# SYMMETRY CLASSES OF TENSORS ASSOCIATED WITH THE SEMI-DIHEDRAL GROUPS $S D_{8 n}$ 

## MAHDI HORMOZI (Gothenburg) and KIJTI RODTES (Phitsanulok)


#### Abstract

We discuss the existence of an orthogonal basis consisting of decomposable vectors for all symmetry classes of tensors associated with semi-dihedral groups $S D_{8 n}$. In particular, a necessary and sufficient condition for the existence of such a basis associated with $S D_{8 n}$ and degree two characters is given.


1. Introduction. Let $V$ be an $n$-dimensional complex inner product space and $G$ be a permutation group on $m$ elements. Let $\chi$ be any irreducible character of $G$. For any $\sigma \in G$, define the operator

by

$$
\begin{equation*}
P_{\sigma}\left(v_{1} \otimes \cdots \otimes v_{m}\right)=\left(v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(m)}\right) \tag{1.1}
\end{equation*}
$$

The symmetry class of tensors associated with $G$ and $\chi$ is the image of the symmetry operator

$$
\begin{equation*}
T(G, \chi)=\frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) P_{\sigma} \tag{1.2}
\end{equation*}
$$

and it is denoted by $V_{\chi}^{m}(G)$. We say that the tensor $T(G, \chi)\left(v_{1} \otimes \cdots \otimes v_{m}\right)$ is a decomposable symmetrized tensor, and we denote it by $v_{1} * \cdots * v_{m}$.

The inner product on $V$ induces an inner product on $V_{\chi}(G)$ which satisfies

$$
\left\langle v_{1} * \cdots * v_{m}, u_{1} * \cdots * u_{m}\right\rangle=\frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) \prod_{i=1}^{m}\left\langle v_{i}, u_{\sigma(i)}\right\rangle
$$

Let $\Gamma_{n}^{m}$ be the set of all sequences $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, with $1 \leq \alpha_{i} \leq n$. Define the action of $G$ on $\Gamma_{n}^{m}$ by

$$
\sigma . \alpha=\left(\alpha_{\sigma^{-1}(1)}, \ldots, \alpha_{\sigma^{-1}(m)}\right)
$$

[^0]Let $O(\alpha)=\{\sigma . \alpha \mid \sigma \in G\}$ be the orbit of $\alpha$. We write $\alpha \sim \beta$ if $\alpha$ and $\beta$ belong to the same orbit in $\Gamma_{n}^{m}$. Let $\Delta$ be a system of distinct representatives of the orbits. We denote by $G_{\alpha}$ the stabilizer subgroup of $\alpha$, i.e., $G_{\alpha}=$ $\{\sigma \in G \mid \sigma . \alpha=\alpha\}$. Define

$$
\Omega=\left\{\alpha \in \Gamma_{n}^{m} \mid \sum_{\sigma \in G_{\alpha}} \chi(\sigma) \neq 0\right\},
$$

and put $\bar{\Delta}=\Delta \cap \Omega$.
Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of $V$, and denote by $e_{\alpha}^{*}$ the tensor $e_{\alpha_{1}} * \cdots * e_{\alpha_{m}}$. We have

$$
\left\langle e_{\alpha}^{*}, e_{\beta}^{*}\right\rangle= \begin{cases}0 & \text { if } \alpha \nsim \beta \\ \frac{\chi(1)}{|G|} \sum_{\sigma \in G_{\beta}} \chi\left(\sigma h^{-1}\right) & \text { if } \alpha=h . \beta .\end{cases}
$$

In particular, for $\sigma_{1}, \sigma_{2} \in G$ and $\gamma \in \bar{\Delta}$ we obtain

$$
\begin{equation*}
\left\langle e_{\sigma_{1}, \gamma}^{*}, e_{\sigma_{2}, \gamma}^{*}\right\rangle=\frac{\chi(1)}{|G|} \sum_{x \in \sigma_{2} G_{\gamma} \sigma_{1}^{-1}} \chi(x) . \tag{1.3}
\end{equation*}
$$

