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A LIPSCHITZ FUNCTION WHICH IS C∞ ON A.E. LINE
NEED NOT BE GENERICALLY DIFFERENTIABLE

BY

LUDĚK ZAJÍČEK (Praha)

Abstract. We construct a Lipschitz function f on X = R2 such that, for each
0 6= v ∈ X, the function f is C∞ smooth on a.e. line parallel to v and f is Gâteaux
non-differentiable at all points of X except a first category set. Consequently, the same
holds if X (with dimX > 1) is an arbitrary Banach space and “a.e.” has any usual “mea-
sure sense”. This example gives an answer to a natural question concerning the author’s
recent study of linearly essentially smooth functions (which generalize essentially smooth
functions of Borwein and Moors).

1. Introduction. There exist a number of results which assert that
some “partial or directional smoothness property” (e.g., smoothness on some
lines or directional differentiability in some directions) of a function f on a
Banach space X implies some “global smoothness property” (e.g. Gâteaux
or Fréchet differentiability at many points). For results of this sort see e.g.
[JP], [S], [I], [PZ].

The present note is motivated by the special question whether a “smooth-
ness on many lines” of a Lipschitz function f on X implies generic Fréchet
differentiability of f (where “generic” has the usual meaning “at all points
except a first category set”).

A remarkable result in this direction ([S]) says that if an (a priori ar-
bitrary) function f on X = Rn has all partial directional derivatives at all
points (in other words, f is differentiable on each line parallel to a coordi-
nate axis), then f is generically Fréchet differentiable. On the other hand,
if X = `2, then (see [Pr]) there exists a Lipschitz function on X which is
everywhere Gâteaux differentiable (and so differentiable on all lines) but
generically Fréchet non-differentiable.

A contribution to this special question is given in the article [Z2] which
was motivated by the papers [BM1], [BM2] of Borwein and Moors on “es-
sentially smooth” functions.
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For example [Z2, Theorem 5.2] reads as follows.

Theorem A. Let X be an Asplund space and f : X → R a Lipschitz
function. Suppose that there exists a set D which is dense in the unit sphere
SX such that, for each v ∈ D, f is essentially smooth on a generic line
parallel to v. Then f is generically Fréchet differentiable.

Here “f is essentially smooth on the line L” means “the restriction of f
is a.e. strictly differentiable on L”. So each function which is C1 on a line L
is essentially smooth on L. (Recall also that X is Asplund if and only if Y ∗

is separable for each separable subspace Y ⊂ X.)

In [Z2, Remark 1.4(iii)], it was announced that, in Theorem A, one can-
not only suppose that f is essentially smooth on each line from a set of
lines which is dense in the space of all lines parallel to v ∈ D. (So it is not
sufficient to suppose that f is essentially smooth on each line from a set of
lines which is dense in the space of all lines; cf. Remark 3.7).

The main aim of the present note is to construct the following much
stronger example (Theorem 3.6 below), in which we obtain even generic
Gâteaux non-differentiability.

Let X be a Banach space, dimX > 1. Then there exists a Lipschitz
function f on X such that, for each v ∈ SX , f is C∞ on a.e. line parallel
to v and f is generically Gâteaux non-differentiable.

Here “a.e. line parallel to v” is taken in a very strong sense (using “∗-
nullness”, see Definition 3.5). Note that each ∗-null set is clearly Lebesgue
null if X = Rn and is Gaussian (= Aronszajn) null and also Γ -null if X is
separable.

We stress that our construction is “two-dimensional”; if we have an ex-
ample in R2, then the construction in a general X is rather obvious. The
notion of ∗-nullness is not of general interest, we introduce it only to be able
succintly formulate our result in general X.

Further note that in the case X = Rn the function f from our example is
C∞ on a.e. line in X, which justifies the title of the note. This is immediately
seen from the canonical definition of the measure on the set of all lines in Rn
(see [Ma, p. 53]).

Note also that the main idea of the construction is similar to that of [Po].

