VOL. 131

2013

NO. 1

P_{λ} -SETS AND SKELETAL MAPPINGS

BҮ

ALEKSANDER BŁASZCZYK and ANNA BRZESKA (Katowice)

Abstract. We prove that if the topology on the set Seq of all finite sequences of natural numbers is determined by P_{λ} -filters and $\lambda \leq \mathfrak{b}$, then Seq is a P_{λ} -set in its Čech–Stone compactification. This improves some results of Simon and of Juhász and Szymański. As a corollary we obtain a generalization of a result of Burke concerning skeletal maps and we partially answer a question of his.

1. Definitions and basic construction. Let Seq be the set of all finite sequences of natural numbers,

Seq =
$$\omega^{<\omega} = \bigcup \{ {}^{n}\omega : n < \omega \}.$$

Seq is a tree with the natural order defined as follows: for all $x, y \in$ Seq we declare

$$s \leq t \Leftrightarrow t \restriction \operatorname{dom}(s) = s.$$

For every $s \in \text{Seq}$ we write

$$[s, \to) = \{t \in X \colon s \le t\}.$$

The set of all immediate successors of an element $s \in \text{Seq}$ is denoted by

 $\operatorname{succ}(s) = \{t \in \operatorname{Seq}: t \text{ is minimal in } \{t \in \operatorname{Seq}: t > s\}\}.$

Hence succ(s) = $\{s^{n}: n \in \omega\}$, where s^{n} denotes the concatenation of s and n.

Now, for every $s \in \text{Seq}$ we pick a free filter $\mathcal{F}_s \subseteq \mathcal{P}(\text{succ}(s))$. We assume that every filter contains the Fréchet filter. We shall identify the set of all immediate successors of s with the set ω . Therefore, every filter on the set of all immediate successors is considered here as a filter on ω .

For every indexed collection $\mathfrak{F} = (\mathcal{F}_t : t \in \text{Seq})$ of filters we define the \mathfrak{F} -topology on Seq as follows:

DEFINITION 1.1. A set $U \subseteq$ Seq is open in the \mathfrak{F} -topology on Seq whenever

$$(\forall s \in U) (\exists F \in \mathcal{F}_s) (F \subseteq U).$$

²⁰¹⁰ Mathematics Subject Classification: Primary 54G05; Secondary 54C05, 54C10. Key words and phrases: sequence, filter, skeletal mapping.

The \mathfrak{F} -topologies on Seq were introduced by Szymański [12] and Trnková [13] and studied e.g. in [2], [5], [7], [8], [14]. A review of \mathfrak{F} -topologies and their generalizations can be found in [1].

For every $s \in \text{Seq}$ and every $\Phi \in \prod \{\mathcal{F}_t : t \in [s, \rightarrow)\}$ we consider the set

$$U(s,\Phi) = \bigcup \{ U_n(s,\Phi) \colon n < \omega \},\$$

where

$$U_0(s,\Phi) = \{s\},\$$

and

$$U_{n+1}(s,\Phi) = U_n(s,\Phi) \cup \bigcup \{\Phi(t) \colon t \in U_n(s,\Phi)\} \quad \text{for every } n < \omega.$$

The following lemma first appeared in [2].

LEMMA 1.2. For every indexed family $\mathfrak{F} = (\mathcal{F}_t: t \in \text{Seq})$ of filters the family of sets

$$\mathcal{B}(\mathfrak{F}) = \left\{ U(s, \Phi) \colon s \in \text{Seq and } \Phi \in \prod \{ \mathcal{F}_t \colon t \in [s, \to) \} \right\}$$

is a base for the \mathfrak{F} -topology on Seq and consists of clopen sets. Consequently, the \mathfrak{F} -topology on Seq is a zero-dimensional Hausdorff topology.

In fact Seq endowed with the \mathfrak{F} -topology is normal since it is countable and regular. In particular, one can consider the Čech–Stone compactification of Seq endowed with the \mathfrak{F} -topology.

The next two lemmas are easy to verify.

LEMMA 1.3. For every $s \in \text{Seq}$ and $\Phi \in \prod \{\mathcal{F}_t : t \in [s, \rightarrow)\},\$

$$U(s,\Phi) = \{s\} \cup \bigcup \{U(t,\Phi) \colon t \in \Phi(s)\}.$$

LEMMA 1.4. Assume that $s \in \text{Seq}$ and $\Phi, \Psi \in \prod \{\mathcal{F}_t : t \in [s, \rightarrow)\}$. If $\Phi(t) \subseteq \Psi(t)$ for every $t \in U(s, \Phi)$, then $U(s, \Phi) \subseteq U(s, \Psi)$.

