COLLOQUIUM MATHEMATICUM

ON SEQUENTIALLY RAMSEY SETS

BY

ANNA BRZESKA (Katowice)

Abstract

We consider sequentially completely Ramsey and sequentially nowhere Ramsey sets on ω^{ω} with the topology generated by a free filter \mathcal{F} on ω. We prove that if \mathcal{F} is an ultrafilter, then the σ-algebra of Baire sets is the σ-algebra $S_{\mathcal{F}} \mathcal{C} \mathcal{R}$ of sequentially completely Ramsey sets. Further we study additivity and cofinality of the σ-ideal $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$ of sequentially nowhere Ramsey sets. We prove that if \mathcal{F} is a $P(\mathfrak{b})$-ultrafilter then $\operatorname{add}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)=\mathfrak{b}$, and if \mathcal{F} is a P-ultrafilter then $\operatorname{cof}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)$ is the point π-character of the space $\operatorname{Seq}(\mathcal{F})$.

1. Introduction. Ramsey and completely Ramsey sets (or in other terminology: completely and nowhere Ramsey sets) were studied by many authors (e.g. [L], [GP], $[\mathrm{P}],[\mathrm{Sz}]$) in the context of open, Borel and analytic sets ([El], [GP], [Si], [P$]$) and cardinal coefficients of ideals ($[\mathrm{BSh}]$). In this paper we study sequentially completely Ramsey sets $\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}\right)$ and sequentially nowhere Ramsey sets $\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)$ on ω^{ω} equipped with the topology generated by a free filter \mathcal{F}. These notions are generalizations of the notions of completely Ramsey sets $\left(\mathcal{C} \mathcal{R}_{\mathcal{F}}\right)$ and nowhere Ramsey sets $\left(\mathcal{C} \mathcal{R}_{\mathcal{F}}^{0}\right)$ on $[\omega]^{\omega}$ (or on $\omega^{\omega \uparrow}$).

Let Seq and ω^{ω} denote respectively the set of all finite and all infinite sequences of non-negative integers. We will call them sequences and branches respectively. Note that we have a natural partial order on Seq: if s, t are two sequences then $s \preceq t$ whenever $s=t\lceil\operatorname{dom}(s)$.

Let \mathcal{F} be a free filter on ω. We consider the standard topology on Seq generated by all sets of the form

$$
U(s, \phi)=\bigcup\left\{U_{n}(s, \phi): n \in \omega\right\}
$$

where $U_{0}(s, \phi)=\{s\}$ and $U_{n+1}(s, \phi)=\bigcup\left\{t \subset \phi(t): t \in U_{n}(s, \phi)\right\}, s$ is a sequence and $\phi(t) \in \mathcal{F}$ for each sequence t.

Note that each $U(s, \phi)$ is clopen and Seq endowed with this topology is Lindelöf and normal because of its cardinality. It is also known ($\overline{\mathrm{BSz}}$) that it is extremally disconnected if and only if \mathcal{F} is an ultrafilter.

[^0]We will write $\phi \subseteq \psi$ when $\phi(s) \subseteq \psi(s)$ for each sequence s. Analogously $(\phi \cap \psi)(s)=\phi(s) \cap \phi(s)$ for every sequence s.

Lemma 1.1. Let $s, t \in \operatorname{Seq}$ and $\phi, \psi: \operatorname{Seq} \rightarrow \mathcal{F}$. Then the following statements hold:
(1) If $s \in U(t, \psi)$, then $t \preceq s$ and $U(s, \psi) \subseteq U(t, \psi)$.
(2) If $U(s, \phi) \cap U(t, \psi) \neq \emptyset$ then either $s \preceq t$ or $t \preceq s$.
(3) If $\operatorname{dom}(s)=\operatorname{dom}(t)$ and $s \neq t$ then $U(s, \phi) \cap U(t, \psi)=\emptyset$.
(4) If $\operatorname{dom}(t) \leq \operatorname{dom}(s)$ and $s \notin U(t, \psi)$ then $U(s, \phi) \cap U(t, \psi)=\emptyset$.