2. Preliminaries. In the following, if not said otherwise, X will be a
real Banach space. We set SX := {x ∈ X : ‖x‖ = 1}. If a, b ∈ X, then a, b
denotes the closed segment. By spanM we denote the linear span of M ⊂ X.
The equality X = X1 ⊕ · · · ⊕ Xn means that X is the direct sum of non-
trivial closed linear subspaces X1, . . . , Xn and the corresponding projections
πi : X → Xi are continuous.
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We say that a function f : X → R is C∞ on a line L = a + Rv if the
function h(t) := f(a + tv) is C∞ on R. (Clearly, this definition does not
depend on the choice of a and v.)

The symbol B(x, r) will denote the open ball with center x and radius r.
The word “generically” has the usual sense; it means “at all points except
a first category set”.

The symbol Hk denotes the k-dimensional Hausdorff measure.

We will need the following easy well-known fact several times.

Lemma 2.1. Let X be a Banach space, 0 6= u ∈ X, and let X =
W ⊕ span{u}. Then the mapping w ∈ W 7→ w + Ru ∈ X/span{u} is a
linear homeomorphism.

In the following, f is a real function defined on an open subset G of X.

We say that f has a property generically on G if f has this property at
each point of G except a first category set.

We say that f is K-Lipschitz (K ≥ 0) if f is Lipschitz with (not neces-
sarily least) constant K.

Recall the well-known easy fact that

(2.1) if f is Lipschitz and dimX < ∞, then the Gâteaux and Fréchet
derivatives of f coincide.

Recall also (see [Mo]) that x∗ ∈ X∗ is called the strict derivative of f at
a ∈ G if

lim
(x,y)→(a,a), x 6=y

f(y)− f(x)− x∗(y − x)

‖y − x‖
= 0.

It is well-known and easy to see that if f ′(a) is the strict derivative of f at
a ∈ X and v ∈ X, then

(2.2) lim
n→∞

f(an + tnv)− f(an)

tn
= f ′(a)(v)

whenever an → a, tn → 0 + .

Strict differentiability is a stronger condition than Fréchet differentiability,
but (see e.g. [Z1, Theorem B, p. 476]), for an arbitrary f ,

(2.3) generically, Fréchet differentiability of f implies strict differentiabil-
ity of f .

The directional and one-sided directional derivatives of f at x in the direc-
tion v are defined respectively by

f ′(x, v) := lim
t→0

f(x+ tv)− f(x)

t
and f ′+(x, v) := lim

t→0+

f(x+ tv)− f(x)

t
.
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We will need some well-known facts about mollification of functions.
Let η : Rn → R be the function defined as η(x) = 0 for ‖x‖ ≥ 1 and
η(x) = c exp((‖x‖2 − 1)−1) for ‖x‖ < 1, where c is such that

	
Rn η = 1.

For δ > 0, we define (the standard mollifier , see [4])

ηδ(x) =
1

δn
η

(
x

δ

)
, x ∈ Rn.

If f ∈ L1
loc(Rn), define

f δ(x) := ηδ ∗ f(x) =
�

Rn

ηδ(x− y)f(y) dy =
�

Rn

ηδ(y) f(x− y) dy, x ∈ Rn.

We will need the following well-known facts.

Fact 2.2. Let f be a K-Lipschitz function on Rn and δ > 0. Then

(i) f δ ∈ C∞(Rn).
(ii) f δ → f (as δ → 0+) uniformly on compact subsets of Rn.
(iii) f δ is K-Lipschitz.
(iv) If x ∈ Rn, δ > 0, and f equals an affine function α on B(x, δ), then

f δ(x) = α(x).

For (i) and (ii) see [EG, Theorem 1(i),(ii), p. 123]; (iii) and (iv) are also
well-known and almost obvious, so I omit their proof, although I have not
found an explicit reference.