As usual, \mathfrak{b} denotes the minimal cardinality of an unbounded subset of ${}^{\omega}\omega$ ordered by the relation \leq^* defined as follows:

$$f \leq^* g \iff (\exists n < \omega) (\forall k > n) (f(k) \leq g(k))$$

for all $f, g \in {}^{\omega}\omega$. Clearly, $\mathfrak{b} > \omega$. Since Seq is countable we immediately obtain the following:

LEMMA 1.5. If $\tau < \mathfrak{b}$ and $\{f_{\alpha} : \alpha < \tau\} \subseteq {}^{\text{Seq}}\omega$, then there exists $g \in {}^{\text{Seq}}\omega$ such that

$$f_{\alpha} \leq^* g$$
 for every $\alpha < \tau$.

2. P_{λ} -sets. We use the standard definition of P_{λ} -filters:

DEFINITION 2.1. A (free) filter $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called a P_{λ} -filter whenever for every family $\mathcal{R} \subseteq \mathcal{F}$ of size smaller than λ there exists $F \in \mathcal{F}$ such that $F \subseteq^* U$ for every $U \in \mathcal{F}$.

As usual, $F \subseteq^* U$ means that $F \setminus U$ is finite. Hence, all *P*-filters are just P_{ω_1} -filters. A P_{λ} -filter which is simultaneously an ultrafilter is called a P_{λ} -ultrafilter. Since non-empty G_{δ} 's in $\beta \mathbb{N} \setminus \mathbb{N}$ have non-empty interior, nontrivial *P*-filters always exist in ZFC, whereas the existence of *P*-ultrafilters requires adding some extra assumptions.

Clearly, every set of the form $U(s, \Phi)$ is non-compact. Hence, Seq with the \mathfrak{F} -topology is nowhere compact. Therefore, the Čech–Stone remainder

$$\operatorname{Seq}^* = \beta \operatorname{Seq} \setminus \operatorname{Seq}$$

is dense in β Seq. Consequently, every closed subset of β Seq contained in Seq^{*} is nowhere dense in β Seq.

A subset S of a topological space X is called a P_{λ} -set for $\lambda \geq \omega$ if S is contained in the interior of the intersection of every family of size smaller than λ consisting of open neighborhoods of S.

THEOREM 2.2. Assume $\mathfrak{F} = (\mathcal{F}_s: s \in \text{Seq})$ is a collection of P_{λ} -filters and $\omega < \lambda \leq \mathfrak{b}$. Then Seq endowed with the \mathfrak{F} -topology is a P_{λ} -set in β Seq.

Proof. Assume that $\tau < \lambda$ and $\{U_{\alpha} : \alpha < \tau\}$ is a family of open subsets of the Čech–Stone compactification of Seq with the \mathfrak{F} -topology and Seq $\subseteq U_{\alpha}$ for every $\alpha < \tau$. We shall show that

Seq
$$\subseteq$$
 Int $\bigcap \{ U_{\alpha} \colon \alpha < \tau \}.$

By Lemma 1.2 and the normality of Seq, the sets of the form $\operatorname{cl} U(s, \Phi_s)$ (the closure in β Seq) form a clopen base at the point $s \in$ Seq. So for every $s \in$ Seq and every $\alpha < \tau$ there exists $\Psi_s^{\alpha} \in \prod \{\mathcal{F}_t : t \in [s, \to)\}$ such that

$$s \in U(s, \Psi_s^{\alpha}) \subseteq \operatorname{cl} U(s, \Psi_s^{\alpha}) \subseteq U_{\alpha}.$$

For every $s \in \text{Seq}$ and every $t \in [s, \rightarrow)$ we set

$$\Phi_s^{\alpha}(t) = \bigcap \{ \Psi_p^{\alpha}(t) \colon p \le s \}.$$

Then, by Lemma 1.4, for every $s \in \text{Seq}$ and every $\alpha < \tau$ we have