Take a collection $\left\{\phi_{n}:\right.$ Seq $\left.\rightarrow \mathcal{F}: n \in \omega\right\}$ and a sequence s. Then $\left\{U\left(s, \phi_{n}\right): n \in \omega\right\}$ is a fusion sequence if $U\left(s, \phi_{n+1}\right) \subseteq U\left(s, \phi_{n}\right)$ and $U_{k}\left(s, \phi_{n+1}\right)=U_{k}\left(s, \phi_{n}\right)$ for every $k \leq n$.

Proposition 1.2 (Fusion Lemma). If $\left\{U\left(s, \phi_{n}\right): n \in \omega\right\}$ is a fusion sequence then $\bigcap\left\{U\left(s, \phi_{n}\right): n \in \omega\right\}$ is open.

Proof. Set $U=\bigcap\left\{U\left(s, \phi_{n}\right): n \in \omega\right\}$. Of course U is not empty. Assume that ψ is such that $\psi(t)=\bigcap_{k \leq n+1} \phi_{k}(t)$ for each t which satisfies $\operatorname{dom}(s)+$ $n=\operatorname{dom}(t)$. To prove the statement it is enough to check that $U(s, \psi)=U$. By the definition of ψ it suffices to show that $U \subseteq U(s, \psi)$.

So assume that $t \in U(s, \psi)$ whenever $t \in U$ and $\operatorname{dom}(t)=\operatorname{dom}(s)+n$ for some integer $n>0$. If $t_{1} \in U$ is such that $\operatorname{dom}\left(t_{1}\right)=\operatorname{dom}(s)+n+1$ then there exists a sequence $t \in U$ such that $t \prec t_{1}$ and $\operatorname{dom}(t)=\operatorname{dom}\left(t_{1}\right)-1$. So $t \in U(s, \psi)$ by the inductive assumption and $t_{1} \in t^{\frown} \psi(t)$ by the choice of ψ.

Let $s \in$ Seq and $\phi:$ Seq $\rightarrow \mathcal{F}$ be given. We define the set of all branches of $U(s, \phi)$ as follows:

$$
[U(s, \phi)]=\left\{f \in \omega^{\omega}: \forall n \in \omega\left(f \upharpoonright(\operatorname{dom}(s)+n) \in U_{n}(s, \phi)\right)\right\}
$$

Lemma 1.3. For any sequences s and t :
(1) $U(s, \phi) \subseteq U(t, \psi) \Rightarrow[U(s, \phi)] \subseteq[U(t, \psi)]$.
(2) $[U(s, \psi)]=\bigcup\left\{[U(t, \phi)]: t \in U_{n}(s, \phi)\right\}$.

LEMMA 1.4. The family of all sets of branches is a base of a topology on the set ω^{ω}.

Proof. Note that every branch $f \in \omega^{\omega}$ is a member of $\left[U\left(\emptyset, \phi_{\omega}\right)\right]$ where Seq $=\phi_{\omega}^{-1}[\{\omega\}]$. Further, the statement is a consequence of filter properties.

We will consider ω^{ω} to be equipped with the topology defined in Lemma 1.4 for the rest part of this paper.
2. The classes $S_{\mathcal{F}} \mathcal{C} \mathcal{R}$ and $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$. A set $M \subseteq \omega^{\omega}$ is sequentially completely Ramsey if for every $U(s, \phi)$ there exists $\psi \subseteq \phi$ such that either $[U(t, \psi)] \subseteq M$ or $[U(t, \psi)] \cap M=\emptyset$. If for every $U(s, \phi)$ there exists $\psi \subseteq \phi$ which satisfies the latter condition then $M \subseteq \omega^{\omega}$ is sequentially nowhere Ramsey. The families of all sequentially completely Ramsey sets and all sequentially nowhere Ramsey sets will be denoted by $S_{\mathcal{F}} \mathcal{C} \mathcal{R}$ and $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$ respectively.

Lemma 2.1. $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$ is the ideal of all nowhere dense sets.
Lemma 2.2. Let $\phi:$ Seq $\rightarrow \mathcal{F}$. Then $[U(s, \phi)] \in S_{\mathcal{F}} \mathcal{C} \mathcal{R}$ for any sequence s.

