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SYMMETRY CLASSES OF TENSORS ASSOCIATED WITH THE
SEMI-DIHEDRAL GROUPS SD8n

BY

MAHDI HORMOZI (Gothenburg) and KIJTI RODTES (Phitsanulok)

Abstract. We discuss the existence of an orthogonal basis consisting of decomposable
vectors for all symmetry classes of tensors associated with semi-dihedral groups SD8n. In
particular, a necessary and sufficient condition for the existence of such a basis associated
with SD8n and degree two characters is given.

1. Introduction. Let V be an n-dimensional complex inner product
space and G be a permutation group on m elements. Let χ be any irreducible
character of G. For any σ ∈ G, define the operator

Pσ :
m⊗
1

V →
m⊗
1

V

by

(1.1) Pσ(v1 ⊗ · · · ⊗ vm) = (vσ−1(1) ⊗ · · · ⊗ vσ−1(m)).

The symmetry class of tensors associated with G and χ is the image of
the symmetry operator

(1.2) T (G,χ) =
χ(1)

|G|
∑
σ∈G

χ(σ)Pσ,

and it is denoted by V m
χ (G). We say that the tensor T (G,χ)(v1 ⊗ · · · ⊗ vm)

is a decomposable symmetrized tensor, and we denote it by v1 ∗ · · · ∗ vm.
The inner product on V induces an inner product on Vχ(G) which sat-

isfies

〈v1 ∗ · · · ∗ vm, u1 ∗ · · · ∗ um〉 =
χ(1)

|G|
∑
σ∈G

χ(σ)

m∏
i=1

〈vi, uσ(i)〉.

Let Γmn be the set of all sequences α = (α1, . . . , αm), with 1 ≤ αi ≤ n.
Define the action of G on Γmn by

σ.α = (ασ−1(1), . . . , ασ−1(m)).
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Let O(α) = {σ.α | σ ∈ G} be the orbit of α. We write α ∼ β if α and β
belong to the same orbit in Γmn . Let ∆ be a system of distinct representatives
of the orbits. We denote by Gα the stabilizer subgroup of α, i.e., Gα =
{σ ∈ G | σ.α = α}. Define

Ω =
{
α ∈ Γmn

∣∣∣ ∑
σ∈Gα

χ(σ) 6= 0
}
,

and put ∆ = ∆ ∩Ω.

Let {e1, . . . , en} be an orthonormal basis of V , and denote by e∗α the
tensor eα1 ∗ · · · ∗ eαm . We have

〈e∗α, e∗β〉 =


0 if α � β,
χ(1)

|G|
∑
σ∈Gβ

χ(σh−1) if α = h.β.

In particular, for σ1, σ2 ∈ G and γ ∈ ∆ we obtain

(1.3) 〈e∗σ1.γ , e
∗
σ2.γ〉 =

χ(1)

|G|
∑

x∈σ2Gγσ−1
1

χ(x).

Moreover, e∗α 6= 0 if and only if α ∈ Ω.

For α ∈ ∆, V ∗α = 〈e∗σ.α : σ ∈ G〉 is called the orbital subspace of Vχ(G).
It follows that

Vχ(G) =
⊕
α∈∆

V ∗α

is an orthogonal direct sum. In [9] it is proved that

(1.4) dimV ∗α =
χ(1)

|Gα|
∑
σ∈Gα

χ(σ).

Thus we deduce that if χ is a linear character, then dimV ∗α = 1 and in this
case the set

{e∗α | α ∈ ∆}

is an orthogonal basis of Vχ(G).

A basis which consists of decomposable symmetrized tensors e∗α is called
an orthogonal ∗-basis. If χ is not linear, it is possible that Vχ(G) has no
orthogonal ∗-basis. The reader can find further information about the sym-
metry classes of tensors in [1–8], [10–11], [13–15] and [17].

In this paper we discuss the existence of an orthogonal basis consisting
of decomposable vectors for all symmetry classes of tensors associated with
semi-dihedral groups SD8n.



TENSORS ASSOCIATED WITH SEMI-DIHEDRAL GROUPS 61

2. Semi-dihedral groups SD8n. The presentation for SD8n for n ≥ 2
is given by

SD8n = 〈a, b | a4n = b2 = 1, bab = a2n−1〉,
where the embedding of SD8n into the symmetric group S4n is given by
T (a)(t) := t+ 1 and T (b)(t) := (2n− 1)t, where m is the remainder of m
divided by 4n.

