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Abstract. The major aim of the present paper is to strengthen a nice result of
Shemetkov and Skiba which gives some conditions under which every non-Frattini G-chief
factor of a normal subgroup E of a finite group G is cyclic. As applications, some recent
known results are generalized and unified.

1. Introduction. All groups considered in this paper will be finite.
Most of the notation is standard and can be found in [4] and [13]. G al-
ways denotes a group, |G| is the order of G, Op(G) is the maximal normal
p-subgroup of G, and F ∗(G) is the generalized Fitting subgroup of G, i.e.,
the product of all normal quasinilpotent subgroups of G. The symbol U
denotes the class of all supersoluble groups. Clearly, U is a saturated forma-
tion.

Two subgroups A and B of a group G are said to be permutable if
AB = BA. A subgroup H of G is said to be S-permutable or S-quasinormal
in G if H permutes with every Sylow subgroup of G (see [6]). There are many
interesting generalizations of S-permutability in the literature. For example,
Ballester-Bolinches and Pedraza-Aguilera [2] called H S-permutably embed-
ded in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also
a Sylow p-subgroup of some S-permutable subgroup of G. Again, Skiba
[18] called H weakly S-permutable in G if there is a subnormal subgroup
T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the sub-
group of H generated by all those subgroups of H which are S-permutable
in G.

We introduce the following concept, which covers both weak S-permu-
tability and S-permutable embeddability.

Definition 1.1. A subgroup H of a subgroup G is said to be E-S-
supplemented in G if there exists a subnormal subgroup T of G such that
G = HT and H∩T ≤ HeG, where HeG denotes the subgroup of H generated
by all those subgroups of H which are S-permutably embedded in G.
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Example 1.2. Suppose that G = A5, the alternating group of degree 5.
Then the Sylow 2-subgroups of G are E-S-supplemented in G, but not
weakly S-permutable in G.

Example 1.3. Suppose that G = S4, the symmetric group of degree 4.
Consider the subgroup H = 〈(3, 4)〉. Then H is E-S-supplemented in G, but
not S-permutably embedded in G.

In [17], Skiba improved [15, Theorem 1.4] by replacing non-Frattini G-
chief factor with G-chief factor. In this paper, we further weaken the hy-
potheses of Skiba’s result from weak S-permutability to being E-S-supp-
lemented and get the following theorem.

Theorem 1.4. Let E be a normal subgroup of a group G and X ≤ E.
Suppose that for every noncyclic Sylow subgroup P of X, there is an integer
np such that 1 < np < |P | and every subgroup H of P of order np, as well
as every order 4 cyclic subgroup of P (when np = 2 and P is a nonabelian
2-group), is E-S-supplemented in G. If X = E or X = F ∗(E), then every
G-chief factor of E is cyclic.

We shall prove Theorem 1.4 in Section 4. The following useful fact is an
important stage in that proof.

Theorem 1.5. Let P be a Sylow p-subgroup of a group G, where p is a
prime divisor of |G| with (|G|, p−1) = 1. Suppose that there is an integer np
such that 1 < np < |P | and every subgroup H of P of order np, and every
cyclic subgroup of P of order 4 (if P is a nonabelian 2-group and np = 2),
without a p-nilpotent supplement in G is E-S-supplemented in G. Then G
is p-nilpotent.

2. Preliminaries

Lemma 2.1. Suppose that H is S-permutably embedded in a group G,
L ≤ G and N �G.

(1) If H ≤ L, then H is S-permutably embedded in L.
(2) The subgroup HN is S-permutably embedded in G and HN/N is

S-permutably embedded in G/N .
(3) If H is a p-subgroup of G contained in Op(G), then H is S-per-

mutable in G.

Proof. (1) and (2) are from [2, Lemma 1]; (3) is [10, Lemma 2.4].

Lemma 2.2. Suppose that H is E-S-supplemented in a group G.