Proof. Assume $[U(t, \psi)] \cap[U(s, \phi)] \neq \emptyset$. Then by Lemma 1.1, $t \prec s$ or $s \prec t$. In the first case we put $\lambda(t)=\psi(t) \backslash s(\operatorname{dom}(t))$, and $\lambda(u)=\psi(u)$ for $u \neq t$. Then $U(s, \phi) \cap U(t, \lambda)=\emptyset$ and $[U(s, \phi)] \cap[U(t, \lambda)]=\emptyset$.

The second case is a simple consequence of the filter properties. Namely if $\lambda(u)=\phi(u) \cap \psi(u)$ for every $u \in U(t, \psi)$ then $[U(t, \lambda)] \subseteq[U(s, \phi)]$.

Till the end of the paper, we assume that \mathcal{F} is an ultrafilter.
Proposition 2.3. Let $M \subseteq \omega^{\omega}$ and $U(s, \phi)$ be given. Then either
(1) there exists a function $\psi \subseteq \phi$ such that $[U(s, \psi)] \subseteq M$, or
(2) there exists a function $\psi \subseteq \phi$ such that $[U(t, \lambda)] \nsubseteq M$ for each $t \in$ $U(s, \psi)$ and every λ with $\lambda \subseteq \psi$.

Proof. Assume that (1) does not hold. We shall construct a fusion sequence $\left\{U\left(s, \psi_{n}\right): n \in \omega\right\}$ such that for every n there is no $t \in U\left(s, \psi_{n}\right)$ and no $\lambda \subseteq \psi_{n}$ with $[U(t, \lambda)] \subseteq M$.

Take $\psi_{0}=\phi$ and assume that we have defined $U\left(s, \psi_{0}\right), \ldots, U\left(s, \psi_{n-1}\right)$ so that the above statement is true. If $t \in U_{n-1}\left(s, \psi_{n-1}\right)$ we denote by X_{t} the set of all $m \in \psi_{n-1}(t)$ such that there exists a function λ with $U\left(t^{\circ} m, \lambda\right) \subseteq U\left(t^{\circ} m, \psi_{n-1}\right)$ and $\left[U\left(t^{\frown} m, \lambda\right)\right] \subseteq M$.

Then either X_{t} or $\psi_{n-1}(t) \backslash X_{t}$ is in \mathcal{F}. In the first case there would be a function $\lambda \subseteq \psi_{n-1}$ such that $[U(t, \lambda)] \subseteq M$, contradicting the inductive assumption. So $\psi_{n-1}(t) \backslash X_{t} \in \mathcal{F}$. To finish the construction we define

$$
\psi_{n}(t)= \begin{cases}\psi_{n-1}(t) \backslash X_{t}, & t \in U_{n-1}\left(s, \psi_{n-1}\right) \\ \psi_{n-1}(t), & \text { other } t\end{cases}
$$

By the Fusion Lemma we are done.
Proposition 2.4.

$$
S_{\mathcal{F} \mathcal{C}} \mathcal{R}^{0}=\left\{M \subseteq \omega^{\omega}: \forall U(s, \phi) \exists \psi \subseteq \phi([U(s, \psi)] \cap M=\emptyset)\right\}
$$

Proof. This follows directly from the previous proposition.

Recall ($(\overline{\mathrm{En}}])$ that M is nowhere dense if for every non-empty open set U there exists a non-empty open set $V \subseteq U$ such that $V \cap M=\emptyset$. Hence every nowhere dense set in ω^{ω} is an $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set.

