ then we put

$$\phi_f(s) = \{ n \in \omega : n > f(\text{dom}(s)) \}$$

for each sequence s. Of course $\phi_f(s)$ is a member of \mathcal{F} since it is cofinite and by the previous lemma each set of the form A_{ϕ_f} is an $S_{\mathcal{F}}C\mathcal{R}^0$ -set. We shall prove that $\bigcup \{A_{\phi_f} : f \in \mathcal{U}\} = \omega^{\omega}$. Indeed, if g is a branch then there exists

a branch f in \mathcal{U} such that $\neg f \leq^{\star} g$. This means that for every $n \in \omega$ there exists $m \geq n$ such that g(m) < f(m). Then $g \in A_{\phi_f}$.

Assume now that $A \subseteq \omega^{\omega}$ is not an $S_{\mathcal{F}}\mathcal{CR}^0$ -set. Then A dominates ω^{ω} . Indeed, assume the contrary. Then there exists a branch f such that $\neg f \leq^* g$ for each g from A. Define ϕ_f as at the beginning of the proof. Then $A_{\phi_f} \supseteq A$, so we get a contradiction, since $S_{\mathcal{F}}\mathcal{CR}^0$ is a proper ideal of sets.

Take a cardinal $\lambda < \omega$. A free filter \mathcal{F} on ω is a $P(\lambda)$ -filter if for every $\tau < \lambda$ and every subfamily $\{A_{\xi} : \xi < \tau\}$ of \mathcal{F} there exists an $A \in \mathcal{F}$ such that $A \setminus A_{\xi}$ is finite for every $\xi < \tau$ (we write briefly $A \subseteq^* A_{\xi}$).

REMARK 3.3. Note that in the definitions of the numbers \mathfrak{b} and \mathfrak{d} we can replace ω^{ω} by ω^{Seq} , where $f \prec^{\star} g$ means that the set of all sequences x such that f(x) > g(x) is finite.

PROPOSITION 3.4. Let $\lambda > \omega$ be a cardinal and \mathcal{F} be a $P(\lambda)$ -ultrafilter on ω . If $\mathfrak{b} \geq \lambda$ then $\operatorname{add}(S_{\mathcal{F}}\mathcal{CR}^0) \geq \lambda$.

Proof. Consider $\mathfrak{b} \geq \lambda$, $\tau < \lambda$ and let $\{M_{\xi} : \xi < \tau\}$ be a family of $S_{\mathcal{F}}\mathcal{CR}^0$ -sets. Let $U(s,\phi)$ be given. By Proposition 2.4 for every $\xi < \tau$ there exists a subset $U(s,\psi_{\xi})$ of $U(s,\phi)$ such that $[U(s,\psi_{\xi})] \cap M_{\xi} = \emptyset$. Since \mathcal{F} is a $P(\lambda)$ -filter, there exists an $A \in \mathcal{F}$ such that $A \subseteq^* \psi_{\xi}(t)$ for every $t \in \text{Seq}$ and $\xi < \tau$. Put $f_{\xi}(t) = \max\{n \in \omega : n \in A \setminus \psi_{\xi}(t)\} + 1$ for $t \in \text{Seq}$. Then there exists a function $G \in \text{Seq}^{\omega}$ such that $f_{\xi} \leq^* G$ for every $\xi < \tau$. We define $\Gamma \in \mathcal{F}^{\text{Seq}}$ by $\Gamma(t) = A \setminus G(t)$ for $t \in \text{Seq}$. Then $[U(s,\Gamma)] \cap \bigcup \{M_{\xi} : \xi < \tau\} = \emptyset$. Indeed, to see this we set $m(\xi) = \max\{m \in \omega : (\exists t \in {}^m\omega)(f_{\xi}(t) > G(t))\} + 1$ and consider two cases:

CASE 1: $m(\xi) \leq \text{dom}(s)$. Then $f_{\xi}(t) \leq G(t)$ for every $s \leq t$. Thus if $s \leq t$ and $n \in \Gamma(t)$ then $n \in \psi_{\xi}(t)$, by the definitions of Γ and f_{ξ} . So by Lemma 1.3, $[U(s,\Gamma)] \subseteq [U(s,\psi_{\xi})]$ and $[U(s,\Gamma)] \cap M_{\xi} = \emptyset$.

