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Abstract. We investigate semi-Riemannian manifolds with pseudosymmetric Weyl
curvature tensor satisfying some additional condition imposed on their curvature tensor.
Among other things we prove that the so-called Roter type equation holds on such man-
ifolds. We present applications of our results to hypersurfaces in semi-Riemannian space
forms, as well as to 4-dimensional warped products.

1. Introduction. We denote by ∇, R, S, C and κ the Levi-Civita con-
nection, the Riemann-Christoffel curvature tensor, the Ricci tensor, the Weyl
conformal curvature tensor and the scalar curvature of an n-dimensional
semi-Riemannian manifold (M, g), respectively. The manifold (M, g), n ≥ 3,
is said to be an Einstein manifold ([B]) if S = (κ/n)g on M . Einstein
manifolds form a subclass of the class of quasi-Einstein manifolds. The man-
ifold (M, g), n ≥ 3, is called a quasi-Einstein manifold if at every point
x ∈ M we have rank(S − αg) ≤ 1, for some α ∈ R, which is equivalent to
(S − αg) ∧ (S − αg) = 0, i.e.
(1.1) 1

2S ∧ S − αg ∧ S + α2G = 0, G = 1
2g ∧ g.

For precise definitions of the symbols used here, we refer to Section 2 (see
also [BDG] and [DG3]). If at every point of M we have rankS ≤ 1 then
(M, g) is called Ricci-simple ([DRV]). Quasi-Einstein manifolds arose during
the study of exact solutions of the Einstein field equations as well as during
considerations of quasi-umbilical hypersurfaces of conformally flat spaces.
Such manifolds were investigated by several autors. Quasi-Einstein mani-
folds, in particular quasi-Einstein hypersurfaces, were studied e.g. in [DG4],
[DH4]–[DH7] and [G3]; see also [DG3] and references therein.
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It is well-known that the semi-Riemannian manifold (M, g), n ≥ 4, is
conformally flat if and only if C = 0 everywhere in M . The last equation
yields

(1.2) R =
1

n− 2
g ∧ S − κ

(n− 2)(n− 1)
G.

The Robertson–Walker spacetimes, and more generally, warped products
of a 1-dimensional manifold and an (n − 1)-dimensional space of constant
curvature, n ≥ 4, are conformally flat quasi-Einstein manifolds. Thus, by
(1.1) and (1.2), the curvature tensor R of such manifolds is expressed by

R =
1

2
S ∧ S +

(
1

n− 2
− α

)
g ∧ S +

(
α2 − κ

(n− 2)(n− 1)

)
G.

There are also non-conformally flat and non-quasi-Einstein manifolds satis-
fying an equation of this kind. Namely, as explained in Remark 4.1 of this
paper, the curvature tensor R of some semi-Riemannian manifolds is a linear
combination of the tensors S ∧ S, g ∧ S and G, i.e.

(1.3) R =
φ

2
S ∧ S + µg ∧ S + ηG,

where φ, µ and η are some functions. More precisely, the curvature tensor
R of some manifolds (M, g), n ≥ 4, satisfies (1.3) on a specific open set U
defined in Remark 4.1. The manifold (M, g), n ≥ 4, is said to be a Roter
type manifold ([D4], [G2]) if (1.3) holds on the set U just mentioned, and U
is a non-empty set. Condition (1.3) is called the Roter type equation ([D4]).
We refer to [D4], [DH5], [DK], [DP], [DS], [G1] and [K2] for results on Roter
type manifolds. In particular, examples of warped products satisfying (1.3)
are given in [DK], [DP], [DS], [K1] and [K2].

In Section 3 we consider generalized curvature tensors B having some
additional properties. The main result (Theorem 3.3) states that under some
conditions imposed on a generalized curvature tensor B, its Weyl tensor
Weyl(B), and Ricci tensor Ric(B) (see (3.5)–(3.7)), the tensor B is a linear
combination of Ric(B)∧Ric(B), g∧Ric(B) and G, i.e. B satisfies the Roter
type equation (3.26), a special case of which is (1.3).

It should be pointed out that (3.26) is known to imply further interesting
relations ([K2, Proposition 4.1]). As a result we also have a family of such
relations when the curvature tensor R of a manifold (M, g), n ≥ 4, satisfies
(1.3). Among those relations there is a condition which is invariant under
conformal deformations of g:

(1.4) C · C = LCQ(g, C),

for some function LC , with C · C and Q(g, C) defined as in Section 2 be-
low. A manifold (M, g), n ≥ 4, satisfying (1.4) is called a manifold with
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pseudosymmetric Weyl tensor . Results on manifolds (in particular, hyper-
surfaces in space forms) satisfying (1.4) appear e.g. in [ACD], [DD], [DDV],
[DY1]–[DY3], [MAD] and [S1]. We also mention that every Chen type ideal
submanifold and every Wintgen submanifold satisfy (1.4) (see, e.g., [DS1],
[DS2], [DG6]).