(1) If H ≤ L ≤ G, then H is E-S-supplemented in L.
(2) If N �G and N ≤ H ≤ G, then H/N is E-S-supplemented in G/N .
(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then

HN/N is E-S-supplemented in G/N .
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(4) Suppose H is a p-group for some prime p and H 6= HeG. Then G
has a normal subgroup M such that |G : M | = p and G = HM .

(5) If H ≤ Op(G) for some prime p, then H is weakly S-permutable
in G.

Proof. By the hypothesis, there exists a subnormal subgroup K of G
such that G = HK and H ∩K ≤ HeG.

(1) We have

L = L ∩HK = H(L ∩K) and H ∩ (L ∩K) = H ∩K ≤ HeG.

Let U1, . . . , Us be all the subgroups of H which are S-permutably embed-
ded in G. By Lemma 2.1(1), they are S-permutably embedded in L and
so HeG ≤ HeL. Obviously, L ∩ K is subnormal in L. Hence H is E-S-
supplemented in L.

(2) We have

G/N = HK/N = H/N ·NK/N
and

(H/N) ∩ (KN/N) = (H ∩KN)/N = (H ∩K)N/N ≤ HeGN/N.

Let U1, . . . , Us be all the subgroups of H which are S-permutably embedded
in G. By Lemma 2.1(2), U1N/N, . . . , UsN/N are S-permutably embedded
in G/N and so HeGN/N ≤ (H/N)e(G/N). Obviously, KN/N is subnormal
in G/N . Hence H/N is E-S-supplemented in G/N .

(3) Since (|G : K|, |N |) = 1, we have N ≤ K. It is easy to see that

G/N = HN/N ·KN/N = HN/N ·K/N
and

(HN/N) ∩ (K/N) = (HN ∩K)/N = (H ∩K)N/N ≤ HeGN/N

≤ (HN/N)e(G/N).

Obviously, K/N is subnormal in G/N . Hence HN/N is E-S-supplemented
in G/N .

(4) If K = G, then H = H ∩K ≤ HeG ≤ H, and so H = HeG, contrary
to the hypotheses. Consequently, K is a proper subgroup of G. Hence, G
has a proper normal subgroup B such that K ≤ B. Since G/B is a p-group,
G has a normal maximal subgroup M such that |G : M | = p and G = MH.

(5) This follows from Lemma 2.1(3).

Lemma 2.3 ([21, Lemma 2.2]). Let G be a group and p a prime dividing
|G| with (|G|, p− 1) = 1.

(1) If N is normal in G of order p, then N lies in Z(G).
(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.
(3) If M ≤ G and |G : M | = p, then M �G.
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Lemma 2.4. Let P be a noncyclic Sylow p-subgroup of a group G, where
p is a prime divisor of |G| with (|G|, p− 1) = 1. If every maximal subgroup
of P has a p-nilpotent supplement in G, then G is p-nilpotent.

Proof. Let M1T1 = G where T1 is p-nilpotent and M1 is maximal in
P . We can assume that T1 = NG(H1) for some Hall p′-subgroup H1 of G.
Clearly, P = M1(P ∩ T1).

Suppose that P ∩ T1 6= P . Then we can choose a maximal subgroup M2

in P containing P ∩ T1. By assumption, G = M2T2 where T2 is p-nilpotent.
Again, we can assume that T2 = NG(H2) for some Hall p′-subgroup H2

of G. If p = 2, then H1 and H2 are conjugate in G by applying a deep
result of Gross. If p > 2, then G is a soluble group by the Feit–Thompson
Theorem and so H1 and H2 are also conjugate in G. Then we have Hx

1 = H2

for some x ∈ G. Therefore, G = M1T1 = M2T2 = M2T
x
1 = M2T1 and

P = M2(P ∩ T1) = M2, a contradiction.

Hence P ∩ T1 = P , which implies the p-nilpotency of G.

Lemma 2.5 ([15, Lemma 2.6]). Let V be an S-permutable subgroup of
order 4 of a group G.

(1) If V = A × B, where |A| = |B| = 2 and A is S-permutable in G,
then B is S-permutable in G.

(2) If V = 〈x〉 is cyclic, then 〈x2〉 is S-permutable in G.