(1)
$$s \in U(s, \Phi_s^{\alpha}) \subseteq \operatorname{cl} U(s, \Phi_s^{\alpha}) \subseteq U_{\alpha}$$

and moreover, for every $p \ge t$,

(2)
$$s \le t \Rightarrow \Phi_t^{\alpha}(p) \subseteq \Phi_s^{\alpha}(p)$$

Since each \mathcal{F}_s is a P_{λ} -filter, for every $s \in$ Seq there exists a set $A_s \in \mathcal{F}_s$ such that $A_s \subseteq^* \Phi_s^{\alpha}(s)$ for all $\alpha < \tau$. Hence, for every $\alpha < \tau$ we can define a function $f_{\alpha} \colon \text{Seq} \to \omega$ by

$$f_{\alpha}(s) = \max\{n < \omega \colon s^{\widehat{}} n \in A_s \setminus \Phi_s^{\alpha}(s)\} + 1.$$

Since $\tau < \mathfrak{b}$, by Lemma 1.5, we have a function $g \colon \text{Seq} \to \omega$ such that $f_{\alpha} \leq^* g$ for all $\alpha < \tau$. Now we define on Seq a function Φ as follows:

$$\Phi(s) = A_s \cap \{s^{\frown}n \colon n \ge g(s)\}.$$

Clearly, $\Phi \in \prod \{ \mathcal{F}_t : t \in \text{Seq} \}$ since $A_s \in \mathcal{F}_s$ and \mathcal{F}_s contains the Fréchet filter.

CLAIM. Assume $s \in \text{Seq}$ and $\Psi \in \prod \{\mathcal{F}_t : t \in [s, \rightarrow)\}$ and $\alpha < \tau$. If

 $\Psi(t) \subseteq \Phi(t) \quad and \quad f_{\alpha}(t) \leq g(t)$

for every $t \in U(s, \Psi)$, then

$$U(s,\Psi) \subseteq U(s,\Phi_s^{\alpha}).$$

By Lemma 1.4, to prove the Claim it suffices to show that $\Psi(t) \subseteq \Phi_s^{\alpha}(t)$ for every $t \in U(s, \Psi)$. But if $t \in U(s, \Psi)$ and $t^{\gamma}n \in \Psi(t) \subseteq \Phi(t)$, then $t^{\gamma}n \in A_t$ and $n \geq g(t) \geq f_{\alpha}(t)$. Hence, by the definition of f_{α} we get $t^{\gamma}n \in \Phi_t^{\alpha}(t)$. Finally, by (2), we obtain $t^{\gamma}n \in \Phi_s^{\alpha}(t)$, which completes the proof of the claim.

It remains to show that

(

(3)
$$\operatorname{cl} U(s, \Phi \upharpoonright [s, \to)) \subseteq U_{\alpha}$$

for every $s \in \text{Seq}$ and every $\alpha < \tau$. Fix $\alpha < \tau$ and suppose that (3) does not hold for some $s \in {}^{m}\omega$. We can assume that m is maximal with this property. In fact, since the set $\{t \in \text{Seq}: f_{\alpha}(t) > g(t)\}$ is finite, by the Claim, for sufficiently large $n < \omega$ we have $U(t, \Phi \upharpoonright [t, \to)) \subseteq U(t, \Phi_{t}^{\alpha})$ for every $t \in {}^{n}\omega$. Then by (1) we get $\operatorname{cl} U(t, \Phi \upharpoonright [t, \to)) \subseteq U_{\alpha}$. Thus we can assume that

$$\operatorname{cl} U(s, \Phi \upharpoonright [s, \to)) \nsubseteq U_{\alpha} \quad \text{ for some } s \in {}^{m}\omega$$

and

(4)
$$\operatorname{cl} U(t, \Phi \upharpoonright [t, \to)) \subseteq U_{\alpha}$$
 for every $t \in {}^{m+1}\omega$.

On the other hand, since $f_{\alpha} \leq^* g$, there exist $t_1, \ldots, t_n \in \Phi(s)$ such that $f_{\alpha}(t) \leq g(t)$ for every $t \in U(s, \Omega)$ where $\Omega \in \prod \{ \mathcal{F}_t \colon t \in [s, \rightarrow) \}$ is defined by

$$\Omega(t) = \begin{cases} \Phi(s) \setminus \{t_1, \dots, t_n\} & \text{if } t = s, \\ \Phi(t) & \text{if } t \neq s. \end{cases}$$