Moreover, $e_{\alpha}^{*} \neq 0$ if and only if $\alpha \in \Omega$.
For $\alpha \in \bar{\Delta}, V_{\alpha}^{*}=\left\langle e_{\sigma . \alpha}^{*}: \sigma \in G\right\rangle$ is called the orbital subspace of $V_{\chi}(G)$. It follows that

$$
V_{\chi}(G)=\bigoplus_{\alpha \in \bar{\Delta}} V_{\alpha}^{*}
$$

is an orthogonal direct sum. In [9] it is proved that

$$
\begin{equation*}
\operatorname{dim} V_{\alpha}^{*}=\frac{\chi(1)}{\left|G_{\alpha}\right|} \sum_{\sigma \in G_{\alpha}} \chi(\sigma) . \tag{1.4}
\end{equation*}
$$

Thus we deduce that if $\chi$ is a linear character, then $\operatorname{dim} V_{\alpha}^{*}=1$ and in this case the set

$$
\left\{e_{\alpha}^{*} \mid \alpha \in \bar{\Delta}\right\}
$$

is an orthogonal basis of $V_{\chi}(G)$.
A basis which consists of decomposable symmetrized tensors $e_{\alpha}^{*}$ is called an orthogonal $*$-basis. If $\chi$ is not linear, it is possible that $V_{\chi}(G)$ has no orthogonal $*$-basis. The reader can find further information about the symmetry classes of tensors in [1-8], [10-11, [13-15] and [17].

In this paper we discuss the existence of an orthogonal basis consisting of decomposable vectors for all symmetry classes of tensors associated with semi-dihedral groups $S D_{8 n}$.
2. Semi-dihedral groups $S D_{8 n}$. The presentation for $S D_{8 n}$ for $n \geq 2$ is given by

$$
S D_{8 n}=\left\langle a, b \mid a^{4 n}=b^{2}=1, b a b=a^{2 n-1}\right\rangle,
$$

where the embedding of $S D_{8 n}$ into the symmetric group $S_{4 n}$ is given by $T(a)(t):=\overline{t+1}$ and $T(b)(t):=\overline{(2 n-1) t}$, where $\bar{m}$ is the remainder of $m$ divided by $4 n$.

Definition 2.1. Define

$$
\begin{aligned}
C_{1} & :=\{0,2,4, \ldots, 2 n\}, \\
C_{2} & :=\{1,3,5, \ldots, n\} \cup\{2 n+1,2 n+3,2 n+5, \ldots, 3 n\}, \\
C_{\text {even }}^{\dagger} & :=\{2,4, \ldots, 2 n-2\}, \\
C_{\text {odd }}^{\dagger} & =\{1,3,5, \ldots, 2[n / 2]-1,2 n+1,2 n+3, \ldots, 2[3 n / 2]-1\} .
\end{aligned}
$$

We define two-dimensional representations, for each natural number $h$ and $\omega=e^{\frac{i \pi}{2 n}}$ :

$$
\rho^{h}\left(a^{r}\right)=\left(\begin{array}{cc}
\omega^{h r} & 0  \tag{2.1}\\
0 & \omega^{(2 n-1) h r}
\end{array}\right) \quad \text { and } \quad \rho^{h}\left(b a^{r}\right)=\left(\begin{array}{cc}
0 & \omega^{(2 n-1) h r} \\
\omega^{h r} & 0
\end{array}\right),
$$

for each $r \in\{1,2, \ldots, 4 n\}$.
Denote $\chi_{h}=\operatorname{Tr}\left(\rho^{h}\right)$. The non-linear irreducible complex characters of $S D_{8 n}$ are the characters $\chi_{h}$ where $h \in C_{\text {even }}^{\dagger}$ or $h \in C_{\text {odd }}^{\dagger}$. Since the numbers of conjugacy classes of $S D_{8 n}$ are different for $n$ even ( $2 n+3$ classes) and $n$ odd ( $2 n+6$ classes), we consider the corresponding two non-linear character tables separately.