Lemma 2.6. Let G be a group and P a Sylow p-subgroup of G, where p
is a prime dividing |G| with (|G|, p − 1) = 1. If every cyclic subgroup of P
of prime order or of order 4 (when P is a nonabelian 2-group) without a p-
nilpotent supplement in G is E-S-supplemented in G, then G is p-nilpotent.

Proof. In view of Lemma 2.3(2), this easily follows from the proof of [7,
Theorem 3.3].

Lemma 2.7. Let P be a Sylow p-subgroup of a group G, where p is a
prime divisor of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P
without a p-nilpotent supplement in G is E-S-supplemented in G, then G is
p-nilpotent.

Proof. In view of Lemma 2.3(2), this easily follows from the proof of [7,
Theorem 3.2].

Lemma 2.8 ([14, Lemma A]). If P is an S-quasinormal p-subgroup of a
group G for some prime p, then NG(P ) ≥ Op(G).

Lemma 2.9 ([16, Theorem C]). Let E be a normal subgroup of a group G.
If every G-chief factor of F ∗(E) is cyclic, then every G-chief factor of E is
cyclic.
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Lemma 2.10 ([3, IV, 3.11]). If F1 and F2 are two saturated formations
such that F1 ⊆ F2, then ZF1(G) ≤ ZF2(G).

3. Proof of Theorem 1.5. Suppose that the theorem is false and let
G be a counterexample of minimal order. We will derive a contradiction in
several steps.

(1) np > p.

This follows from Lemma 2.6.

(2) |P |/np > p.

This follows from Lemma 2.7.

(3) G has no subgroup of index p.

Suppose that G has a subgroup M such that |G : M | = p. Then M
satisfies the hypotheses of the theorem by Step (2) and Lemma 2.2(1). The
choice of G guarantees that M is p-nilpotent. By Lemma 2.3(3), M �G. It
follows that G is p-nilpotent, a contradiction.

(4) If H is a subgroup of P with |H| = np, then either H has a p-
nilpotent supplement in G, or H = HeG.

Let H < P with |H| = np. Assume that H has no p-nilpotent supplement
in G. If H 6= HeG, then we may assume G has a normal subgroup M such
that |G : M | = p and G = HM by Lemma 2.2(4), contrary to Step (3).

(5) Op′(G) = 1.

If Op′(G) 6= 1, Lemma 2.2(3) guarantees that G/Op′(G) satisfies the
hypotheses of the theorem. Thus G/Op′(G) is p-nilpotent by the choice of G.
Then G is p-nilpotent, a contradiction.

(6) If H is a subgroup of P with |H| = np, then either H has a p-
nilpotent supplement in G, or H is S-permutable in G.

Let H be a subgroup of P of order np without a p-nilpotent supplement
in G. By Step (4), H = HeG. Let U1, . . . , Us be all the nontrivial subgroups
of H which are S-permutably embedded in G. For every i ∈ {1, . . . , s}, there
is an S-permutable subgroup Ki of G such that Ui is a Sylow p-subgroup
of Ki. Obviously, Ki 6= G. Suppose that for some i ∈ {1, . . . , s}, we have
G = PKi. Then |G : Ki| is p-power. From the S-permutability of Ki, we get
Ki � �G. It follows that G has a normal subgroup of index p, contrary to
Step (3). Thus, for all i ∈ {1, . . . , s}, we have G > PKi. Then PKi satisfies
the hypotheses of the theorem by Lemma 2.2(1). From the choice of G, PKi

is p-nilpotent and so Ki is p-nilpotent. Let Kip′ be a normal p-complement
of Ki. By Step (5), Kip′ ≤ Op′(G) = 1, which shows that Ui = Ki, and so
H is S-permutable in G.
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(7) Suppose N is a minimal normal subgroup of G contained in P . Then
|N | ≤ np.