Since $\Omega(t) \subseteq \Phi(t)$ for every $t \in U(s, \Omega)$, by the Claim and (1) we get $\operatorname{cl} U(s, \Omega) \subseteq U_{\alpha}.$ Hence, by Lemma 1.3 and (4) we have

$$\begin{aligned} \operatorname{cl} U(s, \varPhi \upharpoonright [s, \to)) &= \operatorname{cl} \left(\{s\} \cup \bigcup \{ U(t, \varPhi \upharpoonright [t, \to)) \colon t \in \varPhi(s) \} \right) \\ &= \operatorname{cl} \left(\{s\} \cup \bigcup \{ U(t, \varPhi \upharpoonright [t, \to)) \colon t \in \varPhi(s) \setminus \{t_1, \dots, t_n\} \} \right) \\ &\cup \bigcup \{ \operatorname{cl} U(t_i, \varPhi \upharpoonright [t_i, \to)) \colon i \leq n \}) \\ &= \operatorname{cl} U(s, \Omega) \cup \bigcup \{ \operatorname{cl} U(t_i, \varPhi \upharpoonright [t_i, \to)) \colon i \leq n \} \subseteq U_{\alpha}. \end{aligned}$$

This contradiction proves (3) and completes the proof.

The following corollaries follow immediately from Theorem 2.2:

COROLLARY 2.3 (Simon [11]). If every filter in the collection $\mathfrak{F} = (\mathcal{F}_s: s \in \text{Seq})$ is a *P*-filter, then Seq endowed with the \mathfrak{F} -topology is a *P*-set in β Seq.

COROLLARY 2.4 (Juhász and Szymański [6]). If $\omega < \lambda \leq \mathfrak{b}$ and $\mathcal{F}_s = \mathcal{F}$ for every $s \in \text{Seq}$, where \mathcal{F} is a P_{λ} -ultrafilter, then Seq is a P_{λ} -set in β Seq.

REMARK 2.5. Both the results of Simon and of Juhász and Szymański have the form of an equivalence. A slight modification of the arguments used in [11] and [6] shows that Theorem 2.2 also yields an equivalence, i.e. one can prove moreover that if Seq is a P_{λ} -set in β Seq then $\mathfrak{F} = (\mathcal{F}_s: s \in \text{Seq})$ is a collection of P_{λ} -filters and $\omega < \lambda \leq \mathfrak{b}$.

3. Skeletal mappings. To prove theorems on skeletal mappings we shall use a dual version of Theorem 2.2: if $\mathfrak{F} = (\mathcal{F}_s : s \in \text{Seq})$ is a collection of P_{λ} -filters and $\omega < \lambda \leq \mathfrak{b}$, then the union of less than λ closed subsets of Seq^{*} is a nowhere dense subset of β Seq. First we recall some definitions.

DEFINITION 3.1. A continuous mapping $f: X \to Y$ is *skeletal* whenever $f^{-1}[G]$ is dense in X for every open and dense $G \subseteq Y$.

Equivalently, a mapping $f: X \to Y$ is skeletal if $f^{-1}[F]$ is nowhere dense for every nowhere dense closed set $F \subseteq Y$. It is clear that f[X] cannot be nowhere dense in Y for a skeletal mapping $f: X \to Y$. So, it can happen that f is skeletal as a map into Y but not as a map into Z where $Z \supseteq Y$. For this reason we prefer to consider skeletal surjections. Also, if $f: X \to Y$ is skeletal, then it is also skeletal as a surjection of X onto f[X]. In fact, if $F \subseteq f[X] \subseteq Y$ and F is a nowhere dense subset of f[X], then it is also nowhere dense in Y.

Skeletal surjections were introduced in the class of Hausdorff spaces by Mioduszewski and Rudolf [9]. In [3] skeletal mappings are called *nowhere thin*. The equivalences in the following easy proposition are immediate consequences of the definition of skeletal mappings. It will be needed later.

PROPOSITION 3.2. Assume $f: X \to Y$ is a continuous surjection, f is a closed mapping and X is a regular space. Then the following conditions are equivalent:

- (1) f is skeletal,
- (2) for every non-empty open set $U \subseteq X$, $\operatorname{Int} f[U] \neq \emptyset$,
- (3) for every non-empty open set $U \subseteq X$ there exists a non-empty open set $V \subseteq U$ such that f[V] is open,
- (4) for every dense set $D \subseteq Y$, $f^{-1}[D]$ is dense in X.