3. Main result

Lemma 3.1. Let K ≥ 4 and let f ∈ C∞(R2) be a K-Lipschitz function.
Let ∅ 6= H ⊂ R2 be an open set and 0 < ε < 1. Then there exist f̃ ∈ C∞(R2),
c ∈ H and t > 0 with the following properties:

(i) f(x) = f̃(x) for each x ∈ R2 \H.

(ii) |f(x)− f̃(x)| < ε for each x ∈ R2.

(iii) f̃ is a (K + ε)-Lipschitz function.
(iv) The points c, c+ te1 and c− te1 (where e1 := (1, 0)) belong to H,

(3.1)
f̃(c+ te1)− f̃(c)

t
≥ 1 and

f̃(c)− f̃(c− te1)

t
≤ −1.

Proof. Choose c ∈ H and consider the affine function α(x) := f(c) +
f ′(c)(x − c) for x ∈ R2. Since f ∈ C1(R2), we can clearly choose r > 0
such that

(3.2) 0 < r < 1, B(c, r) ⊂ H
and

(3.3) the function f − α is (ε/2)-Lipschitz on B(c, r).

Observe that ‖f ′(c)‖ ≤ K and so α is a K-Lipschitz function.



A LIPSCHITZ FUNCTION WHICH IS C∞ ON A.E. LINE 33

For x ∈ R2, set

ϕ(x) := α(c)− ε2r

8K2
+ (K + ε/2) ‖x− c‖ and g(x) := min(ϕ(x), α(x)).

We will need the following properties of the function g:

(P1) g is (K + ε/2)-Lipschitz.
(P2) g(x) = α(x) for each x ∈ R2 \B(c, r/4).
(P3) |g(x)− α(x)| < εr/K for each x ∈ R2.
(P4) There exists t > 0 such that c± te1 ∈ B(c, r),

(3.4)
g(c+ te1)−g(c)

t
= K + ε/2 and

g(c)−g(c− te1)

t
= −(K + ε/2).

To prove these properties, first recall that α is K-Lipschitz, and since ϕ is
clearly (K + ε/2)-Lipschitz, we obtain (P1).

If ‖x− c‖ ≥ εr/(4K2), we obtain

α(x) ≤ α(c) +K‖x− c‖ = ϕ(x) +
ε2r

8K2
− ε

2
‖x− c‖

≤ ϕ(x) +
ε2r

8K2
− ε

2

εr

4K2
= ϕ(x)

and (P2) follows since εr/(4K2) < r/4.

If ‖x−c‖<εr/(4K2), then |α(x)−α(c)|<K(εr/(4K2)) and |ϕ(x)−ϕ(c)|
< (K + ε/2)(εr/(4K2)). Consequently,

|g(x)−α(x)| ≤ |ϕ(x)−α(x)| ≤ |α(c)−ϕ(c)|+ |α(x)−α(c)|+ |ϕ(x)−ϕ(c)|

≤ ε2r

8K2
+K

(
εr

4K2

)
+

(
K +

ε

2

)
εr

4K2
< εr/K,

which gives (P3), since we have proved that g(x) = α(x) if ‖x − c‖ ≥
εr/(4K2).

Since α and ϕ are continuous, we can clearly choose t > 0 so small that
c± te1 ∈ B(c, r), ϕ(c+ te1) < α(c+ te1) and ϕ(c− te1) < α(c− te1). Then
g(c) = ϕ(c) and g(c ± te1) = ϕ(c ± te1) and so, by the definition of ϕ, we
clearly obtain (3.4). Thus we have proved (P4).

Now, for δ > 0, consider the mollification gδ of g. By Fact 2.2(i),(iii), we
deduce that gδ ∈ C∞(R2) and gδ is (K + ε/2)-Lipschitz.

Using (P2) and Fact 2.2(iv) we find that, if 0 < δ < r/4, then

(3.5) gδ(x) = g(x) = α(x) for x ∈ R2 \B(c, r/2).