Table I. The non-linear character table for $S D_{8 n}, n$ even

| Conjugacy classes $\rightarrow$ <br> Characters $\downarrow$ | $\left[a^{r}\right], r \in C_{1}$ | $\left[a^{r}\right], r \in C_{\text {odd }}^{\dagger}$ | $[b]$ | $[b a]$ |
| :---: | :---: | :---: | :---: | :---: |
| $\chi_{h}, h \in C_{\text {even }}^{\dagger}$ | $2 \cos \left(\frac{h r \pi}{2 n}\right)$ | $2 \cos \left(\frac{h r \pi}{2 n}\right)$ | 0 | 0 |
| $\chi_{h}, h \in C_{\text {odd }}^{\dagger}$ | $2 \cos \left(\frac{h r \pi}{2 n}\right)$ | $2 i \sin \left(\frac{h r \pi}{2 n}\right)$ | 0 | 0 |

Table II. The non-linear character table for $S D_{8 n}, n$ odd

| Conjugacy classes $\rightarrow$ <br> Characters $\downarrow$ | $\left[a^{r}\right], r \in C_{1}$ | $\left[a^{r}\right], r \in C_{2}$ | $[b]$ | $[b a]$ | $\left[b a^{2}\right]$ | $\left[b a^{3}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\chi_{h}, h \in C_{\text {even }}^{\dagger}$ | $2 \cos \left(\frac{h r \pi}{2 n}\right)$ | $2 \cos \left(\frac{h r \pi}{2 n}\right)$ | 0 | 0 | 0 | 0 |
| $\chi_{h}, h \in C_{\text {odd }}^{\dagger}$ | $2 \cos \left(\frac{h r \pi}{2 n}\right)$ | $2 i \sin \left(\frac{h r \pi}{2 n}\right)$ | 0 | 0 | 0 | 0 |

3. Existence of an orthogonal basis for the symmetry classes of tensors associated with $S D_{8 n}$. In this section we study the existence of an orthogonal basis for the symmetry classes of tensors associated with $S D_{8 n}$. As explained in the introduction, if $\chi$ is a linear character of $G$ then
the symmetry class of tensors associated with $G$ and $\chi$ has an orthogonal basis. Therefore we will concentrate on non-linear irreducible complex characters of $S D_{8 n}$, i.e. the characters $\chi_{h}$ where $h \in C_{\text {even }}^{\dagger}$ or $h \in C_{\text {odd }}^{\dagger}$.

Remark 3.1. Let $\nu_{2}$ be the 2 -adic valuation, that is, $\nu_{2}\left(\frac{2^{k} m}{n}\right)=k$ for $m$ and $n$ odd. Then the condition $\nu_{2}\left(\frac{h}{2 n}\right)<0$ means that every power of 2 that divides $h$ also divides $n$.

Lemma 3.2. Let $G:=S D_{8 n}$ and $H$ be a subgroup of $G$. Then there is a natural number $r, 0 \leq r<4 n$, such that either $H=\left\langle a^{r}\right\rangle$, or $\left\langle a^{r}\right\rangle \varsubsetneqq H$ and $H \cap\langle a\rangle=\left\langle a^{r}\right\rangle$. In the latter case we have $|H| \geq 2\left|\left\langle a^{r}\right\rangle\right|$.

Proof. This is straightforward.
Lemma 3.3. Suppose $\chi=\chi_{h}$. If $r$ is defined by $G_{\alpha} \cap\langle a\rangle=\left\langle a^{r}\right\rangle$ and $l=4 n / \operatorname{gcd}(4 n, r)$, then

$$
\sum_{g \in G_{\alpha}} \chi(g)= \begin{cases}2 l & \text { if } r h \equiv 0(\bmod 4 n), \\ 0 & \text { if } r h \not \equiv 0(\bmod 4 n),\end{cases}
$$

and for $\alpha \in \bar{\Delta}$, we have $r h \equiv 0(\bmod 4 n)$.
Proof. Since $G_{\alpha}$ is a subgroup of $G$, using Lemma 3.2 there is a natural number $r, 0 \leq r<4 n$, such that either $G_{\alpha}=\left\langle a^{r}\right\rangle$ or $\left\langle a^{r}\right\rangle<G_{\alpha}$. Using Table I, we find that $\chi$ vanishes outside $\langle a\rangle$, therefore