Proof. (1) \Rightarrow (2). Suppose Int $f[U] = \emptyset$. We can choose an open set $V \subseteq U$ such that $\emptyset \neq \operatorname{cl} V \subseteq U$. Then $F = f[\operatorname{cl} V]$ is a nowhere dense subset of Y and $V \subseteq f^{-1}[F]$, a contradiction.

 $(2) \Rightarrow (3)$. Since Int $f[U] \neq \emptyset$, there exists a non-empty open set $W \subseteq f[U]$. We set $V = U \cap f^{-1}[W]$. Clearly, V is non-empty, open and f[V] = W.

 $(3) \Rightarrow (4)$. If $f^{-1}[D]$ is not dense in X, then there exists a non-empty open set $V \subseteq X$ such that $f^{-1}[D] \cap V = \emptyset$. We can assume that f[V] is open. Since $D \cap f[V] = \emptyset$, D cannot be dense.

The remaining implication is obvious.

Recall that a set $G \subseteq X$ is regular closed if $G = \operatorname{cl} \operatorname{Int} G$. We get the following corollaries:

COROLLARY 3.3. If $f: X \to Y$ is a skeletal closed surjection, X is a regular space and $G \subseteq X$ is regular closed in X, then f[G] is regular closed in Y.

Proof. Suppose there exists an open set $U \subseteq Y$ such that $U \cap f[G] \neq \emptyset$ but $U \cap \operatorname{Int} f[G] = \emptyset$. Then $V = f^{-1}[U] \cap \operatorname{Int} G$ is non-empty and open but $\operatorname{Int} f[V] = \emptyset$, contradicting Proposition 3.2(2).

COROLLARY 3.4. If $f: X \to Y$ is a skeletal closed surjection, X is a regular space and $G \subseteq X$ is regular closed in X, then the restriction $f \upharpoonright G: G \to f[G]$ is skeletal.

Proof. Assume $U \subseteq f[G]$ is an open and dense subset of f[G]. By the previous corollary, f[G] is regular closed and $V = (U \cap \operatorname{Int} f[G]) \cup (Y \setminus f[G])$ is dense and open in Y. Therefore, $f^{-1}[V]$ is dense and open in X, and in particular $(f \upharpoonright G)^{-1}[U] = f^{-1}[U] \cap G \supseteq f^{-1}[V] \cap G$ is dense and open in G.

EXAMPLE 3.5. Every zero-dimensional compact space admits a skeletal mapping onto a compactification of a discrete space. In fact, if \mathcal{U} is an infinite, maximal disjoint family of clopen subsets of a zero-dimensional compact

space X, then the quotient mapping determined by the closed partition

$$\{\{U\}\colon U\in\mathcal{U}\}\cup\left\{X\setminus\bigcup\mathcal{U}\right\}$$

is a skeletal mapping onto the one-point compactification of the discrete space of cardinality $|\mathcal{U}|$.

The above example shows in particular that β Seq with the \mathfrak{F} -topology has a skeletal mapping onto the convergent sequence $\{0\} \cup \{1/n : n > 0\}$. Hence, β Seq is compact and dense in itself but it has a skeletal mapping onto the space in which the set of isolated points is dense. In this connection we also have the following:

THEOREM 3.6. Assume $\mathfrak{F} = (\mathcal{F}_s: s \in \text{Seq})$ is a collection of P_{λ} -filters where $\omega < \lambda \leq \mathfrak{b}$ and Seq is endowed with the \mathfrak{F} -topology. If a continuous surjection $f: \beta \text{Seq} \to X$, where X is Hausdorff, is skeletal and $\pi w(X) < \lambda$, then the set of isolated points in X is dense.

Proof. Suppose the set of isolated points in X is not dense. Then there exists a non-empty regular closed dense in itself set $W \subseteq X$. By Proposition 3.2(3), there exists an open set $U \subseteq f^{-1}[W]$ such that f[U] is open. Then $G = \operatorname{cl} U$ is regular closed and, by Corollaries 3.4 and 3.3, the mapping f | G is skeletal and maps G onto the regular closed set $f[G] \subseteq W$. On the other hand, f[G] is compact dense in itself, $f[\operatorname{Seq}]$ is countable and $\pi w(Y) < \lambda$. Hence, there exists a dense set $D \subseteq f[G] \setminus f[\operatorname{Seq}]$ of size smaller than λ . Then, by Proposition 3.2(4), $f^{-1}[D] \cap G$ is dense in G. But $f^{-1}[D] \cap \operatorname{Seq} = \emptyset$. Hence, by Theorem 2.2, $f^{-1}[D]$ is a nowhere dense subset of β Seq. We get a contradiction since G is regular closed in β Seq. \blacksquare

The following simple lemma is a direct consequence of the definition of skeletal mappings.

