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Pλ-SETS AND SKELETAL MAPPINGS

BY

ALEKSANDER BŁASZCZYK and ANNA BRZESKA (Katowice)

Abstract. We prove that if the topology on the set Seq of all finite sequences of
natural numbers is determined by Pλ-filters and λ ≤ b, then Seq is a Pλ-set in its Čech–
Stone compactification. This improves some results of Simon and of Juhász and Szymański.
As a corollary we obtain a generalization of a result of Burke concerning skeletal maps
and we partially answer a question of his.

1. Definitions and basic construction. Let Seq be the set of all finite
sequences of natural numbers,

Seq = ω<ω =
⋃
{nω : n < ω}.

Seq is a tree with the natural order defined as follows: for all x, y ∈ Seq we
declare

s ≤ t ⇔ t�dom(s) = s.

For every s ∈ Seq we write

[s,→) = {t ∈ X : s ≤ t}.
The set of all immediate successors of an element s ∈ Seq is denoted by

succ(s) = {t ∈ Seq: t is minimal in {t ∈ Seq: t > s}}.
Hence succ(s) = {san : n ∈ ω}, where san denotes the concatenation of s
and n.

Now, for every s ∈ Seq we pick a free filter Fs ⊆ P(succ(s)). We assume
that every filter contains the Fréchet filter. We shall identify the set of all
immediate successors of s with the set ω. Therefore, every filter on the set
of all immediate successors is considered here as a filter on ω.

For every indexed collection F = (Ft : t ∈ Seq) of filters we define the
F-topology on Seq as follows:

Definition 1.1. A set U ⊆ Seq is open in the F-topology on Seq when-
ever

(∀s ∈ U)(∃F ∈ Fs)(F ⊆ U).
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The F-topologies on Seq were introduced by Szymański [12] and Trnková
[13] and studied e.g. in [2], [5], [7], [8], [14]. A review of F-topologies and
their generalizations can be found in [1].

For every s ∈ Seq and every Φ ∈
∏
{Ft : t ∈ [s,→)} we consider the set

U(s, Φ) =
⋃
{Un(s, Φ) : n < ω},

where

U0(s, Φ) = {s},

and

Un+1(s, Φ) = Un(s, Φ) ∪
⋃
{Φ(t) : t ∈ Un(s, Φ)} for every n < ω.

The following lemma first appeared in [2].

Lemma 1.2. For every indexed family F = (Ft : t ∈ Seq) of filters the
family of sets

B(F) =
{
U(s, Φ) : s ∈ Seq and Φ ∈

∏
{Ft : t ∈ [s,→)}

}
is a base for the F-topology on Seq and consists of clopen sets. Consequently,
the F-topology on Seq is a zero-dimensional Hausdorff topology.

In fact Seq endowed with the F-topology is normal since it is countable
and regular. In particular, one can consider the Čech–Stone compactification
of Seq endowed with the F-topology.

The next two lemmas are easy to verify.

Lemma 1.3. For every s ∈ Seq and Φ ∈
∏
{Ft : t ∈ [s,→)},

U(s, Φ) = {s} ∪
⋃
{U(t, Φ) : t ∈ Φ(s)}.

Lemma 1.4. Assume that s ∈ Seq and Φ, Ψ ∈
∏
{Ft : t ∈ [s,→)}. If

Φ(t) ⊆ Ψ(t) for every t ∈ U(s, Φ), then U(s, Φ) ⊆ U(s, Ψ).

As usual, b denotes the minimal cardinality of an unbounded subset of
ωω ordered by the relation ≤∗ defined as follows:

f ≤∗ g ⇔ (∃n < ω)(∀k > n)(f(k) ≤ g(k))

for all f, g ∈ ωω. Clearly, b > ω. Since Seq is countable we immediately
obtain the following:

Lemma 1.5. If τ < b and {fα : α < τ} ⊆ Seqω, then there exists g ∈ Seqω
such that

fα ≤∗ g for every α < τ .
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2. Pλ-sets. We use the standard definition of Pλ-filters:

Definition 2.1. A (free) filter F ⊆ P(ω) is called a Pλ-filter whenever
for every family R ⊆ F of size smaller than λ there exists F ∈ F such that
F ⊆∗ U for every U ∈ F .