Definition 2.1. Define

C1 := {0, 2, 4, . . . , 2n},
C2 := {1, 3, 5, . . . , n} ∪ {2n+ 1, 2n+ 3, 2n+ 5, . . . , 3n},

C†even := {2, 4, . . . , 2n− 2},

C†odd = {1, 3, 5, . . . , 2[n/2]− 1, 2n+ 1, 2n+ 3, . . . , 2[3n/2]− 1}.
We define two-dimensional representations, for each natural number h

and ω = e
iπ
2n :

(2.1) ρh(ar) =

(
ωhr 0

0 ω(2n−1)hr

)
and ρh(bar) =

(
0 ω(2n−1)hr

ωhr 0

)
,

for each r ∈ {1, 2, . . . , 4n}.
Denote χh = Tr(ρh). The non-linear irreducible complex characters of

SD8n are the characters χh where h ∈ C†even or h ∈ C†odd. Since the numbers
of conjugacy classes of SD8n are different for n even (2n+ 3 classes) and n
odd (2n+6 classes), we consider the corresponding two non-linear character
tables separately.

Table I. The non-linear character table for SD8n, n even

Conjugacy classes → [ar], r ∈ C1 [ar], r ∈ C†odd [b] [ba]

Characters ↓
χh, h ∈ C†even 2 cos

(
hrπ
2n

)
2 cos

(
hrπ
2n

)
0 0

χh, h ∈ C†odd 2 cos
(
hrπ
2n

)
2i sin

(
hrπ
2n

)
0 0

Table II. The non-linear character table for SD8n, n odd

Conjugacy classes → [ar], r ∈ C1 [ar], r ∈ C2 [b] [ba] [ba2] [ba3]

Characters ↓
χh, h ∈ C†even 2 cos

(
hrπ
2n

)
2 cos

(
hrπ
2n

)
0 0 0 0

χh, h ∈ C†odd 2 cos
(
hrπ
2n

)
2i sin

(
hrπ
2n

)
0 0 0 0

3. Existence of an orthogonal basis for the symmetry classes
of tensors associated with SD8n. In this section we study the existence
of an orthogonal basis for the symmetry classes of tensors associated with
SD8n. As explained in the introduction, if χ is a linear character of G then
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the symmetry class of tensors associated with G and χ has an orthogo-
nal basis. Therefore we will concentrate on non-linear irreducible complex
characters of SD8n, i.e. the characters χh where h ∈ C†even or h ∈ C†odd.

Remark 3.1. Let ν2 be the 2-adic valuation, that is, ν2
(
2km
n

)
= k for

m and n odd. Then the condition ν2
(
h
2n

)
< 0 means that every power of 2

that divides h also divides n.

Lemma 3.2. Let G := SD8n and H be a subgroup of G. Then there is a
natural number r, 0 ≤ r < 4n, such that either H = 〈ar〉, or 〈ar〉 � H and
H ∩ 〈a〉 = 〈ar〉. In the latter case we have |H| ≥ 2|〈ar〉|.

Proof. This is straightforward.

Lemma 3.3. Suppose χ = χh. If r is defined by Gα ∩ 〈a〉 = 〈ar〉 and
l = 4n/gcd(4n, r), then∑

g∈Gα

χ(g) =

{
2l if rh ≡ 0 (mod 4n),

0 if rh 6≡ 0 (mod 4n),

and for α ∈ ∆, we have rh ≡ 0 (mod 4n).

Proof. Since Gα is a subgroup of G, using Lemma 3.2 there is a natural
number r, 0 ≤ r < 4n, such that either Gα = 〈ar〉 or 〈ar〉 < Gα. Using
Table I, we find that χ vanishes outside 〈a〉, therefore∑

g∈Gα

χ(g) =

l∑
t=1

χ(atr) = 2

l∑
t=1

cos

(
trhπ

2n

)
=

{
2l, rh ≡ 0 (mod 4n),

0, rh 6≡ 0 (mod 4n).

Also if rh 6≡ 0 (mod 4n), then
∑

g∈Gα χ(g) = 0, which shows α /∈ ∆.

Lemma 3.4. Let 1 ≤ h < 2n and let ν2 be the 2-adic valuation. Then
there exist t1, t2, 0 ≤ t1, t2 < 4n, such that cos

( (t1−t2)hπ
2n

)
= 0 if and only if

ν2
(
h
2n

)
< 0.