Proposition 2.5. $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$ is the σ-ideal of nowhere dense sets.
Proof. Consider a family $\left\{M_{n}: n \in \omega\right\}$ of $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-sets.
Let $M=\bigcup\left\{M_{n}: n \in \omega\right\}$ and take an arbitrary sequence s and a function ϕ. We shall define a fusion sequence $\left\{U\left(s, \phi_{n}\right): n \in \omega\right\}$ such that $\phi_{n} \subseteq \phi$ and $\left[U\left(s, \phi_{n}\right)\right] \cap M_{n}=\emptyset$ for every n. We choose $U\left(s, \phi_{0}\right)$ already by the definition of $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set with respect to M_{0}. Assume $U\left(s, \phi_{0}\right), \ldots, U\left(s, \phi_{n}\right)$ are already defined. Then we take a function ψ_{t} for every $t \in U_{n}\left(s, \phi_{n}\right)$ such that $\psi_{t} \subseteq \phi_{n}$ and $\left[U\left(t, \psi_{t}\right)\right] \cap M_{n+1}=\emptyset$. We put $\phi_{n+1}(u)=\phi_{n}(u)$ if $\operatorname{dom}(u)<\operatorname{dom}(s)+n$ and $\phi_{n+1}(u)=\psi_{u \upharpoonright(\operatorname{dom}(s)+n)}(u)$ if $\operatorname{dom}(u) \geq$ $\operatorname{dom}(s)+n$. Note that if $f \in\left[U\left(s, \phi_{n+1}\right)\right]$ then there exists $t \in U_{n}\left(s, \phi_{n}\right)$ such that $f \in\left[U\left(t, \phi_{n+1}\right)\right]$. So by the Fusion Lemma there exists a function ψ such that $U(s, \psi) \subseteq U\left(s, \phi_{n}\right)$ for each $n \in \omega$ and $[U(s, \psi)] \cap M=\emptyset$.

Summarizing the foregoing results, every set $A \subseteq \omega^{\omega}$ with Baire property is the union of an open set U and an $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set M_{0}. We shall show that if \mathcal{F} is an ultrafilter, the class $S_{\mathcal{F}} \mathcal{C} \mathcal{R}$ coincides with the class of Baire sets.

Proposition 2.6.

$$
\begin{aligned}
S_{\mathcal{F}} \mathcal{C R}=\left\{M \subseteq \omega^{\omega}: \forall U(s, \phi)\right. & \exists \psi \subseteq \phi \\
& ([U(s, \psi)] \cap M=\emptyset \vee[U(s, \psi)] \subseteq M)\}
\end{aligned}
$$

Proof. Let $M \in S_{\mathcal{F}} \mathcal{C} \mathcal{R}$. Then there exists an $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set M_{0} and a $U \in \mathcal{T}_{p}$ such that $M=M_{0} \cup U$. Let $U(s, \phi)$ be given. By Proposition 2.3 there exists a function $\psi \subseteq \phi$ such that $[U(s, \psi)] \cap M_{0}=\emptyset$. If $[U(s, \psi)] \cap U=\emptyset$ then we are done. Assume otherwise and suppose that there is no $\psi^{\prime} \subseteq \psi$ such that $\left[U\left(s, \psi^{\prime}\right)\right] \subseteq M$. Since U is open, there exists a sequence t and a function λ such that $[U(t, \lambda)] \subseteq[U(s, \psi)] \cap U$, contrary to Proposition 2.1.

Proposition 2.7. $M \subseteq \omega^{\omega}$ is a $S_{\mathcal{F} \mathcal{C} \mathcal{R}}$-set if and only if M is a Baire set.

Proof. If M is $S_{\mathcal{F}} \mathcal{C} \mathcal{R}$-set then it is not hard to see that $M_{0}=M \backslash \operatorname{Int} M$ is an $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set.

Assume now M is a Baire set. Then we can find an open set U and a $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set N such that $M=U \cup N$. Let $U(s, \phi)$ be such that $[U(s, \phi)] \cap$ $N=\emptyset$ and $[U(s, \phi)] \cap U \neq \emptyset$. By Proposition 2.3, either (1) there exists a function ψ_{1} such that $\left[U\left(s, \psi_{1}\right)\right] \subseteq U$, or (2) there exists a function ψ_{2} such that $\left[U\left(t, \psi_{2}\right)\right] \nsubseteq U$ for every $t \in U\left(s, \psi_{2}\right)$. If (1) holds we are done since $U \subseteq M$. If (2) holds, then we get a contradiction, because $U \cap[U(s, \phi)]$ is open and non-empty.