As usual, F ⊆∗ U means that F \ U is finite. Hence, all P -filters are
just Pω1-filters. A Pλ-filter which is simultaneously an ultrafilter is called a
Pλ-ultrafilter. Since non-empty Gδ’s in βN\N have non-empty interior, non-
trivial P -filters always exist in ZFC, whereas the existence of P -ultrafilters
requires adding some extra assumptions.

Clearly, every set of the form U(s, Φ) is non-compact. Hence, Seq with
the F-topology is nowhere compact. Therefore, the Čech–Stone remainder

Seq∗ = β Seq \ Seq
is dense in β Seq. Consequently, every closed subset of β Seq contained in
Seq∗ is nowhere dense in β Seq.

A subset S of a topological space X is called a Pλ-set for λ ≥ ω if S is
contained in the interior of the intersection of every family of size smaller
than λ consisting of open neighborhoods of S.

Theorem 2.2. Assume F = (Fs : s ∈ Seq) is a collection of Pλ-filters
and ω < λ ≤ b. Then Seq endowed with the F-topology is a Pλ-set in β Seq.

Proof. Assume that τ < λ and {Uα : α < τ} is a family of open subsets of
the Čech–Stone compactification of Seq with the F-topology and Seq ⊆ Uα
for every α < τ . We shall show that

Seq ⊆ Int
⋂
{Uα : α < τ}.

By Lemma 1.2 and the normality of Seq, the sets of the form clU(s, Φs)
(the closure in β Seq) form a clopen base at the point s ∈ Seq. So for every
s ∈ Seq and every α < τ there exists Ψαs ∈

∏
{Ft : t ∈ [s,→)} such that

s ∈ U(s, Ψαs ) ⊆ clU(s, Ψαs ) ⊆ Uα.
For every s ∈ Seq and every t ∈ [s,→) we set

Φαs (t) =
⋂
{Ψαp (t) : p ≤ s}.

Then, by Lemma 1.4, for every s ∈ Seq and every α < τ we have

(1) s ∈ U(s, Φαs ) ⊆ clU(s, Φαs ) ⊆ Uα,
and moreover, for every p ≥ t,
(2) s ≤ t ⇒ Φαt (p) ⊆ Φαs (p).

Since each Fs is a Pλ-filter, for every s ∈ Seq there exists a set As ∈ Fs
such that As ⊆∗ Φαs (s) for all α < τ . Hence, for every α < τ we can define a



92 A. BŁASZCZYK AND A. BRZESKA

function fα : Seq→ ω by

fα(s) = max{n < ω : san ∈ As \ Φαs (s)}+ 1.

Since τ < b, by Lemma 1.5, we have a function g : Seq → ω such that
fα ≤∗ g for all α < τ . Now we define on Seq a function Φ as follows:

Φ(s) = As ∩ {san : n ≥ g(s)}.

Clearly, Φ ∈
∏
{Ft : t ∈ Seq} since As ∈ Fs and Fs contains the Fréchet

filter.

Claim. Assume s ∈ Seq and Ψ ∈
∏
{Ft : t ∈ [s,→)} and α < τ . If

Ψ(t) ⊆ Φ(t) and fα(t) ≤ g(t)

for every t ∈ U(s, Ψ), then

U(s, Ψ) ⊆ U(s, Φαs ).

By Lemma 1.4, to prove the Claim it suffices to show that Ψ(t) ⊆ Φαs (t)
for every t ∈ U(s, Ψ). But if t ∈ U(s, Ψ) and tan ∈ Ψ(t) ⊆ Φ(t), then
tan ∈ At and n ≥ g(t) ≥ fα(t). Hence, by the definition of fα we get
tan ∈ Φαt (t). Finally, by (2), we obtain tan ∈ Φαs (t), which completes the
proof of the claim.

It remains to show that

(3) clU(s, Φ�[s,→)) ⊆ Uα
for every s ∈ Seq and every α < τ . Fix α < τ and suppose that (3) does not
hold for some s ∈ mω. We can assume that m is maximal with this property.
In fact, since the set {t ∈ Seq: fα(t) > g(t)} is finite, by the Claim, for
sufficiently large n < ω we have U(t, Φ�[t,→)) ⊆ U(t, Φαt ) for every t ∈ nω.
Then by (1) we get clU(t, Φ�[t,→)) ⊆ Uα. Thus we can assume that

clU(s, Φ�[s,→)) * Uα for some s ∈ mω

and

(4) clU(t, Φ�[t,→)) ⊆ Uα for every t ∈ m+1ω.