So, using Fact 2.2(ii) for the compact set B(c, r), we easily see that we can
choose δ ∈ (0, r/4) so small that

(3.6) |gδ(x)− g(x)| < εr/K for each x ∈ R2
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and, using (3.4), also

(3.7)
gδ(c+ te1)− gδ(c)

t
≥ 2 and

gδ(c)− gδ(c− te1)

t
≤ −2.

By (3.6) and (P3) we obtain

(3.8) |gδ(x)− α(x)| < 2εr/K for each x ∈ R2.

Define f̃ := f + gδ − α. Clearly f̃ ∈ C∞(R2). We will show that f̃ has
also properties (i)–(iv).

By (3.5) we have

(3.9) f̃(x) = f(x) for x ∈ R2 \B(c, r/2),

which implies (i).
By (3.8) we obtain

(3.10) |f̃(x)− f(x)| < 2εr/K < ε for each x ∈ R2,

so (ii) holds.
Since f̃ := (f − α) + gδ, gδ is (K + ε/2)-Lipschitz and f − α is (ε/2)-

Lipschitz on B(c, r) (see (3.3)), we find that

(3.11) f̃ is a (K + ε)-Lipschitz function on B(c, r).

Using (3.5) we deduce that

(3.12) f̃ = f + (gδ − α) is K-Lipschitz on R2 \B(c, r/2).

Further, consider arbitrary x1, x2 ∈ R2 such that x1 ∈ B(c, r/2) and x2 /∈
B(c, r). Then, using (3.9) and (3.10), we obtain

|f̃(x2)− f̃(x1)| = |f(x2)− f̃(x1)| ≤ |f(x2)− f(x1)|+ |f(x1)− f̃(x1)|
≤ K|x2 − x1|+ 2εr/K ≤ K|x2 − x1|+ (4ε/K)|x2 − x1| ≤ (K + ε)|x2 − x1|.

This inequality together with (3.11) and (3.12) clearly implies (iii).

Finally, since f̃ := (f − α) + gδ, (3.3), (3.7) and the fact that the points
c, c+ te1, c− te1 belong to B(c, r) easily imply (iv).

Lemma 3.2. Let Mn ⊂ R2, n ∈ N, be nowhere dense sets. Then there
exists a Lipschitz function f on R2 such that

(a) f is C∞ on each line which is contained in a set Mn, n ∈ N, and
(b) f is generically Gâteaux non-differentiable.

Proof. We can clearly choose a set D = {dn : n ∈ N} which is dense
in R2 and D ∩

⋃
k∈NMk = ∅. For each n ∈ N, choose 0 < rn < 1/n such

that B(dn, rn) ∩
⋃n
k=1Mk = ∅ and define Bn := B(dn, rn). Set εn := 2−n

and e1 := (1, 0).
Now we will inductively construct sequences (cn)∞n=1 of points in R2,

(fn)∞n=0 of C∞ functions on R2 and (tn)∞n=1 of positive reals such that
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f0(x) = 0, x ∈ X, and for each n ∈ N the following hold:

(i) {cn, cn + tne1, cn − tne1} ⊂ Bn.

(ii)
fn(cn + tne1)− fn(cn)

tn
≥ 1 and

fn(cn)− fn(cn − tne1)

tn
≤ −1.

(iii) fn(x) = fn−1(x) for x ∈ (R2 \Bn) ∪
⋃n−1
k=1{ck, ck + tke1, ck − tke1}.

(iv) |fn(x)− fn−1(x)| < εn for each x ∈ R2.

(v) fn is a (4 +
∑n

k=1 εk)-Lipschitz function.

Of course, we put
⋃0
k=1{ck, ck+tke1, ck−tke1} :=∅ (and also

∑0
k=1 εk :=0

below).
We set f0(x) := 0, x ∈ X. Further suppose that m ∈ N is given, cn, fn, tn

are defined for 1 ≤ n < m, and (i)–(v) hold whenever 1 ≤ n < m.
Applying Lemma 3.1 to K := 4 +

∑m−1
k=1 εk, f := fm−1, H := Bm \⋃m−1

k=1 {ck, ck + tke1, ck − tke1} and ε := εm, we obtain a function f̃ =: fm,
c =: cm ∈ H and t =: tm > 0 such that (i)–(v) clearly hold for n = m.