$$
\sum_{g \in G_{\alpha}} \chi(g)=\sum_{t=1}^{l} \chi\left(a^{t r}\right)=2 \sum_{t=1}^{l} \cos \left(\frac{t r h \pi}{2 n}\right)= \begin{cases}2 l, & r h \equiv 0(\bmod 4 n), \\ 0, & r h \not \equiv 0(\bmod 4 n) .\end{cases}
$$

Also if $r h \not \equiv 0(\bmod 4 n)$, then $\sum_{g \in G_{\alpha}} \chi(g)=0$, which shows $\alpha \notin \bar{\Delta}$.
Lemma 3.4. Let $1 \leq h<2 n$ and let $\nu_{2}$ be the 2 -adic valuation. Then there exist $t_{1}, t_{2}, 0 \leq t_{1}, t_{2}<4 n$, such that $\cos \left(\frac{\left(t_{1}-t_{2}\right) h \pi}{2 n}\right)=0$ if and only if $\nu_{2}\left(\frac{h}{2 n}\right)<0$.

Theorem 3.5. Let $G=S D_{8 n}$ be a subgroup of $S_{4 n}$, denote $\chi=\chi_{h}$ for $h \in C_{\text {even }}^{\dagger}$, and assume $d=\operatorname{dim} V \geq 2$. Then $V_{\chi}(G)$ has an orthogonal *-basis if and only $\nu_{2}\left(\frac{h}{2 n}\right)<0$.

Proof. It is enough to prove that for any $\alpha \in \bar{\Delta}$ the orbital subspace $V_{\alpha}^{*}$ has an orthogonal $*$-basis if $\nu_{2}\left(\frac{h}{2 n}\right)<0$. Let $\nu_{2}\left(\frac{h}{2 n}\right)<0$ and assume $\alpha \in \bar{\Delta}$. By Lemma 3.2, either $G_{\alpha}=\left\langle a^{r}\right\rangle$ or $\left\langle a^{r}\right\rangle\left\langle G_{\alpha}\right.$. Let $l=4 n / \operatorname{gcd}(4 n, r)$. Now we consider two cases.

Case 1. If $\left\langle a^{r}\right\rangle<G_{\alpha}$, then by Lemma 3.2 we obtain $\left|G_{\alpha}\right| \geq 2 l$ where

$$
\left\langle a^{r}\right\rangle=\langle a\rangle \cap G_{\alpha}=\left\{a^{r}, a^{2 r}, \ldots, a^{l r}=1\right\} .
$$

By (1.4), $\left|G_{\alpha}\right| \geq 2 l$ and Lemma 3.3, we have

$$
\operatorname{dim} V_{\alpha}^{*}=\frac{\chi(1)}{\left|G_{\alpha}\right|} \sum_{\sigma \in G_{\alpha}} \chi(\sigma) \leq \frac{2}{2 l}(2 l)=2 .
$$

If $\operatorname{dim} V_{\alpha}^{*}=1$, then it is obvious that we have an orthogonal $*$-basis. Let us consider $\operatorname{dim} V_{\alpha}^{*}=2$. Set $\sigma_{1}=a^{j}, \sigma_{2}=a^{i}$. Then

$$
\sigma_{2} G_{\alpha} \sigma_{1}^{-1} \cap\langle a\rangle=\left\{a^{r+i-j}, \ldots, a^{l r+i-j}\right\} .
$$