Suppose that |N | > np. Since N ≤ Op(G), N is elementary abelian.
If a subgroup H of N of order np has a p-nilpotent supplement T in G,
then G = HT = NT . Hence N ∩ T � G. By the minimality of N , either
N ∩T = 1 or N ∩T = N . If N ∩T = 1, then N = N ∩HT = H(N ∩T ) = H,
a contradiction. Thus N ∩ T = N and G = NT = T , also a contradiction.
Hence we may chose a subgroup H of N of order np such that H � P . In
view of Lemma 2.8, H � POp(G) = G, contrary to the minimality of N .

(8) Suppose that p = 2, |P |/np > 2 and some subgroup H of P of
order 4 has a 2-nilpotent supplement T in G. Then H is not cyclic,
G/TG ∼= A4, no subgroup of H of order 2 is S-permutable in G, and
TG is a 2-group.

In view of Step (3), |G : T | = 4. By considering the permutation rep-
resentation of G/TG on the right cosets of T/TG one can see that G/TG is
isomorphic to some subgroup of the symmetric group S4. But since G does
not have a subgroup M with |G : M | = 2 by Step (3), we have G/TG ∼= A4. It
follows that H ∼= HTG/TG is not cyclic. Since O2′(G) = 1 by Step (5), we de-
duce that O2′(TG) = 1. Hence TG is a 2-group. Suppose that some subgroup
V of H of order 2 is S-permutable in G and let Q be a Sylow 3-subgroup
of T . Then V ≤ NG(Q). On the other hand, since T is 2-nilpotent and
|T | = 2n3, we have T ≤ NG(Q). Hence |G : NG(Q)| = 2, a contradiction.

(9) If P is a nonabelian 2-group and |P |/np > 2, then np > 4.

Since P is a nonabelian 2-group, it has a cyclic subgroup H = 〈x〉 of
order 4. Suppose that np = 4. Then from Step (6) and |P |/np > 2 we
know that every subgroup of P of order 4 without a 2-nilpotent supplement
in G is S-permutable in G. Hence in view of Step (8), H is S-permutable
in G. Then by Lemma 2.5(2), 〈x2〉 is S-permutable in G. Now note that
if G has a subgroup V = A × B of order 4, where |A| = 2 and A is S-
permutable in G, then V and B are S-permutable in G by Step (8) and
Lemma 2.5(1). Therefore some subgroup Z of Z(P ) with |Z| = 2 is S-
permutable in G. Hence every subgroup of P of order 2 is S-permutable
in G, which contradicts Step (1).

(10) If N is an abelian minimal normal subgroup of G contained in P ,
then the hypotheses of Theorem 1.5 are still true for G/N .

If either p > 2 and |N | < np, or p = 2 and 2|N | < np, this is clear.
So let p > 2 and |N | = np, or p = 2 and |N | ∈ {np, np/2}. By Step (6)
every subgroup H of P of order np without a p-nilpotent supplement in G
is S-permutable in G. Moreover, in view of Step (1), np > p. Suppose that
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|N | = np. Then N is noncyclic and hence every subgroup of G containing
N is noncyclic. Let N ≤ K ≤ P , where |K : N | = p. Since K is noncyclic,
it has a maximal subgroup L 6= N . If L or N has a p-nilpotent supplement
in G, then K does. Otherwise, K = LN is S-permutable in G, as it is the
product of two subgroups S-permutable in G. Thus if either p > 2 or P/N
is abelian, the hypotheses of the theorem are true for G/N by Lemma 2.2.

Next suppose that P/N is a nonabelian 2-group. Then P is nonabelian,
so np > 4 by Step (9). Let N ≤ K ≤ V where |V : N | = 4 and |V : K| = 2.
Let K1 be a maximal subgroup of V such that V = K1K. Suppose that K1

is cyclic. Then N * K1, so V = K1N , which implies |N | = 4. But then
np = 4, which contradicts Step (9). Hence K1 is noncyclic and hence as
above one can show that K1 either is S-permutable in G or has a 2-nilpotent
supplement in G. Therefore every subgroup of P/N of order 2 or 4 without
a p-nilpotent supplement in G/N is S-permutable in G/N .