Theorem 3.5. Let G = SD8n be a subgroup of S4n, denote χ = χh
for h ∈ C†even, and assume d = dimV ≥ 2. Then Vχ(G) has an orthogonal
∗-basis if and only ν2

(
h
2n

)
< 0 .

Proof. It is enough to prove that for any α ∈ ∆ the orbital subspace V ∗α
has an orthogonal ∗-basis if ν2(

h
2n) < 0. Let ν2(

h
2n) < 0 and assume α ∈ ∆.

By Lemma 3.2, either Gα = 〈ar〉 or 〈ar〉 < Gα. Let l = 4n/gcd(4n, r). Now
we consider two cases.

Case 1. If 〈ar〉 < Gα, then by Lemma 3.2 we obtain |Gα| ≥ 2l where

〈ar〉 = 〈a〉 ∩Gα = {ar, a2r, . . . , alr = 1}.
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By (1.4), |Gα| ≥ 2l and Lemma 3.3, we have

dimV ∗α =
χ(1)

|Gα|
∑
σ∈Gα

χ(σ) ≤ 2

2l
(2l) = 2.

If dimV ∗α = 1, then it is obvious that we have an orthogonal ∗-basis. Let us
consider dimV ∗α = 2. Set σ1 = aj , σ2 = ai. Then

σ2Gασ
−1
1 ∩ 〈a〉 = {ar+i−j , . . . , alr+i−j}.

Hence if σ1 = aj , σ2 = ai, by (1.3), we have

〈e∗σ1.α, e
∗
σ2.α〉 =

χ(1)

|G|
∑

x∈σ2Gασ−1
1

χ(x) =
2

8n

l∑
t=1

χ(atr+i−j)(3.1)

=
4

8n

l∑
t=1

cos
(tr + i− j)hπ

2n

=
1

2n

l∑
t=1

cos

(
trhπ

2n
+

(i− j)hπ
2n

)

=
1

2n

l∑
t=1

cos

(
(i− j)hπ

2n

)
=

l

2n
cos

(
(i− j)hπ

2n

)
where the penultimate equality is due to an application of Lemma 3.3. By
Lemma 3.4, there exist i and j such that

〈e∗aj .α, e
∗
ai.α〉 = 0,

which means that {e∗σ1.α, e
∗
σ2.α} is an orthogonal ∗-basis for V ∗α .

Case 2. If Gα = 〈ar〉 = {ar, a2r, . . . , alr = 1}, then by (1.4) and Lemma
3.3,

dimV ∗α =
χ(1)

|Gα|
∑
σ∈Gα

χ(σ) =
2

l
(2l) = 4.

For any σ1, σ2 ∈ G, we have

σ2Gασ1
−1 =

{ar+i−j , a2r+i−j , . . . , alr+i−j} if σ1 = aj , σ2 = ai,

{ar+i+j(1−2n)b, a2r+i+j(1−2n)b, . . . , alr+i+j(1−2n)b} if σ1 = ajb, σ2 = ai,

{a(1−2n)r+i−j , a2r(1−2n)+i−j , . . . , alr(1−2n)+i−j} if σ1 = ajb, σ2 = aib.

If σ1 = aj , σ2 = ai, by (3.1) we have

〈e∗σ1.α, e
∗
σ2.α〉 =

l

2n
cos

(
(i− j)hπ

2n

)
.
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If σ1 = ajb, σ2 = ai, we have

〈e∗σ1.α, e
∗
σ2.α〉 = 0,

and for σ1 = ajb, σ2 = aib, we have

〈e∗σ1.α, e
∗
σ2.α〉 =

χ(1)

|G|
∑

x∈σ2Gγσ−1
1

χ(x) =
2

8n

l∑
t=1

χ(atr(1−2n)+i−j)

=
4

8n

l∑
t=1

cos

(
(tr(1− 2n) + i− j)hπ

2n

)

=
1

2n

l∑
t=1

cos

(
trhπ

2n
+

(i− j)hπ
2n

− trhπ
)

=
1

2n

l∑
t=1

cos

(
(i− j)hπ

2n

)
=

l

2n
cos

(
(i− j)hπ

2n

)
where the penultimate equality uses Lemma 3.3. Therefore

〈e∗σ1.α, e
∗
σ2.α〉 =


l

2n
cos

(
(i− j)hπ

2n

)
, σ1 = aj , σ2 = ai,

0 σ1 = ajb, σ2 = ai,
l

2n
cos

(
(i− j)hπ

2n

)
, σ1 = ajb, σ2 = aib.