Hence if $\sigma_{1}=a^{j}, \sigma_{2}=a^{i}$, by 1.3), we have

$$
\begin{align*}
\left\langle e_{\sigma_{1} \cdot \alpha}^{*}, e_{\sigma_{2} \cdot \alpha}^{*}\right\rangle & =\frac{\chi(1)}{|G|} \sum_{x \in \sigma_{2} G_{\alpha} \sigma_{1}^{-1}} \chi(x)=\frac{2}{8 n} \sum_{t=1}^{l} \chi\left(a^{t r+i-j}\right)  \tag{3.1}\\
& =\frac{4}{8 n} \sum_{t=1}^{l} \cos \frac{(t r+i-j) h \pi}{2 n} \\
& =\frac{1}{2 n} \sum_{t=1}^{l} \cos \left(\frac{t r h \pi}{2 n}+\frac{(i-j) h \pi}{2 n}\right) \\
& =\frac{1}{2 n} \sum_{t=1}^{l} \cos \left(\frac{(i-j) h \pi}{2 n}\right)=\frac{l}{2 n} \cos \left(\frac{(i-j) h \pi}{2 n}\right)
\end{align*}
$$

where the penultimate equality is due to an application of Lemma 3.3. By Lemma 3.4 , there exist $i$ and $j$ such that

$$
\left\langle e_{a^{j} . \alpha}^{*}, e_{a^{i} . \alpha}^{*}\right\rangle=0,
$$

which means that $\left\{e_{\sigma_{1}, \alpha}^{*}, e_{\sigma_{2}, \alpha}^{*}\right\}$ is an orthogonal $*$-basis for $V_{\alpha}^{*}$.
CASE 2. If $G_{\alpha}=\left\langle a^{r}\right\rangle=\left\{a^{r}, a^{2 r}, \ldots, a^{l r}=1\right\}$, then by 1.4) and Lemma 3.3 .

$$
\operatorname{dim} V_{\alpha}^{*}=\frac{\chi(1)}{\left|G_{\alpha}\right|} \sum_{\sigma \in G_{\alpha}} \chi(\sigma)=\frac{2}{l}(2 l)=4 .
$$

For any $\sigma_{1}, \sigma_{2} \in G$, we have

$$
\begin{aligned}
& \sigma_{2} G_{\alpha} \sigma_{1}-1 \\
& \begin{cases}\left\{a^{r+i-j}, a^{2 r+i-j}, \ldots, a^{l r+i-j}\right\} & \text { if } \sigma_{1}=a^{j}, \sigma_{2}=a^{i}, \\
\left\{a^{r+i+j(1-2 n)} b, a^{2 r+i+j(1-2 n)} b, \ldots, a^{l r+i+j(1-2 n)} b\right\} & \text { if } \sigma_{1}=a^{j} b, \sigma_{2}=a^{i}, \\
\left\{a^{(1-2 n) r+i-j}, a^{2 r(1-2 n)+i-j}, \ldots, a^{l r(1-2 n)+i-j}\right\} & \text { if } \sigma_{1}=a^{j} b, \sigma_{2}=a^{i} b .\end{cases}
\end{aligned}
$$

If $\sigma_{1}=a^{j}, \sigma_{2}=a^{i}$, by (3.1) we have

$$
\left\langle e_{\sigma_{1}, \alpha}^{*}, e_{\sigma_{2}, \alpha}^{*}\right\rangle=\frac{l}{2 n} \cos \left(\frac{(i-j) h \pi}{2 n}\right) .
$$

If $\sigma_{1}=a^{j} b, \sigma_{2}=a^{i}$, we have

$$
\left\langle e_{\sigma_{1}, \alpha}^{*}, e_{\sigma_{2} . \alpha}^{*}\right\rangle=0,
$$

and for $\sigma_{1}=a^{j} b, \sigma_{2}=a^{i} b$, we have

$$
\begin{aligned}
\left\langle e_{\sigma_{1}, \alpha}^{*}, e_{\sigma_{2} . \alpha}^{*}\right\rangle & =\frac{\chi(1)}{|G|} \sum_{x \in \sigma_{2} G_{\gamma} \sigma_{1}^{-1}} \chi(x)=\frac{2}{8 n} \sum_{t=1}^{l} \chi\left(a^{\operatorname{tr}(1-2 n)+i-j}\right) \\
& =\frac{4}{8 n} \sum_{t=1}^{l} \cos \left(\frac{(\operatorname{tr}(1-2 n)+i-j) h \pi}{2 n}\right) \\
& =\frac{1}{2 n} \sum_{t=1}^{l} \cos \left(\frac{\operatorname{trh} \pi}{2 n}+\frac{(i-j) h \pi}{2 n}-t r h \pi\right) \\
& =\frac{1}{2 n} \sum_{t=1}^{l} \cos \left(\frac{(i-j) h \pi}{2 n}\right)=\frac{l}{2 n} \cos \left(\frac{(i-j) h \pi}{2 n}\right)
\end{aligned}
$$