Condition (iv) shows that the series

f1 + (f2 − f1) + (f3 − f2) + · · ·
(uniformly) converges on R2 and consequently the sequence (fn) converges
to a function f . Since all fn are 5-Lipschitz by (v), so is f .

To prove (a), suppose that L is a line in R2, k ∈ N and L ⊂ Mk. Since
Mk ⊂ R2 \ Bn for each n ≥ k, we deduce by (iii) that fn(x) = fn−1(x) for
each x ∈ L and n ≥ k, and consequently f(x) = fk(x), x ∈ L. Since fk is
C∞ on R2, we see that f is C∞ on L.

To prove (b), first observe that, by (iii), for each n > k and x ∈ {ck, ck +
tke1, ck − tke1} we have fn(x) = fn−1(x), and so f(x) = fk(x). Thus (ii)
implies that, for each k ∈ N,

(3.13)
f(ck + tke1)− f(ck)

tk
≥ 1 and

f(ck)− f(ck − tke1)

tk
≤ −1.

This easily implies that

(3.14) f is strictly differentiable at no point of R2.

Indeed, suppose to the contrary that f is strictly differentiable at a point
x ∈ R2. Using (i), we can easily find a subsequence (cni) of (cn) with cni → x.
Then clearly tni → 0 and so, by (2.2) and (3.13),

lim
i→∞

f(cni + tnie1)− f(cni)

tni

= f ′(x)(e1) ≥ 1 and

lim
i→∞

f(cni)− f(cni − tnie1)

tni

= f ′(x)(e1) ≤ −1,

which is a contradiction. By (3.14), (2.3) and (2.1) we obtain (b).
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Proposition 3.3. There exists a Lipschitz function f on R2 such that

(a) for each 0 6= v ∈ R2, f is C∞ on a.e. line parallel to v, and
(b) f is generically Gâteaux non-differentiable.

Proof. Choose a set {dk : k ∈ N} dense in R2. For each n, k ∈ N, set

(3.15) Bn,k := B(dk, (2
kn)−1) and Gn :=

∞⋃
k=1

Bn,k.

Then each Gn is clearly open dense, and consequently Mn := R2 \ Gn is
nowhere dense. Applying Lemma 3.2, we obtain a Lipschitz function f on R2

such that f is generically Gâteaux non-differentiable and

(3.16) f is C∞ on each line which is contained in a set Mn, n ∈ N.

Fix an arbitrary 0 6= v ∈ R2. Let W be the orthogonal complement
of span{v} and let π be the orthogonal projection on W . Then π(Gn) =⋃∞
k=1 π(Bn,k) and so

H1(π(Gn)) ≤
∞∑
k=1

H1(π(Bn,k)) =
∞∑
k=1

2(2kn)−1 =
2

n
.

Consequently,

(3.17) H1
( ∞⋂
n=1

π(Gn)
)

= 0.

Let now w ∈W \
⋂∞
n=1 π(Gn). Then there exists n with w /∈ π(Gn) and

so the line which contains w and is parallel to v is contained in Mn. Hence,
by (3.16) and (3.17), f is C∞ on a.e. line parallel to v.

Remark 3.4. The assertion of Proposition 3.3 can easily be strength-
ened; namely we can consider “a.e.” with respect to any generalized Haus-
dorff measure Λh given by a non-decreasing h : [0,∞) → [0,∞); see [Ma,
p. 60]. Indeed, it is easy to slightly refine the proof of Proposition 3.3.
Namely, it is sufficient to make two changes:

(a) to set Bn,k := B(dk, rn,k), where rn,k > 0 and
∑∞

k=1 h(2rn,k) < 1/n;

(b) in the proof of Λh(
⋂∞
n=1 π(Gn)) = 0, to use the definition of Λh

(instead of the subadditivity of H1).