Lemma 2.8. $S_{\mathcal{F}} \mathcal{C} \mathcal{R}$ is a σ-field of sets.
Proof. This follows from the previous proposition and Proposition 2.5.
3. Cardinal invariants. Let us recall some cardinal coefficients of nontrivial ideals $\mathcal{I} \subseteq \omega^{\omega}$ containing all singletons (see e.g. [BSh]):

$$
\begin{aligned}
\operatorname{add}(\mathcal{I}) & =\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I} \wedge \bigcup \mathcal{F} \notin \mathcal{I}\} \\
\operatorname{cov}(\mathcal{I}) & =\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I} \wedge \bigcup \mathcal{F}=\omega^{\omega}\right\}, \\
\operatorname{non}(\mathcal{I}) & =\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \omega^{\omega} \wedge \mathcal{F} \notin \mathcal{I}\right\} \\
\operatorname{cof}(\mathcal{I}) & =\min \{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{I} \wedge \mathcal{F} \text { is a base of } \mathcal{I}\},
\end{aligned}
$$

here \mathcal{F} is a base of \mathcal{I} if for each $A \in \mathcal{I}$ there exists $B \in \mathcal{F}$ such that $A \subseteq B$. These cardinals are referred to as the additivity, covering, uniformity and cofinality of \mathcal{I}. Observe that $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$ contains all singletons and hence $\bigcup S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}=\omega^{\omega}$. So

$$
\operatorname{add}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right) \leq \min \left(\operatorname{non}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right), \operatorname{cov}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)\right)
$$

and

$$
\operatorname{cof}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right) \geq \max \left(\operatorname{non}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right), \operatorname{cov}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)\right)
$$

By Proposition 2.5, if \mathcal{F} is an ultrafilter, then

$$
\omega<\operatorname{add}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)
$$

Lemma 3.1.
(1) For any function ϕ,

$$
A_{\phi}=\omega^{\omega} \backslash \bigcup\{[U(s, \phi)]: s \in \operatorname{Seq}\}
$$

is an $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set.
(2) The collection of all A_{ϕ} 's is a base of $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$.

Let us recall that \mathfrak{b} is the minimal size of an unbounded subfamily of ω^{ω}, and \mathfrak{d} is the minimal size of a dominating subfamily of ω^{ω}; we write $f \leq^{\star} g$ if $\{n \in \omega: f(n)>g(n)\}$ is finite. It is well known that $\mathfrak{b} \leq \mathfrak{d}$.

Proposition 3.2.

$$
\operatorname{cov}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right) \leq \mathfrak{b} \leq \mathfrak{d} \leq \operatorname{non}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)
$$

Proof. Let $\mathcal{U} \subseteq \omega^{\omega}$ realize \mathfrak{b}. If $f \in \mathcal{U}$ then we put

$$
\phi_{f}(s)=\{n \in \omega: n>f(\operatorname{dom}(s))\}
$$

for each sequence s. Of course $\phi_{f}(s)$ is a member of \mathcal{F} since it is cofinite and by the previous lemma each set of the form $A_{\phi_{f}}$ is an $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set. We shall prove that $\bigcup\left\{A_{\phi_{f}}: f \in \mathcal{U}\right\}=\omega^{\omega}$. Indeed, if g is a branch then there exists
a branch f in \mathcal{U} such that $\neg f \leq^{\star} g$. This means that for every $n \in \omega$ there exists $m \geq n$ such that $g(m)<f(m)$. Then $g \in A_{\phi_{f}}$.

Assume now that $A \subseteq \omega^{\omega}$ is not an $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-set. Then A dominates ω^{ω}. Indeed, assume the contrary. Then there exists a branch f such that $\neg f \leq^{\star} g$ for each g from A. Define ϕ_{f} as at the beginning of the proof. Then $A_{\phi_{f}} \supseteq A$, so we get a contradiction, since $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$ is a proper ideal of sets.

Take a cardinal $\lambda<\omega$. A free filter \mathcal{F} on ω is a $P(\lambda)$-filter if for every $\tau<\lambda$ and every subfamily $\left\{A_{\xi}: \xi<\tau\right\}$ of \mathcal{F} there exists an $A \in \mathcal{F}$ such that $A \backslash A_{\xi}$ is finite for every $\xi<\tau$ (we write briefly $A \subseteq^{\star} A_{\xi}$).

REmARK 3.3. Note that in the definitions of the numbers \mathfrak{b} and \mathfrak{d} we can replace ω^{ω} by $\omega^{\text {Seq }}$, where $f \prec^{\star} g$ means that the set of all sequences x such that $f(x)>g(x)$ is finite.