Finally, suppose that np = 2|N |. If |N | > 2, then as above one can show
that every subgroup of P/N of order 2 or 4 (if P/N is nonabelian) without
a 2-nilpotent supplement in G/N is S-permutable in G/N . Now, suppose
that |N | = 2 and P/N is nonabelian. Then P is nonabelian and np = 4,
which contradicts Step (9).

(11) Op(G) = 1.

If Op(G) 6= 1, then G/Op(G) is p-nilpotent by Step (10). This means
that G has a subgroup of index p, contrary to Step (3).

(12) If L is a minimal normal subgroup of G, then L is not p-nilpotent.

Assume that L is p-nilpotent. Let Lp′ be the normal p-complement of L.
Since Lp′ char L E G, we have Lp′ E G and so Lp′ ≤ Op′(G) = 1 by
Step (5). It follows that L is a p-group and so L ≤ Op(G) = 1 by Step (11),
a contradiction.

(13) If L is a minimal normal subgroup of G, then G = LP .

Obviously, LP satisfies the hypotheses of the theorem. If LP < G, then
the choice ofG implies that LP is p-nilpotent. It follows that L is p-nilpotent,
contrary to Step (12).

(14) G is a nonabelian simple group.

Take a minimal normal subgroup L of G. If L < G, then by Step (13),
G = LP . Then G has a subgroup of index p, contrary to Step (3). Thus
G = L is simple.

(15) The final contradiction.

If every subgroup H of P of order np has a p-nilpotent supplement in G,
then every maximal subgroup of P has a p-nilpotent supplement in G. It
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follows that G is p-nilpotent by Lemma 2.4, a contradiction. Thus, there is
a subgroup R of P of order np that is S-permutable in G by Step (6). The
subnormality of R implies that G is not simple, contrary to Step (14).

4. Proof of Theorem 1.4

Case I: X = E. Suppose that the theorem is false and consider a coun-
terexample (G,E) for which |G| |E| is minimal. Let P be a Sylow p-subgroup
of E, where p is the smallest prime dividing |E|.

(1) If K is a Hall subgroup of E, the hypotheses of Theorem 1.4 are still
true for (K,K). Moreover, if K is normal in G, then the hypotheses
also hold for (G,K) and for (G/K,E/K).

This follows directly from Lemma 2.2.

(2) If K is a nonidentity normal Hall subgroup of E, then K = E.

Since K is a characteristic subgroup of E, it is normal in G and by
Step (1) the hypotheses are still true for (G/K,E/K) and (G,K). If K 6= E,
the minimal choice of (G,E) implies that E/K≤ZU (G/K) and K≤ZU (G).
Hence E ≤ ZU (G), a contradiction.

(3) If E 6= P , then E is not p-nilpotent.

Indeed, if E is p-nilpotent, then by Step (2), p does not divide |E|,
contrary to the choice of p.

(4) P is not cyclic.

This follows from Step (3) and Lemma 2.3(2).

(5) E = P .

By Lemma 2.2(1), every subgroup H of P of order np, as well as every
order 4 cyclic subgroup of P (when np = 2 and P is a nonabelian 2-group),
is E-S-supplemented in E. By Theorem 1.5, E is p-nilpotent. By Step (3),
E = P .

(6) Every subgroup H of P of order np, as well as every order 4 cyclic
subgroup of P (when np = 2 and P is a nonabelian 2-group), is
weakly S-permutable in E.

This follows from Lemma 2.2(5).

(7) The final contradiction.

By the Theorem in [17], each G-chief factor below E is cyclic, a contra-
diction.

Case II: X = F ∗(E). The proof in the case X = E shows that F ∗(E) ≤
ZU (G), which implies that E ≤ ZU (G) by Lemma 2.9.
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5. Some applications. From Theorem 1.5, we obtain the following
statement.

Theorem 5.1. Let P be a Sylow p-subgroup of a group G, where p is
the smallest prime divisor of |G|. Suppose that there is an integer np such
that 1 < np < |P | and every subgroup H of P of order np, and every
cyclic subgroup of P of order 4 (if P is a nonabelian 2-group and np = 2),
without a p-nilpotent supplement in G is E-S-supplemented in G. Then G
is p-nilpotent.