On the other hand, since fα ≤∗ g, there exist t1, . . . , tn ∈ Φ(s) such that
fα(t) ≤ g(t) for every t ∈ U(s,Ω) where Ω ∈

∏
{Ft : t ∈ [s,→)} is defined

by

Ω(t) =

{
Φ(s) \ {t1, . . . , tn} if t = s,
Φ(t) if t 6= s.

Since Ω(t) ⊆ Φ(t) for every t ∈ U(s,Ω), by the Claim and (1) we get

clU(s,Ω) ⊆ Uα.
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Hence, by Lemma 1.3 and (4) we have

clU(s, Φ�[s,→)) = cl
(
{s} ∪

⋃
{U(t, Φ�[t,→) : t ∈ Φ(s)}

)
= cl

(
{s} ∪

⋃
{U(t, Φ�[t,→)) : t ∈ Φ(s) \ {t1, . . . , tn}}

)
∪
⋃
{clU(ti, Φ�[ti,→)) : i ≤ n})

= clU(s,Ω) ∪
⋃
{clU(ti, Φ�[ti,→) : i ≤ n} ⊆ Uα.

This contradiction proves (3) and completes the proof.

The following corollaries follow immediately from Theorem 2.2:

Corollary 2.3 (Simon [11]). If every filter in the collection F = (Fs :
s ∈ Seq) is a P -filter, then Seq endowed with the F-topology is a P -set in
β Seq.

Corollary 2.4 (Juhász and Szymański [6]). If ω < λ ≤ b and Fs = F
for every s ∈ Seq, where F is a Pλ-ultrafilter, then Seq is a Pλ-set in β Seq.

Remark 2.5. Both the results of Simon and of Juhász and Szymański
have the form of an equivalence. A slight modification of the arguments used
in [11] and [6] shows that Theorem 2.2 also yields an equivalence, i.e. one
can prove moreover that if Seq is a Pλ-set in β Seq then F = (Fs : s ∈ Seq)
is a collection of Pλ-filters and ω < λ ≤ b.

3. Skeletal mappings. To prove theorems on skeletal mappings we
shall use a dual version of Theorem 2.2: if F = (Fs : s ∈ Seq) is a collection
of Pλ-filters and ω < λ ≤ b, then the union of less than λ closed subsets of
Seq∗ is a nowhere dense subset of β Seq. First we recall some definitions.

Definition 3.1. A continuous mapping f : X → Y is skeletal whenever
f−1[G] is dense in X for every open and dense G ⊆ Y .

Equivalently, a mapping f : X → Y is skeletal if f−1[F ] is nowhere dense
for every nowhere dense closed set F ⊆ Y . It is clear that f [X] cannot be
nowhere dense in Y for a skeletal mapping f : X → Y . So, it can happen
that f is skeletal as a map into Y but not as a map into Z where Z ⊇ Y .
For this reason we prefer to consider skeletal surjections. Also, if f : X → Y
is skeletal, then it is also skeletal as a surjection of X onto f [X]. In fact,
if F ⊆ f [X] ⊆ Y and F is a nowhere dense subset of f [X], then it is also
nowhere dense in Y .

Skeletal surjections were introduced in the class of Hausdorff spaces by
Mioduszewski and Rudolf [9]. In [3] skeletal mappings are called nowhere
thin.



94 A. BŁASZCZYK AND A. BRZESKA

The equivalences in the following easy proposition are immediate conse-
quences of the definition of skeletal mappings. It will be needed later.

Proposition 3.2. Assume f : X → Y is a continuous surjection, f is a
closed mapping and X is a regular space. Then the following conditions are
equivalent:

(1) f is skeletal,
(2) for every non-empty open set U ⊆ X, Int f [U ] 6= ∅,
(3) for every non-empty open set U ⊆ X there exists a non-empty open

set V ⊆ U such that f [V ] is open,
(4) for every dense set D ⊆ Y , f−1[D] is dense in X.