In view of Lemma 3.4, if ν2
(
h
2n

)
< 0, there exist t1, t2, 0 ≤ t1, t2 < 4n such

that cos
( (t1−t2)hπ

2n

)
= 0. Put

S = {at1 .α, at2 .α, at1b.α, at2b.α} ⊆ Γmn .
Then for every α, β ∈ S and α 6= β we have

〈e∗α, e∗β〉 = 0.

But dimV ∗α = 4; hence {e∗ξ | ξ ∈ S} is an orthogonal ∗-basis for V ∗α .

Conversely, assume that Vχ(G) has an orthogonal basis of decomposable
symmetrized tensors. Then since Vχ(G) =

⊕
α∈∆ V

∗
α for all α ∈ ∆, the

orbital subspace V ∗α has an orthogonal basis of decomposable symmetrized
tensors. Using [17, p. 642], we can choose α ∈ Γmn such that at /∈ Gα for 1 ≤
t < 4n. Thus for such α we have either Gα = {1} or Gα = {1, atb, a−(2n−1)tb}
for some 1 ≤ t < 4n, since if Gα 6= {1} and at1b, at2b ∈ Gα, then

at1b.at2b = at1b.ba(2n−1)t2 = at1+(2n−1)t2 ∈ Gα,
which shows that t1 = −(2n− 1)t2.

To prove that ν2
(
h
2n

)
< 0 is a necessary condition for existence of an

orthogonal ∗-basis for Vχ(G), it is enough to consider the cases Gα = {1}
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and Gα = {1, atb, a−(2n−1)tb}. For both, we have

‖e∗α‖2 =
χ(1)

|G|
∑
g∈Gα

χ(g) 6= 0,

so α ∈ ∆. First consider Gα = {1}. For any σ1, σ2 ∈ G, we have

σ2Gασ
−1
1 =


{ai−j} if σ1 = aj , σ2 = ai,

{ai+j(1−2n)b} if σ1 = ajb, σ2 = ai,

{a(1−2n)i−j} if σ1 = ajb, σ2 = aib.

Therefore by (1.3) we have

〈e∗σ1.α, e
∗
σ2.α〉 =


1

2n
cos

(
(i− j)hπ

2n

)
if σ1 = aj , σ2 = ai,

0 if σ1 = ajb, σ2 = ai,
1

2n
cos

(
(i− j)hπ

2n

)
if σ1 = ajb, σ2 = aib.

Hence 〈e∗σ1.α, e
∗
σ2.α〉 = 0 implies that there exist t1 and t2 such that

cos

(
(t1 − t2)hπ

2n

)
= 0,

therefore by Lemma 3.4 we get ν2
(
h
2n

)
< 0.

Now consider Gα = {1, atb, a−(2n−1)tb}. For any σ1, σ2 ∈ G, we have

σ2Gασ
−1
1

=


{ai−j , ba(2n−1)(j+t)−i, ba(2n−1)(j−(2n−1)t)−i} if σ1 = aj , σ2 = ai,

{ai+j(1−2n)b, aj+(2n−1)t+i, aj−t+i} if σ1 = ajb, σ2 = ai,

{a(1−2n)i−j , aj+(2n−1)t+ib, aj−t+ib} if σ1 = ajb, σ2 = aib.

Now similar to our previous calculations in this section, we get ν2
(
h
2n

)
< 0.

Remark 3.6. In the proof of the necessity part of Theorem 3.5, one can
choose α = (1, 2, . . . , 2). The proof given here shows the stronger statement
that the orbital subspace V ∗α has an orthogonal ∗-basis whenever Gα ∪ 〈a〉
= {1}.

Corollary 3.7. Let G = SD8n, n odd, be a subgroup of S4n, denote
χ = χh for h ∈ C†even, and assume d = dimV ≥ 2. Then Vχ(G) does not
have an orthogonal ∗-basis.

Proof. Since n is odd we have ν2(
h
2n) ≥ 0. Thus Theorem 3.5 implies

Vχ(G) does not have an orthogonal ∗-basis.

Theorem 3.8. Let G = SD8n be a subgroup of S4n, denote χ = χh
for h ∈ C†odd, and assume d = dimV ≥ 2. Then Vχ(G) does not have an
orthogonal ∗-basis.
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Proof. The proof is similar to the proof of Theorem 3.5. Using Table I
and Table II we conclude that 〈e∗σ1.α, e

∗
σ2.α〉 6= 0 since the imaginary and

real parts should both be zero; but i sinx and cosx cannot vanish simulta-
neously.