Proposition 3.4. Let $\lambda>\omega$ be a cardinal and \mathcal{F} be a $P(\lambda)$-ultrafilter on ω. If $\mathfrak{b} \geq \lambda$ then $\operatorname{add}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right) \geq \lambda$.

Proof. Consider $\mathfrak{b} \geq \lambda, \tau<\lambda$ and let $\left\{M_{\xi}: \xi<\tau\right\}$ be a family of $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$-sets. Let $U(s, \phi)$ be given. By Proposition 2.4 for every $\xi<\tau$ there exists a subset $U\left(s, \psi_{\xi}\right)$ of $U(s, \phi)$ such that $\left[U\left(s, \psi_{\xi}\right)\right] \cap M_{\xi}=\emptyset$. Since \mathcal{F} is a $P(\lambda)$-filter, there exists an $A \in \mathcal{F}$ such that $A \subseteq^{\star} \psi_{\xi}(t)$ for every $t \in$ Seq and $\xi<\tau$. Put $f_{\xi}(t)=\max \left\{n \in \omega: n \in A \backslash \psi_{\xi}(t)\right\}+1$ for $t \in$ Seq. Then there exists a function $G \in \operatorname{Seq}^{\omega}$ such that $f_{\xi} \leq^{\star} G$ for every $\xi<\tau$. We define $\Gamma \in \mathcal{F}^{\text {Seq }}$ by $\Gamma(t)=A \backslash G(t)$ for $t \in$ Seq. Then $[U(s, \Gamma)] \cap \bigcup\left\{M_{\xi}: \xi<\tau\right\}=\emptyset$. Indeed, to see this we set $m(\xi)=\max \left\{m \in \omega:\left(\exists t \in{ }^{m} \omega\right)\left(f_{\xi}(t)>G(t)\right)\right\}+1$ and consider two cases:

CASE 1: $m(\xi) \leq \operatorname{dom}(s)$. Then $f_{\xi}(t) \leq G(t)$ for every $s \preceq t$. Thus if $s \preceq t$ and $n \in \Gamma(t)$ then $n \in \psi_{\xi}(t)$, by the definitions of Γ and f_{ξ}. So by Lemma 1.3, $[U(s, \Gamma)] \subseteq\left[U\left(s, \psi_{\xi}\right)\right]$ and $[U(s, \Gamma)] \cap M_{\xi}=\emptyset$.

CASE 2: $m(\xi)>\operatorname{dom}(s)$. Let $n=m(\xi)-\operatorname{dom}(s)$. First note that if $\operatorname{dom}(t) \geq n+\operatorname{dom}(s)$ then $U(t, \Gamma) \subseteq U\left(t, \psi_{\xi}\right)$ just as in Case 1, since $\operatorname{dom}(t) \geq m(\xi)$. Consider now $\operatorname{dom}(t)=\operatorname{dom}(s)+n-1$. Then, since $\Gamma(t) \subseteq^{\star} \psi_{\xi}(t)$, there exist numbers n_{1}, \ldots, n_{l} such that $f_{\xi}\left(t^{\circ} n\right) \leq G(t \subset n)$ for each $n \notin\left\{n_{1}, \ldots, n_{l}\right\}$. So if we slightly modify the function Γ setting $\Gamma^{\prime}(t)=\Gamma(t) \backslash\left\{n_{1}, \ldots, n_{l}\right\}$ then $U\left(t, \Gamma^{\prime}\right) \subseteq U\left(t, \psi_{\xi}\right)$. On the other hand,

$$
U(t, \Gamma)=U\left(t, \Gamma^{\prime}\right) \cup \bigcup\left\{U\left(t^{\frown} n_{i}, \Gamma\right): i=1, \ldots, l\right\}
$$

and $\operatorname{dom}\left(t^{\frown} n_{i}\right)=n+\operatorname{dom}(s)$, so by the inductive assumption $U(t, \Gamma) \subseteq$ $U\left(t, \psi_{\xi}\right)$. Hence we are done.

Corollary 3.5. If \mathcal{F} is a $P(\mathfrak{b})$-ultrafilter then $\operatorname{add}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)=\mathfrak{b}$.
Question 3.6. If $\operatorname{add}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)=\lambda>\omega$, is then \mathcal{F} a $P(\lambda)$-ultrafilter?