Proof. (1)⇒(2). Suppose Int f [U ] = ∅. We can choose an open set V ⊆ U
such that ∅ 6= clV ⊆ U . Then F = f [clV ] is a nowhere dense subset of Y
and V ⊆ f−1[F ], a contradiction.

(2)⇒(3). Since Int f [U ] 6= ∅, there exists a non-empty open set W ⊆
f [U ]. We set V = U ∩f−1[W ]. Clearly, V is non-empty, open and f [V ] =W .

(3)⇒(4). If f−1[D] is not dense in X, then there exists a non-empty open
set V ⊆ X such that f−1[D] ∩ V = ∅. We can assume that f [V ] is open.
Since D ∩ f [V ] = ∅, D cannot be dense.

The remaining implication is obvious.

Recall that a set G ⊆ X is regular closed if G = cl IntG. We get the
following corollaries:

Corollary 3.3. If f : X → Y is a skeletal closed surjection, X is a
regular space and G ⊆ X is regular closed in X, then f [G] is regular closed
in Y .

Proof. Suppose there exists an open set U ⊆ Y such that U ∩ f [G] 6= ∅
but U ∩ Int f [G] = ∅. Then V = f−1[U ] ∩ IntG is non-empty and open but
Int f [V ] = ∅, contradicting Proposition 3.2(2).

Corollary 3.4. If f : X → Y is a skeletal closed surjection, X is
a regular space and G ⊆ X is regular closed in X, then the restriction
f�G : G→ f [G] is skeletal.

Proof. Assume U ⊆ f [G] is an open and dense subset of f [G]. By the
previous corollary, f [G] is regular closed and V = (U ∩ Int f [G])∪ (Y \f [G])
is dense and open in Y . Therefore, f−1[V ] is dense and open in X, and in
particular (f�G)−1[U ] = f−1[U ]∩G ⊇ f−1[V ]∩G is dense and open in G.

Example 3.5. Every zero-dimensional compact space admits a skeletal
mapping onto a compactification of a discrete space. In fact, if U is an infinite,
maximal disjoint family of clopen subsets of a zero-dimensional compact
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space X, then the quotient mapping determined by the closed partition

{{U} : U ∈ U} ∪
{
X \

⋃
U
}

is a skeletal mapping onto the one-point compactification of the discrete
space of cardinality |U|.

The above example shows in particular that β Seq with the F-topology
has a skeletal mapping onto the convergent sequence {0} ∪ {1/n : n > 0}.
Hence, β Seq is compact and dense in itself but it has a skeletal mapping
onto the space in which the set of isolated points is dense. In this connection
we also have the following:

Theorem 3.6. Assume F = (Fs : s ∈ Seq) is a collection of Pλ-filters
where ω < λ ≤ b and Seq is endowed with the F-topology. If a continuous
surjection f : β Seq→ X, where X is Hausdorff, is skeletal and πw(X) < λ,
then the set of isolated points in X is dense.

Proof. Suppose the set of isolated points in X is not dense. Then there
exists a non-empty regular closed dense in itself set W ⊆ X. By Proposi-
tion 3.2(3), there exists an open set U ⊆ f−1[W ] such that f [U ] is open. Then
G = clU is regular closed and, by Corollaries 3.4 and 3.3, the mapping f�G
is skeletal and maps G onto the regular closed set f [G] ⊆ W . On the other
hand, f [G] is compact dense in itself, f [Seq] is countable and πw(Y ) < λ.
Hence, there exists a dense set D ⊆ f [G] \ f [Seq] of size smaller than λ.
Then, by Proposition 3.2(4), f−1[D]∩G is dense in G. But f−1[D]∩Seq = ∅.
Hence, by Theorem 2.2, f−1[D] is a nowhere dense subset of β Seq. We get
a contradiction since G is regular closed in β Seq.

The following simple lemma is a direct consequence of the definition of
skeletal mappings.

Lemma 3.7. Assume f : X → Y is a continuous surjection and D ⊆ X
is dense. Then f is skeletal iff f�D : D → f [D] is skeletal.

Apart from skeletal mappings, Burke [3] also considers mappings with a
slightly weaker property.