CASE 2: $m(\xi) > \text{dom}(s)$. Let $n = m(\xi) - \text{dom}(s)$. First note that if $\text{dom}(t) \geq n + \text{dom}(s)$ then $U(t, \Gamma) \subseteq U(t, \psi_{\xi})$ just as in Case 1, since $\text{dom}(t) \geq m(\xi)$. Consider now dom(t) = dom(s) + n - 1. Then, since $\Gamma(t) \subseteq^* \psi_{\xi}(t)$, there exist numbers n_1, \ldots, n_l such that $f_{\xi}(t \cap n) \leq G(t \cap n)$ for each $n \notin \{n_1, \ldots, n_l\}$. So if we slightly modify the function Γ setting $\Gamma'(t) = \Gamma(t) \setminus \{n_1, \ldots, n_l\}$ then $U(t, \Gamma') \subseteq U(t, \psi_{\xi})$. On the other hand,

$$U(t,\Gamma) = U(t,\Gamma') \cup \bigcup \{U(t \cap n_i,\Gamma) : i = 1,\ldots,l\}$$

and $dom(t \cap n_i) = n + dom(s)$, so by the inductive assumption $U(t, \Gamma) \subseteq U(t, \psi_{\xi})$. Hence we are done.

COROLLARY 3.5. If \mathcal{F} is a $P(\mathfrak{b})$ -ultrafilter then $\operatorname{add}(S_{\mathcal{F}}\mathcal{CR}^0) = \mathfrak{b}$.

QUESTION 3.6. If $add(S_{\mathcal{F}}C\mathcal{R}^0) = \lambda > \omega$, is then \mathcal{F} a $P(\lambda)$ -ultrafilter?

Proposition 3.7.

$$\pi \chi(\operatorname{Seq}(\mathcal{F}), s) \ge \chi(\mathcal{F}) \cdot \mathfrak{d}.$$

Proof (cf. [JSz]). Assume $\mathcal{B}(s)$ is a π -base at s. For every $A \in \mathcal{F}$ we put $\mathbb{A}(t) = A$ for each sequence t. If $A \in \mathcal{F}$ then there exists $U(t, \phi) \in \mathcal{B}(s)$ such that $U(t, \phi) \subseteq U(s, \mathbb{A})$. Hence $\{\phi(t) : U(t, \phi) \in \mathcal{B}(s)\}$ is a base of the ultrafilter \mathcal{F} . So we conclude $\chi(\mathcal{F}) \leq \pi \chi(\operatorname{Seq}(\mathcal{F}), s)$.

Now for each $U(t,\phi) \in \mathcal{B}(s)$ and every integer $n > \operatorname{dom}(t)$ take $g_{\phi}^{t}(n)$ from the union of all $\phi(u)$ where $u \in U(t,\phi)$ and $\operatorname{dom}(u) = n$ (for example, take the minimum of this union). Then the collection of all g_{ϕ}^{t} is a dominating family. Indeed, if f is a branch then we define $\psi_{f}(u) = \omega \setminus (f(\operatorname{dom}(u)) + 1)$. So if $U(t,\phi) \in \mathcal{B}(s)$ is contained in $U(s,\psi_{f})$ then $f \leq^{\star} g_{\psi_{f}}$. Thus we get $\pi\chi(\operatorname{Seq}(\mathcal{F}),s) \geq \mathfrak{d}$.

Proposition 3.8.

$$\pi \chi(\operatorname{Seq}(\mathcal{F}), s) \le \operatorname{cof}(S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0)$$

Proof. Assume \mathcal{B} realizes cofinality of $S_{\mathcal{F}}\mathcal{CR}^0$. By Lemma 3.1 for every $M \in \mathcal{B}$ there exists a function ψ_M such that $M \subseteq A_{\psi_M}$. It is enough to check that $\{U(s,\psi_M): M \in \mathcal{B}\}$ is a base of $\operatorname{Seq}(\mathcal{F})$ at s. So assume $U(s,\phi)$ is given. Then $M_{\phi} = \omega^{\omega} \setminus \bigcup \{[U(t,\phi)]: t \in \operatorname{Seq}\}$ is a sequentially nowhere Ramsey set. So there is $M \in \mathcal{B}$ such that $M_{\phi} \subseteq M$. Hence $M_{\phi} \subseteq A_{\psi_M}$, and so $\bigcup \{[U(t,\psi_M)]: t \in \operatorname{Seq}\} \subseteq \bigcup \{[U(t,\phi)]: t \in \operatorname{Seq}\}$.