LEMMA 3.7. Assume $f: X \to Y$ is a continuous surjection and $D \subseteq X$ is dense. Then f is skeletal iff $f \upharpoonright D: D \to f[D]$ is skeletal.

Apart from skeletal mappings, Burke [3] also considers mappings with a slightly weaker property.

DEFINITION 3.8. A mapping $f: X \to Y$ is called *nowhere constant* if $f^{-1}(y)$ is nowhere dense for every $y \in Y$.

Clearly, if a mapping $f: X \to Y$ is skeletal and f[X] is dense in itself, then f is nowhere constant. Example 3.5 shows that in general skeletal mappings need not be nowhere constant. Also, a nowhere constant mapping need not be skeletal.

Burke [3] proved that if X is Tychonoff and there is a nowhere constant continuous function from X into \mathbb{R} , and $\pi w(X) < \mathfrak{p}$, then there also exists a skeletal function from X into \mathbb{R} . He also asked whether there exists (in ZFC) a Tychonoff space of π -weight \mathfrak{p} which has a nowhere constant mapping into \mathbb{R} but does not have a skeletal mapping into \mathbb{R} [3, Problem 3.12]. We shall give a partial answer to this question.

We now recall some cardinal characteristics of the continuum. The cardinal number \mathfrak{p} is defined as the minimal cardinality of a base $\mathcal{R} \subseteq \mathcal{P}(\omega)$ of a free filter for which there is no infinite set $A \subseteq \omega$ with $A \subseteq^* R$ for all $R \in \mathcal{R}$. The *dominating number* is defined as follows:

$$\mathfrak{d} = \min\{|D| \colon (\forall f \in {}^{\omega}\omega)(\exists g \in D)(f \leq {}^{*}g)\}.$$

It is well known (see e.g. van Douwen [4]) that

$$\omega < \mathfrak{p} \leq \mathfrak{b} \leq \mathfrak{d} \leq 2^{\omega}.$$

DEFINITION 3.9. Let Y be a subset of a topological space X. A collection \mathcal{B} of open neighborhoods of Y is a *base* of Y if for every open U such that $Y \subseteq U$ there exists $V \in \mathcal{B}$ with $V \subseteq U$.

The *character* of a (free) filter is the character of the corresponding subset of ω^* , i.e. for every (free) filter $\mathcal{F} \subseteq \mathcal{P}(\omega)$,

$$\chi(\mathcal{F}) = \chi(A_{\mathcal{F}}, \omega^*),$$

where

$$A_{\mathcal{F}} = \bigcap \{ \mathrm{cl}_{\beta \mathbb{N}} \, U \colon U \in \mathcal{F} \}$$

and

 $\chi(A_{\mathcal{F}}, \omega^{\star}) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a base of } A_{\mathcal{F}}\}.$

LEMMA 3.10. For every $s \in \text{Seq}$ we have

$$\chi(s, \operatorname{Seq}) = \mathfrak{d} + \chi(\mathcal{F}_s).$$

The proof of the above lemma can be obtained by a slight modification of the proof of [6, Theorem 2].

THEOREM 3.11. If $\mathfrak{F} = (\mathcal{F}_s: s \in \text{Seq})$ is a collection of *P*-filters of character \aleph_1 , then Seq endowed with the \mathfrak{F} -topology is of π -weight \mathfrak{d} and has a nowhere constant mapping into \mathbb{R} but does not have a skeletal mapping into \mathbb{R} .

Proof. Since Seq is countable, the equality $\pi w(\text{Seq}) = \mathfrak{d}$ follows from Lemma 3.10.