Definition 3.8. A mapping f : X → Y is called nowhere constant if
f−1(y) is nowhere dense for every y ∈ Y .

Clearly, if a mapping f : X → Y is skeletal and f [X] is dense in itself, then
f is nowhere constant. Example 3.5 shows that in general skeletal mappings
need not be nowhere constant. Also, a nowhere constant mapping need not
be skeletal.
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Burke [3] proved that if X is Tychonoff and there is a nowhere constant
continuous function from X into R, and πw(X) < p, then there also exists a
skeletal function from X into R. He also asked whether there exists (in ZFC)
a Tychonoff space of π-weight p which has a nowhere constant mapping into
R but does not have a skeletal mapping into R [3, Problem 3.12]. We shall
give a partial answer to this question.

We now recall some cardinal characteristics of the continuum. The car-
dinal number p is defined as the minimal cardinality of a base R ⊆ P(ω)
of a free filter for which there is no infinite set A ⊆ ω with A ⊆∗ R for all
R ∈ R. The dominating number is defined as follows:

d = min{|D| : (∀f ∈ ωω)(∃g ∈ D)(f ≤∗ g)}.

It is well known (see e.g. van Douwen [4]) that

ω < p ≤ b ≤ d ≤ 2ω.

Definition 3.9. Let Y be a subset of a topological space X. A collec-
tion B of open neighborhoods of Y is a base of Y if for every open U such
that Y ⊆ U there exists V ∈ B with V ⊆ U .

The character of a (free) filter is the character of the corresponding subset
of ω∗, i.e. for every (free) filter F ⊆ P(ω),

χ(F) = χ(AF , ω
∗),

where
AF =

⋂
{clβN U : U ∈ F}

and
χ(AF , ω

?) = min{|B| : B is a base of AF}.

Lemma 3.10. For every s ∈ Seq we have

χ(s, Seq) = d+ χ(Fs).

The proof of the above lemma can be obtained by a slight modification
of the proof of [6, Theorem 2].

Theorem 3.11. If F = (Fs : s ∈ Seq) is a collection of P -filters of
character ℵ1, then Seq endowed with the F-topology is of π-weight d and
has a nowhere constant mapping into R but does not have a skeletal mapping
into R.

Proof. Since Seq is countable, the equality πw(Seq) = d follows from
Lemma 3.10.

To show that there exists a nowhere constant mapping of Seq endowed
with the F-topology into R we consider a topology on Seq generated by the
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family

B∗ =
{
U(s, Φ) : s ∈ Seq, Φ ∈

∏
{Ft : t ∈ [s,→)},

|succ(t) \ Φ(t)| < ω for t ∈ [s,→) and |{t ∈ Seq: Φ(t) 6= succ(t)}| < ω
}
.

It is easy to see that B∗ is countable and generates a zero-dimensional Haus-
dorff topology on Seq. In fact, if s, t ∈ Seq are non-compatible, then [s,→)
and [t,→) are disjoint neighborhoods of s and t, respectively. If s < t,
then there exists exactly one u ∈ succ(s) such that u ≤ t. Clearly, when
Ψ ∈

∏
{Ft : t ∈ [s,→)} is given by the formula

Ψ(p) =

{
succ(s) \ {u} if p = s,
succ(p) if p 6= s,

then U(s, Ψ) is clopen and disjoint from [t,→).
Moreover, the topology generated by B∗ is nowhere compact and defined

on a countable set. Therefore, by a theorem of Sierpiński [10], Seq with the
topology generated by B∗ is homeomorphic to the space of rational numbers.
Since B∗ ⊆ B, the identity function is a continuous mapping from Seq into R.
This mapping is also nowhere constant because it is one-to-one and Seq
endowed with the F-topology is dense in itself.

It remains to show that there is no skeletal mapping from Seq into R.
Suppose that there exists a skeletal surjection f : Seq → F , where F ⊆ R.
Then, by Lemma 3.7, the Čech–Stone extension βf : β Seq→ clF is a skele-
tal surjection of β Seq onto the closed set clF . Hence, by Theorem 3.6, the
set clF has a dense set of isolated points. Therefore, βf [β Seq] is a nowhere
dense subset of R and thus βf cannot be skeletal. This contradiction com-
pletes the proof.
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