To apply Proposition 3.3 in infinite-dimensional spaces, we find it useful
to introduce the following terminology.

Definition 3.5. Let X be a Banach space with dimX > 1. We say
that M ⊂ X is ∗-null if there exists 0 6= x∗ ∈ X∗ such that x∗(M) ⊂ R is
Lebesgue null.
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Obviously, if X = Rn, then each ∗-null set in X is Lebesgue null. If X
is an infinite-dimensional separable space, then each ∗-null set M in X is
contained in an Aronszajn null (= Gauss null) set and is also Γ -null. This
can be proved directly from definitions, but we can also use the following
standard quicker argument:

Let x∗ be as in Definition 3.5 and let h be a Lipschitz function on R which
is differentiable at no point of x∗(M) (see [BL, p. 165]). Then f := h ◦ x∗
is clearly a Lipschitz function on X which is Gâteaux differentiable at no
point of M . So our assertion follows from [BL, Theorem 6.42] and [LPT,
Theorem 5.2.3].

Note also that if X is non-separable then it is easy to see that each ∗-null
set M ⊂ X is Haar null. Moreover, using [LPT, Corollary 5.6.2], it is not
difficult to prove that M is Γ -null.

Theorem 3.6. Let X be a Banach space and dimX ≥ 2. Then there
exists a Lipschitz function f on X such that

(i) for each 0 6= v ∈ X, the function f is C∞ on ∗-a.e. line parallel
to v, and

(ii) f is generically Gâteaux non-differentiable.

(Of course, condition (i) is a short expression of the statement that there
exists a ∗-null set N in X/span{v} such that f is C∞ on each line L ∈
X/span {v} \N .)

Proof. If dimX = 2, then the assertion clearly follows from Proposi-
tion 3.3.

So suppose dimX ≥ 3. Write X = P ⊕ Y with dimP = 2. By Proposi-
tion 3.3 choose a Lipschitz function g on P and a first category set A ⊂ P
such that g is Gâteaux non-differentiable at all points of P \A and, for each
0 6= u ∈ P , the function g is C∞ on a.e. line parallel to u. Let π : X → P
be the linear projection of X on P in the direction of V . Set f := g ◦ π.

It is easy to see that f is a Lipschitz function which is Gâteaux non-
differentiable at all points outside the (first category) set π−1(A). So (ii)
holds.

To prove (i), consider an arbitrary 0 6= v ∈ X. If u := π(v) = 0, then
f is clearly constant on each line parallel to v. So suppose u 6= 0. Then we
can write P = span{u} ⊕ Z with dimZ = 1. Let ϕ : Z → R be a linear
homeomorphism. By the choice of g and Lemma 2.1 there exists N ⊂ Z such
that ϕ(N) ⊂ R is Lebesgue null and the function h(t) := g(d + tu), t ∈ R,
is C∞ for each d ∈ Z \N .

Observe that N + Y is ∗-null in Z + Y . Indeed, for ψ := ϕ ◦ (π�Z+Y ) we
have 0 6= ψ ∈ (Z + Y )∗ and so ψ(N + Y ) = ϕ(N) is Lebesgue null. Now let
p ∈ (Z + Y ) \ (N + Y ). Then we can write p = d+ y, where d ∈ Z \N and
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y ∈ Y . Observing that f(p + tv) = f(d + y + tv) = g(d + tu) = h(t) and
using Lemma 2.1, we easily obtain (i).

Remark 3.7. Each set containing ∗-a.e. line parallel to v is clearly dense
in the space X/span{v}.

Consequently, the function f from Theorem 3.6 is C∞ on a dense set of
lines in the space L of all lines in X. Here we consider the topology on L in
which, for a line L = a0 + Rv0,

BL := {{a+ Rv : ‖a− a0‖ < ε, ‖v − v0‖ < ε} : ε > 0}
is a basis of the filter of all neigbourhoods of L.
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