To show that there exists a nowhere constant mapping of Seq endowed with the \mathfrak{F} -topology into \mathbb{R} we consider a topology on Seq generated by the family

$$\mathcal{B}^* = \Big\{ U(s, \Phi) \colon s \in \text{Seq}, \ \Phi \in \prod \{ \mathcal{F}_t \colon t \in [s, \to) \}, \\ |\operatorname{succ}(t) \setminus \Phi(t)| < \omega \text{ for } t \in [s, \to) \text{ and } |\{t \in \text{Seq} \colon \Phi(t) \neq \operatorname{succ}(t)\}| < \omega \Big\}.$$

It is easy to see that \mathcal{B}^* is countable and generates a zero-dimensional Hausdorff topology on Seq. In fact, if $s, t \in$ Seq are non-compatible, then $[s, \rightarrow)$ and $[t, \rightarrow)$ are disjoint neighborhoods of s and t, respectively. If s < t, then there exists exactly one $u \in \text{succ}(s)$ such that $u \leq t$. Clearly, when $\Psi \in \prod \{\mathcal{F}_t : t \in [s, \rightarrow)\}$ is given by the formula

$$\Psi(p) = \begin{cases} \operatorname{succ}(s) \setminus \{u\} & \text{if } p = s, \\ \operatorname{succ}(p) & \text{if } p \neq s, \end{cases}$$

then $U(s, \Psi)$ is clopen and disjoint from $[t, \rightarrow)$.

Moreover, the topology generated by \mathcal{B}^* is nowhere compact and defined on a countable set. Therefore, by a theorem of Sierpiński [10], Seq with the topology generated by \mathcal{B}^* is homeomorphic to the space of rational numbers. Since $\mathcal{B}^* \subseteq \mathcal{B}$, the identity function is a continuous mapping from Seq into \mathbb{R} . This mapping is also nowhere constant because it is one-to-one and Seq endowed with the \mathfrak{F} -topology is dense in itself.

It remains to show that there is no skeletal mapping from Seq into \mathbb{R} . Suppose that there exists a skeletal surjection $f: \text{Seq} \to F$, where $F \subseteq \mathbb{R}$. Then, by Lemma 3.7, the Čech–Stone extension $\beta f: \beta \text{Seq} \to \text{cl} F$ is a skeletal surjection of β Seq onto the closed set cl F. Hence, by Theorem 3.6, the set cl F has a dense set of isolated points. Therefore, $\beta f[\beta \text{Seq}]$ is a nowhere dense subset of \mathbb{R} and thus βf cannot be skeletal. This contradiction completes the proof.

Acknowledgements. The authors deeply appreciate the anonymous referee's valuable suggestions and corrections.

REFERENCES

- [1] A. Błaszczyk, *Defining topologies on trees*, Topology Proc. 41 (2013), 1–20.
- [2] A. Błaszczyk and A. Szymański, Cohen algebras and nowhere dense ultrafilters, Bull. Polish Acad. Sci. 49 (2001), 15–25.
- [3] M. R. Burke, Continuous functions which take a somewhere dense set of values on every open set, Topology Appl. 103 (2000), 95–110.
- [4] A. van Douwen, *The integers in topology*, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1982, 111–167.
- [5] A. Dow, A. Gubi and A. Szymański, *Rigid Stone spaces within ZFC*, Proc. Amer. Math. Soc. 102 (1988), 745–748.
- [6] I. Juhász and A. Szymański, d-calibers and d-tightness in compact spaces, Topology Appl. 151 (2005), 66–76.

- [7] V. Kannan and M. Rajagopalan, Constructions and applications of rigid spaces. I, Adv. Math. 29 (1978), 89–130.
- [8] A. Kato, A new construction of extremally disconnected topologies, Topology Appl. 58 (1994), 1–16.
- J. Mioduszewski and L. Rudolf, H-closed and extremally disconnected Hausdorff spaces, Dissertationes Math. 66 (1969), 52 pp.
- [10] W. Sierpiński, Sur une propriété topologique des ensembles dénombrables denses en soi, Fund. Math. 1 (1920), 163–173.
- P. Simon, A countable dense-in-itself dense P-set, Topology Appl. 123 (2002), 193– 198.
- [12] A. Szymański, Products and measurable cardinals, Rend. Circ. Mat. Palermo (2) Suppl. 11 (1985), 105–112.
- [13] V. Trnková, Homeomorphisms of products of Boolean algebras, Fund. Math. 126 (1985), 46–61.
- J. E. Vaughan, Two spaces homeomorphic to Seq(p), Comment. Math. Univ. Carolin. 42 (2001), 209–218.

Aleksander Błaszczyk, Anna Brzeska Institute of Mathematics University of Silesia Bankowa 14 40-007 Katowice, Poland E-mail: ablaszcz@ux2.math.us.edu.pl abrzeska@math.us.edu.pl

> Received 27 September 2012; revised 4 March 2013

(5773)