Acknowledgements. The authors are grateful to Professor Hjalmar
Rosengren for valuable comments and for reviewing earlier drafts very care-
fully.

REFERENCES

[1] C. Bessenrodt, M. R. Pournaki and A. Reifegerste, A note on the orthogonal basis of
a certain full symmetry class of tensors, Linear Algebra Appl. 370 (2003), 369–374.

[2] H. F. da Cruz and J. A. Dias da Silva, Equality of immanantal decomposable tensors,
Linear Algebra Appl. 401 (2005), 29–46.

[3] H. F. da Cruz and J. A. Dias da Silva, Equality of immanantal decomposable tensors,
II, Linear Algebra Appl. 395 (2005), 95–119.

[4] M. R. Darafsheh and M. R. Pournaki, On the orthogonal basis of the symmetry
classes of tensors associated with the dicyclic group, Linear Multilinear Algebra 47
(2000), 137–149.

[5] M. R. Darafsheh and N. S. Poursalavati, On the existence of the orthogonal basis
of the symmetry classes of tensors associated with certain groups, SUT J. Math. 37
(2001), 1–17.

[6] J. A. Dias da Silva, Colorings and equality of tensors, Linear Algebra Appl. 342
(2002), 79–91.

[7] J. A. Dias da Silva and M. M. Torres, On the orthogonal dimension of orbital sets,
Linear Algebra Appl. 401 (2005), 77–107.

[8] A. Fonseca, On the equality of families of decomposable symmetrized tensors, Linear
Algebra Appl. 293 (1999), 1–14.

[9] R. Freese, Inequalities for generalized matrix functions based on arbitrary characters,
Linear Algebra Appl. 7 (1973), 337–345.

[10] R. R. Holmes, Orthogonal bases of symmetrized tensor spaces, Linear Multilinear
Algebra 39 (1995), 241–243.

[11] R. R. Holmes and T. Y. Tam, Symmetry classes of tensors associated with certain
groups, Linear Multilinear Algebra 32 (1992), 21–31.

[12] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge
Univ. Press, Cambridge, 1993.

[13] M. Marcus, Finite Dimensional Multilinear Algebra Part I, Dekker, New York, 1973.

[14] R. Merris, Recent advances in symmetry classes of tensors, Linear Multilinear Al-
gebra 7 (1979), 317–328.

[15] M. R. Pournaki, On the orthogonal basis of the symmetry classes of tensors associ-
ated with certain characters, Linear Algebra Appl. 336 (2001), 255–260.

[16] J.-P. Serre, Linear Representations of Finite Groups, Grad. Texts in Math. 42,
Springer, 1977.

[17] M. A. Shahabi, K. Azizi and M. H. Jafari, On the orthogonal basis of symmetry
classes of tensors, J. Algebra 237 (2001), 637–646.

http://dx.doi.org/10.1016/S0024-3795(03)00426-9
http://dx.doi.org/10.1016/j.laa.2003.08.001
http://dx.doi.org/10.1016/j.laa.2004.07.020
http://dx.doi.org/10.1080/03081080008818639
http://dx.doi.org/10.1016/S0024-3795(01)00481-5
http://dx.doi.org/10.1016/j.laa.2003.11.005
http://dx.doi.org/10.1016/S0024-3795(99)00005-1
http://dx.doi.org/10.1016/S0024-3795(73)80004-7
http://dx.doi.org/10.1080/03081089508818396
http://dx.doi.org/10.1080/03081089208818144
http://dx.doi.org/10.1080/03081087908817290
http://dx.doi.org/10.1016/S0024-3795(01)00329-9
http://dx.doi.org/10.1006/jabr.2000.8332


TENSORS ASSOCIATED WITH SEMI-DIHEDRAL GROUPS 67

Mahdi Hormozi
Department of Mathematical Sciences
Division of Mathematics
Chalmers University of Technology
and University of Gothenburg
Gothenburg 41296, Sweden
E-mail: hormozi@chalmers.se

Kijti Rodtes
Department of Mathematics

Faculty of Science
Naresuan University

Phitsanulok 65000, Thailand
E-mail: kijtir@nu.ac.th

Received 19 December 2012;
revised 17 February 2013 (5831)




	1 Introduction
	2 Semi-dihedral groups SD8n
	3 Existence of an orthogonal basis for the symmetry classes of tensors associated with SD8n
	References