where the penultimate equality uses Lemma 3.3 . Therefore

$$
\left\langle e_{\sigma_{1} \cdot \alpha}^{*}, e_{\sigma_{2} \cdot \alpha}^{*}\right\rangle= \begin{cases}\frac{l}{2 n} \cos \left(\frac{(i-j) h \pi}{2 n}\right), & \sigma_{1}=a^{j}, \sigma_{2}=a^{i} \\ 0 & \sigma_{1}=a^{j} b, \sigma_{2}=a^{i} \\ \frac{l}{2 n} \cos \left(\frac{(i-j) h \pi}{2 n}\right), & \sigma_{1}=a^{j} b, \sigma_{2}=a^{i} b\end{cases}
$$

In view of Lemma 3.4, if $\nu_{2}\left(\frac{h}{2 n}\right)<0$, there exist $t_{1}, t_{2}, 0 \leq t_{1}, t_{2}<4 n$ such that $\cos \left(\frac{\left(t_{1}-t_{2}\right) h \pi}{2 n}\right)=0$. Put

$$
S=\left\{a^{t_{1}} \cdot \alpha, a^{t_{2}} \cdot \alpha, a^{t_{1}} b \cdot \alpha, a^{t_{2}} b \cdot \alpha\right\} \subseteq \Gamma_{n}^{m} .
$$

Then for every $\alpha, \beta \in S$ and $\alpha \neq \beta$ we have

$$
\left\langle e_{\alpha}^{*}, e_{\beta}^{*}\right\rangle=0
$$

But $\operatorname{dim} V_{\alpha}^{*}=4$; hence $\left\{e_{\xi}^{*} \mid \xi \in S\right\}$ is an orthogonal $*$-basis for $V_{\alpha}^{*}$.
Conversely, assume that $V_{\chi}(G)$ has an orthogonal basis of decomposable symmetrized tensors. Then since $V_{\chi}(G)=\bigoplus_{\alpha \in \bar{\Delta}} V_{\alpha}^{*}$ for all $\alpha \in \bar{\Delta}$, the orbital subspace $V_{\alpha}^{*}$ has an orthogonal basis of decomposable symmetrized tensors. Using [17, p. 642], we can choose $\alpha \in \Gamma_{n}^{m}$ such that $a^{t} \notin G_{\alpha}$ for $1 \leq$ $t<4 n$. Thus for such $\alpha$ we have either $G_{\alpha}=\{1\}$ or $G_{\alpha}=\left\{1, a^{t} b, a^{-(2 n-1) t} b\right\}$ for some $1 \leq t<4 n$, since if $G_{\alpha} \neq\{1\}$ and $a^{t_{1}} b, a^{t_{2}} b \in G_{\alpha}$, then

$$
a^{t_{1}} b \cdot a^{t_{2}} b=a^{t_{1}} b \cdot b a^{(2 n-1) t_{2}}=a^{t_{1}+(2 n-1) t_{2}} \in G_{\alpha},
$$

which shows that $t_{1}=-(2 n-1) t_{2}$.
To prove that $\nu_{2}\left(\frac{h}{2 n}\right)<0$ is a necessary condition for existence of an orthogonal $*$-basis for $V_{\chi}(G)$, it is enough to consider the cases $G_{\alpha}=\{1\}$
and $G_{\alpha}=\left\{1, a^{t} b, a^{-(2 n-1) t} b\right\}$. For both, we have

$$
\left\|e_{\alpha}^{*}\right\|^{2}=\frac{\chi(1)}{|G|} \sum_{g \in G_{\alpha}} \chi(g) \neq 0
$$