Proposition 3.7.

$$
\pi \chi(\operatorname{Seq}(\mathcal{F}), s) \geq \chi(\mathcal{F}) \cdot \mathfrak{o}
$$

Proof (cf. JSZ]). Assume $\mathcal{B}(s)$ is a π-base at s. For every $A \in \mathcal{F}$ we put $\mathbb{A}(t)=A$ for each sequence t. If $A \in \mathcal{F}$ then there exists $U(t, \phi) \in \mathcal{B}(s)$ such that $U(t, \phi) \subseteq U(s, \mathbb{A})$. Hence $\{\phi(t): U(t, \phi) \in \mathcal{B}(s)\}$ is a base of the ultrafilter \mathcal{F}. So we conclude $\chi(\mathcal{F}) \leq \pi \chi(\operatorname{Seq}(\mathcal{F}), s)$.

Now for each $U(t, \phi) \in \mathcal{B}(s)$ and every integer $n>\operatorname{dom}(t)$ take $g_{\phi}^{t}(n)$ from the union of all $\phi(u)$ where $u \in U(t, \phi)$ and $\operatorname{dom}(u)=n$ (for example, take the minimum of this union). Then the collection of all g_{ϕ}^{t} is a dominating family. Indeed, if f is a branch then we define $\psi_{f}(u)=\omega \backslash(f(\operatorname{dom}(u))+1)$. So if $U(t, \phi) \in \mathcal{B}(s)$ is contained in $U\left(s, \psi_{f}\right)$ then $f \leq^{\star} g_{\psi_{f}}$. Thus we get $\pi \chi(\operatorname{Seq}(\mathcal{F}), s) \geq \mathfrak{d}$.

Proposition 3.8.

$$
\pi \chi(\operatorname{Seq}(\mathcal{F}), s) \leq \operatorname{cof}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)
$$

Proof. Assume \mathcal{B} realizes cofinality of $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$. By Lemma 3.1 for every $M \in \mathcal{B}$ there exists a function ψ_{M} such that $M \subseteq A_{\psi_{M}}$. It is enough to check that $\left\{U\left(s, \psi_{M}\right): M \in \mathcal{B}\right\}$ is a base of $\operatorname{Seq}(\mathcal{F})$ at s. So assume $U(s, \phi)$ is given. Then $M_{\phi}=\omega^{\omega} \backslash \bigcup\{[U(t, \phi)]: t \in \operatorname{Seq}\}$ is a sequentially nowhere Ramsey set. So there is $M \in \mathcal{B}$ such that $M_{\phi} \subseteq M$. Hence $M_{\phi} \subseteq A_{\psi_{M}}$, and so $\bigcup\left\{\left[U\left(t, \psi_{M}\right)\right]: t \in \operatorname{Seq}\right\} \subseteq \bigcup\{[U(t, \phi)]: t \in \operatorname{Seq}\}$.

We claim now that there is a sequence t such that $U\left(t, \psi_{M}\right) \subseteq U(s, \phi)$. Assume the contrary and take the first level n_{0} of $U\left(s, \psi_{M}\right)$ such that $U_{n_{0}}\left(s, \psi_{M}\right) \backslash U_{n_{0}}(s, \phi)$ is non-empty. Consider $t_{0} \in U_{n_{0}}\left(s, \psi_{M}\right) \backslash U_{n_{0}}(s, \phi)$ and take the first level n_{1} of $U\left(t_{0}, \psi_{M}\right)$ such that $U_{n_{1}}\left(t_{0}, \psi_{M}\right) \backslash U_{n_{1}}\left(t_{0}, \phi\right)$ is non-empty. Consider t_{1} in it, and so on. We obtain a sequence $\left\{n_{i}\right\}_{i \in \omega}$ of integers and a collection of sequences $\left\{t_{i}\right\}_{i \in \omega}$ such that $U_{n_{i+1}}\left(t_{i}, \psi_{M}\right) \backslash$ $U_{n_{i+1}}\left(t_{i}, \phi\right)$ is non-empty. So if we take a branch $f \in\left[U\left(s, \psi_{M}\right)\right]$ such that $f \upharpoonright\left(\operatorname{dom}(s)+n_{i}\right)=t_{i}$ then $f \notin \bigcup\{[U(t, \phi)]: t \in \operatorname{Seq}\}$, a contradiction. So there must exist a sequence t which satisfies $U\left(t, \psi_{M}\right) \subseteq U(s, \phi)$.