We claim now that there is a sequence t such that $U(t, \psi_M) \subseteq U(s, \phi)$. Assume the contrary and take the first level n_0 of $U(s, \psi_M)$ such that $U_{n_0}(s, \psi_M) \setminus U_{n_0}(s, \phi)$ is non-empty. Consider $t_0 \in U_{n_0}(s, \psi_M) \setminus U_{n_0}(s, \phi)$ and take the first level n_1 of $U(t_0, \psi_M)$ such that $U_{n_1}(t_0, \psi_M) \setminus U_{n_1}(t_0, \phi)$ is non-empty. Consider t_1 in it, and so on. We obtain a sequence $\{n_i\}_{i \in \omega}$ of integers and a collection of sequences $\{t_i\}_{i \in \omega}$ such that $U_{n_{i+1}}(t_i, \psi_M) \setminus U_{n_{i+1}}(t_i, \phi)$ is non-empty. So if we take a branch $f \in [U(s, \psi_M)]$ such that $f \upharpoonright (\text{dom}(s) + n_i) = t_i$ then $f \notin \bigcup \{[U(t, \phi)] : t \in \text{Seq}\}$, a contradiction. So there must exist a sequence t which satisfies $U(t, \psi_M) \subseteq U(s, \phi)$.

PROPOSITION 3.9. If \mathcal{F} is a $P(\omega_1)$ -ultrafilter then

$$\pi \chi(\operatorname{Seq}(\mathcal{F}), s) = \operatorname{cof}(S_{\mathcal{F}}\mathcal{CR}^{0}) = \chi(\mathcal{F}) \cdot \mathfrak{d}.$$

Proof. It is enough to check that $\operatorname{cof}(S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0) \leq \mathfrak{d} \cdot \chi(\mathcal{F})$. So take a dominating collection of branches $\mathcal{D} \subseteq \operatorname{Seq}^{\omega}$ and a base \mathcal{B} of the ultrafilter \mathcal{F} . For any $f \in \mathcal{D}$ and $A \in \mathcal{B}$ we put $\psi_{f,A}(s) = A \setminus (f(s)+1)$ for every sequence s. We shall show that the collection of all $A_{\psi_{f,A}}$ (defined as in Lemma 3.1) is a base of the ideal $S_{\mathcal{F}}\mathcal{C}\mathcal{R}^0$. Indeed, assume M is a sequentially nowhere Ramsey set. By Lemma 3.1 there exists a function ϕ which satisfies $M \subseteq A_{\phi}$. Since \mathcal{F} is a P-ultrafilter, we can choose $B \in \mathcal{B}$ such that $B \subseteq^{\star} \phi(s)$ for each sequence s. We define $g(s) = \max(B \setminus \phi(s)) + 1$ for all. By the domination of \mathcal{D}

there exists $f \in \mathcal{D}$ such that $g \leq^* f$. Then $A_{\phi} \subseteq A_{\psi_{f,B}}$. Indeed, if $h \notin A_{\psi_{f,B}}$ then $h \in [U(s,\psi_{f,B})]$ for some s. So $h(\operatorname{dom}(s)+k) \in B \setminus (f(f \upharpoonright_{\operatorname{dom}(s)+k})+1)$ for all $k \in \omega$. But there exists $n \in \omega$ such that g(t) < f(t) for every $t \in U(s,\psi_{f,B})$ such that $\operatorname{dom}(t) > n$. So $h(\operatorname{dom}(s)+k) \in B \setminus (g(f \upharpoonright_{\operatorname{dom}(s)+k})+1)$ for every k with $\operatorname{dom}(s)+k > n$. Hence $h \in [U(h \upharpoonright_{\operatorname{dom}(s)+n}, \phi)]$, which means $h \notin A_{\phi}$.

REFERENCES

- [BSz] A. Błaszczyk and A. Szymański, Cohen algebras and nowhere dense ultrafilters, Bull. Polish Acad. Sci. Math. 49 (2001), 15–25.
- [BSh] J. Brendle and S. Shelah, Ultrafilters on ω—their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. 351 (1999), 2643–2674.
- [El] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163–165.
- [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [GP] F. Galvin and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193–198.
- [JSz] I. Juhász and A. Szymański, d-calibers and d-tightness in compact spaces, Topology Appl. 151 (2005), 66–76.
- [L] A. Louveau, Une méthode topologique pour l'étude de la propriété de Ramsey, Israel J. Math. 23 (1976), 97–116.
- [P] S. Plewik, On completely Ramsey sets, Fund. Math. 127 (1987), 127–132.
- [Si] J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60–64.
- [Sz] A. Szymański, Products and measurable cardinals, Rend. Circ. Mat. Palermo (2) Suppl. 11 (1985), 195–112.

Anna Brzeska Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland E-mail: anna.brzeska@us.edu.pl

> Received 24 January 2012; revised 6 February 2013 and 11 June 2013 (5619)