so $\alpha \in \bar{\Delta}$. First consider $G_{\alpha}=\{1\}$. For any $\sigma_{1}, \sigma_{2} \in G$, we have

$$
\sigma_{2} G_{\alpha} \sigma_{1}^{-1}= \begin{cases}\left\{a^{i-j}\right\} & \text { if } \sigma_{1}=a^{j}, \sigma_{2}=a^{i} \\ \left\{a^{i+j(1-2 n)} b\right\} & \text { if } \sigma_{1}=a^{j} b, \sigma_{2}=a^{i} \\ \left\{a^{(1-2 n) i-j}\right\} & \text { if } \sigma_{1}=a^{j} b, \sigma_{2}=a^{i} b\end{cases}
$$

Therefore by (1.3) we have

$$
\left\langle e_{\sigma_{1}, \alpha}^{*}, e_{\sigma_{2}, \alpha}^{*}\right\rangle= \begin{cases}\frac{1}{2 n} \cos \left(\frac{(i-j) h \pi}{2 n}\right) & \text { if } \sigma_{1}=a^{j}, \sigma_{2}=a^{i} \\ 0 & \text { if } \sigma_{1}=a^{j} b, \sigma_{2}=a^{i}, \\ \frac{1}{2 n} \cos \left(\frac{(i-j) h \pi}{2 n}\right) & \text { if } \sigma_{1}=a^{j} b, \sigma_{2}=a^{i} b .\end{cases}
$$

Hence $\left\langle e_{\sigma_{1}, \alpha}^{*}, e_{\sigma_{2}, \alpha}^{*}\right\rangle=0$ implies that there exist $t_{1}$ and $t_{2}$ such that

$$
\cos \left(\frac{\left(t_{1}-t_{2}\right) h \pi}{2 n}\right)=0
$$

therefore by Lemma 3.4 we get $\nu_{2}\left(\frac{h}{2 n}\right)<0$.
Now consider $G_{\alpha}=\left\{1, a^{t} b, a^{-(2 n-1) t} b\right\}$. For any $\sigma_{1}, \sigma_{2} \in G$, we have

$$
\begin{aligned}
& \sigma_{2} G_{\alpha} \sigma_{1}^{-1} \\
& \quad= \begin{cases}\left\{a^{i-j}, b a^{(2 n-1)(j+t)-i}, b a^{(2 n-1)(j-(2 n-1) t)-i}\right\} & \text { if } \sigma_{1}=a^{j}, \sigma_{2}=a^{i}, \\
\left\{a^{i+j(1-2 n)} b, a^{j+(2 n-1) t+i}, a^{j-t+i}\right\} & \text { if } \sigma_{1}=a^{j} b, \sigma_{2}=a^{i}, \\
\left\{a^{(1-2 n) i-j}, a^{j+(2 n-1) t+i} b, a^{j-t+i} b\right\} & \text { if } \sigma_{1}=a^{j} b, \sigma_{2}=a^{i} b .\end{cases}
\end{aligned}
$$

Now similar to our previous calculations in this section, we get $\nu_{2}\left(\frac{h}{2 n}\right)<0$.
Remark 3.6. In the proof of the necessity part of Theorem 3.5, one can choose $\alpha=(1,2, \ldots, 2)$. The proof given here shows the stronger statement that the orbital subspace $V_{\alpha}^{*}$ has an orthogonal *-basis whenever $G_{\alpha} \cup\langle a\rangle$ $=\{1\}$.

Corollary 3.7. Let $G=S D_{8 n}$, $n$ odd, be a subgroup of $S_{4 n}$, denote $\chi=\chi_{h}$ for $h \in C_{\text {even }}^{\dagger}$, and assume $d=\operatorname{dim} V \geq 2$. Then $V_{\chi}(G)$ does not have an orthogonal $*$-basis.

Proof. Since $n$ is odd we have $\nu_{2}\left(\frac{h}{2 n}\right) \geq 0$. Thus Theorem 3.5 implies $V_{\chi}(G)$ does not have an orthogonal $*$-basis.