Corollary 5.2 ([11, Theorem 3.2]). Let p be a prime dividing the order
of a group G with (|G|, p − 1) = 1. If there exists a Sylow p-subgroup P of
G such that every maximal subgroup of P is weakly s-permutable in G, then
G is p-nilpotent.

Corollary 5.3 ([2, Theorem 1]). Let P be a Sylow p-subgroup of a
group G, where p is the smallest prime divisor of |G|. If every maximal
subgroup of P is S-permutably embedded in G, then G is p-nilpotent.

From [19], we know that a subgroup H of a group G is c-normal in G if
G has a normal subgroup T such that G = HT and H ∩ T ≤ HG.

Corollary 5.4 ([5, Theorem 3.4]). Let P be a Sylow p-subgroup of a
group G, where p is the smallest prime divisor of |G|. If every maximal
subgroup of P is c-normal in G, then G is p-nilpotent.

Corollary 5.5 ([8, Theorem 3.1]). Let P be a Sylow p-subgroup of a
group G, where p is the smallest prime divisor of |G|. If every maximal
subgroup of P is weakly S-permutably embedded in G, then G is p-nilpotent.

Theorem 5.6. Let F be a saturated formation containing all supersol-
uble groups and let X ≤ E be a normal subgroup of a group G such that
G/E ∈ F . Suppose that for every noncyclic Sylow subgroup P of X, there
is an integer np such that 1 < np < |P | and every subgroup H of P of
order np, as well as every order 4 cyclic subgroup of P (when np = 2 and
P is a nonabelian 2-group), is E-S-supplemented in G. If X is either E or
F ∗(E), then G ∈ F .

Proof. Since E ≤ ZU (G) by Theorem 1.4 and ZU (G) ≤ ZF (G) by
Lemma 2.10, we have E ≤ ZF (G) and so G/ZF (G) ∼= (G/E)/(ZF (G)/E)
∈ F . It follows that G ∈ F .

Corollary 5.7 ([12, Theorem 3.3]). Let F be a saturated formation
containing U . If there is a normal subgroup H of a group G such that
G/H ∈ F and every maximal subgroup of any Sylow subgroup of H is
c-normal in G, then G ∈ F .
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Corollary 5.8 ([12, Theorem 3.9]). Let F be a saturated formation
containing U . Then G ∈ F if and only if there is a normal subgroup H of
G such that G/H ∈ F and all subgroups of H of prime order or of order 4
are c-normal in G.

Corollary 5.9 ([22, Theorem 3.1]). Let F be a saturated formation
containing U . Suppose that G is a group with a normal subgroup H such
that G/H ∈ F . If all maximal subgroups of any Sylow subgroup of F ∗(H)
are c-normal in G, then G ∈ F .

Corollary 5.10 ([20, Theorem 1]). Let F be a saturated formation
containing U . Suppose that G is a group with a solvable normal subgroup
H such that G/H ∈ F . If all maximal subgroups of all Sylow subgroups of
F (H) are c-normal in G, then G ∈ F .

Corollary 5.11 ([9, Theorem 1.1]). Let F be a saturated formation
containing U and let G be a group. If there is a normal subgroup H such
that G/H ∈ F and all maximal subgroups of any Sylow subgroup of F ∗(H)
are S-permutably embedded in G, then G ∈ F .

Corollary 5.12 ([9, Theorem 1.2]). Let F be a saturated formation
containing U and let G be a group. If there is a normal subgroup H such
that G/H ∈ F and all subgroups of F ∗(H) of prime order or of order 4 are
S-permutably embedded in G, then G ∈ F .

Corollary 5.13 ([1, Theorem 3.3]). Let F be a saturated formation
containing U and let G be a group. If there is a normal subgroup H such
that G/H ∈ F and all maximal subgroups of all Sylow subgroups of H are
S-quasinormally embedded in G, then G ∈ F .
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