Proposition 3.9. If \mathcal{F} is a $P\left(\omega_{1}\right)$-ultrafilter then

$$
\pi \chi(\operatorname{Seq}(\mathcal{F}), s)=\operatorname{cof}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right)=\chi(\mathcal{F}) \cdot \mathfrak{d}
$$

Proof. It is enough to check that $\operatorname{cof}\left(S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}\right) \leq \mathfrak{d} \cdot \chi(\mathcal{F})$. So take a dominating collection of branches $\mathcal{D} \subseteq \operatorname{Seq}^{\omega}$ and a base \mathcal{B} of the ultrafilter \mathcal{F}. For any $f \in \mathcal{D}$ and $A \in \mathcal{B}$ we put $\psi_{f, A}(s)=A \backslash(f(s)+1)$ for every sequence s. We shall show that the collection of all $A_{\psi_{f, A}}$ (defined as in Lemma 3.1) is a base of the ideal $S_{\mathcal{F}} \mathcal{C} \mathcal{R}^{0}$. Indeed, assume M is a sequentially nowhere Ramsey set. By Lemma 3.1 there exists a function ϕ which satisfies $M \subseteq A_{\phi}$. Since \mathcal{F} is a P-ultrafilter, we can choose $B \in \mathcal{B}$ such that $B \subseteq^{\star} \phi(s)$ for each sequence s. We define $g(s)=\max (B \backslash \phi(s))+1$ for all. By the domination of \mathcal{D}
there exists $f \in \mathcal{D}$ such that $g \leq^{\star} f$. Then $A_{\phi} \subseteq A_{\psi_{f, B}}$. Indeed, if $h \notin A_{\psi_{f, B}}$ then $h \in\left[U\left(s, \psi_{f, B}\right)\right]$ for some s. So $h(\operatorname{dom}(s)+k) \in B \backslash\left(f\left(f \upharpoonright_{\operatorname{dom}(s)+k}\right)+1\right)$ for all $k \in \omega$. But there exists $n \in \omega$ such that $g(t)<f(t)$ for every $t \in$ $U\left(s, \psi_{f, B}\right)$ such that $\operatorname{dom}(t)>n$. So $h(\operatorname{dom}(s)+k) \in B \backslash\left(g\left(f \upharpoonright_{\operatorname{dom}(s)+k}\right)+1\right)$ for every k with $\operatorname{dom}(s)+k>n$. Hence $h \in\left[U\left(h \upharpoonright_{\operatorname{dom}(s)+n}, \phi\right)\right]$, which means $h \notin A_{\phi}$.

REFERENCES

[BSz] A. Błaszczyk and A. Szymański, Cohen algebras and nowhere dense ultrafilters, Bull. Polish Acad. Sci. Math. 49 (2001), 15-25.
[BSh] J. Brendle and S. Shelah, Ultrafilters on ω-their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. 351 (1999), 2643-2674.
[El] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163-165.
[En] R. Engelking, General Topology, PWN, Warszawa, 1977.
[GP] F. Galvin and K. Prikry, Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193-198.
[JSz] I. Juhász and A. Szymański, d-calibers and d-tightness in compact spaces, Topology Appl. 151 (2005), 66-76.
[L] A. Louveau, Une méthode topologique pour l'étude de la propriété de Ramsey, Israel J. Math. 23 (1976), 97-116.
[P] S. Plewik, On completely Ramsey sets, Fund. Math. 127 (1987), 127-132.
[Si] J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60-64.
[Sz] A. Szymański, Products and measurable cardinals, Rend. Circ. Mat. Palermo (2) Suppl. 11 (1985), 195-112.

Anna Brzeska
Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice, Poland
E-mail: anna.brzeska@us.edu.pl

[^0]: 2010 Mathematics Subject Classification: Primary 54A20, 54D35; Secondary 54A25, 54D70, 54D80.
 Key words and phrases: Seq, sequence, filter, completely Ramsey set.