Theorem 3.8. Let $G=S D_{8 n}$ be a subgroup of $S_{4 n}$, denote $\chi=\chi_{h}$ for $h \in C_{\mathrm{odd}}^{\dagger}$, and assume $d=\operatorname{dim} V \geq 2$. Then $V_{\chi}(G)$ does not have an orthogonal *-basis.

Proof. The proof is similar to the proof of Theorem 3.5. Using Table I and Table II we conclude that $\left\langle e_{\sigma_{1}, \alpha}^{*}, e_{\sigma_{2}, \alpha}^{*}\right\rangle \neq 0$ since the imaginary and real parts should both be zero; but $i \sin x$ and $\cos x$ cannot vanish simultaneously.

Acknowledgements. The authors are grateful to Professor Hjalmar Rosengren for valuable comments and for reviewing earlier drafts very carefully.

## REFERENCES

[1] C. Bessenrodt, M. R. Pournaki and A. Reifegerste, A note on the orthogonal basis of a certain full symmetry class of tensors, Linear Algebra Appl. 370 (2003), 369-374.
[2] H. F. da Cruz and J. A. Dias da Silva, Equality of immanantal decomposable tensors, Linear Algebra Appl. 401 (2005), 29-46.
[3] H. F. da Cruz and J. A. Dias da Silva, Equality of immanantal decomposable tensors, II, Linear Algebra Appl. 395 (2005), 95-119.
[4] M. R. Darafsheh and M. R. Pournaki, On the orthogonal basis of the symmetry classes of tensors associated with the dicyclic group, Linear Multilinear Algebra 47 (2000), 137-149.
[5] M. R. Darafsheh and N. S. Poursalavati, On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups, SUT J. Math. 37 (2001), 1-17.
[6] J. A. Dias da Silva, Colorings and equality of tensors, Linear Algebra Appl. 342 (2002), 79-91.
[7] J. A. Dias da Silva and M. M. Torres, On the orthogonal dimension of orbital sets, Linear Algebra Appl. 401 (2005), 77-107.
[8] A. Fonseca, On the equality of families of decomposable symmetrized tensors, Linear Algebra Appl. 293 (1999), 1-14.
[9] R. Freese, Inequalities for generalized matrix functions based on arbitrary characters, Linear Algebra Appl. 7 (1973), 337-345.
[10] R. R. Holmes, Orthogonal bases of symmetrized tensor spaces, Linear Multilinear Algebra 39 (1995), 241-243.
[11] R. R. Holmes and T. Y. Tam, Symmetry classes of tensors associated with certain groups, Linear Multilinear Algebra 32 (1992), 21-31.
[12] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge Univ. Press, Cambridge, 1993.
[13] M. Marcus, Finite Dimensional Multilinear Algebra Part I, Dekker, New York, 1973.
[14] R. Merris, Recent advances in symmetry classes of tensors, Linear Multilinear Algebra 7 (1979), 317-328.
[15] M. R. Pournaki, On the orthogonal basis of the symmetry classes of tensors associated with certain characters, Linear Algebra Appl. 336 (2001), 255-260.
[16] J.-P. Serre, Linear Representations of Finite Groups, Grad. Texts in Math. 42, Springer, 1977.
[17] M. A. Shahabi, K. Azizi and M. H. Jafari, On the orthogonal basis of symmetry classes of tensors, J. Algebra 237 (2001), 637-646.

Mahdi Hormozi
Department of Mathematical Sciences
Division of Mathematics
Chalmers University of Technology
and University of Gothenburg
Gothenburg 41296, Sweden
E-mail: hormozi@chalmers.se

Kijti Rodtes
Department of Mathematics
Faculty of Science
Naresuan University
Phitsanulok 65000, Thailand
E-mail: kijtir@nu.ac.th

Received 19 December 2012;
revised 17 February 2013


[^0]:    2010 Mathematics Subject Classification: Primary 20C30; Secondary 15A69.
    Key words and phrases: symmetry classes of tensors, orthogonal basis, semi-dihedral groups.