Section 4 contains results on manifolds with pseudosymmetric Weyl ten-
sor. Our main result (Theorem 4.4) states that under some additional as-
sumptions the Roter type equation (1.3) is satisfied on such manifolds. We
present some applications of that theorem to warped product manifolds
(Corollaries 4.5–4.7), as well as to hypersurfaces in semi-Riemannian space
forms (Theorem 4.8, Corollary 4.9).

2. Preliminaries. Throughout this paper all manifolds are assumed
to be connected paracompact manifolds of class C∞. Let (M, g) be an n-
dimensional, n ≥ 3, semi-Riemannian manifold and let ∇ be its Levi-Civita
connection and Ξ(M) the Lie algebra of vector fields on M . We define the
endomorphisms X ∧A Y and R(X,Y ) of Ξ(M) by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y,
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where A is a symmetric (0, 2)-tensor on M and X,Y, Z ∈ Ξ(M). The Ricci
tensor S, the Ricci operator S and the scalar curvature κ of (M, g) are defined
by S(X,Y ) = tr{Z → R(Z,X)Y }, g(SX,Y ) = S(X,Y ) and κ = trS,
respectively. The endomorphism C(X,Y ) is defined by

C(X,Y )Z = R(X,Y )Z − 1

n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z.

Now the (0, 4)-tensor G, the Riemann–Christoffel curvature tensor R and
the Weyl conformal curvature tensor C of (M, g) are defined by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

where X1, X2, . . . ∈ Ξ(M). We define the following subsets of M :

UR =

{
x ∈M

∣∣∣∣ R− κ

(n− 1)n
G 6= 0 at x

}
,

US =

{
x ∈M

∣∣∣∣ S − κ

n
g 6= 0 at x

}
,

UC = {x ∈M |C 6= 0 at x}.

We note that US ∪ UC = UR.
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Let B be a tensor field sending any X,Y ∈ Ξ(M) to a skew-symmetric
endomorphism B(X,Y ), and let B be a (0, 4)-tensor associated with B by

(2.1) B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).

The tensor B is said to be a generalized curvature tensor if the following
conditions are fulfilled:

B(X1, X2, X3, X4) = B(X3, X4, X1, X2)

B(X1, X2, X3, X4) +B(X3, X1, X2, X4) +B(X2, X3, X1, X4) = 0.

For B as above, let B be again defined by (2.1). We extend the endomor-
phism B(X,Y ) to a derivation B(X,Y )· of the algebra of tensor fields onM ,
assuming that it commutes with contractions and B(X,Y ) · f = 0 for any
smooth function f on M . For a (0, k)-tensor field T , k ≥ 1, we can define
the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk, X, Y ) = (B(X,Y ) · T )(X1, . . . , Xk)

= −T (B(X,Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).

In addition, if A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-
tensor Q(A, T ) by

Q(A, T )(X1, . . . , Xk, X, Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).

In this manner we obtain the (0, 6)-tensors B · B and Q(A,B). Setting in
the above formulas B = R or B = C, T = R or T = C or T = S, A = g
or A = S, we get the tensors R · R, R · C, C · R, C · C, R · S, Q(g,R),
Q(S,R), Q(g, C) and Q(g, S). The tensor Q(A, T ) is called the Tachibana
tensor of the tensors A and T , or briefly the Tachibana tensor (see, e.g.,
[DG7]). We mention that in some papers the tensor Q(g,R) is called the
Tachibana tensor ([HV1], [JH1], [JH2], [PTV]).

For a symmetric (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2, we define
their Kulkarni–Nomizu product E ∧ T by ([DG2])

(E ∧ T )(X1, X2, X3, X4;Y3, . . . , Yk)

= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

− E(X1, X3)T (X2, X4, Y3, . . . , Yk)− E(X2, X4)T (X1, X3, Y3, . . . , Yk).

The following tensors are generalized curvature tensors: R, C, G and E ∧F ,
where E and F are symmetric (0, 2)-tensors. For a symmetric (0, 2)-tensor
E we define the (0, 4)-tensor E by E = 1

2E ∧ E. In particular, we have
g = G = 1

2g ∧ g. Now we can express the Weyl tensor by

(2.2) C = R− 1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.
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Let {e1, . . . , en} be an orthonormal basis of TxM at a point x ∈ M of a
semi-Riemannian manifold (M, g), n ≥ 3, and let

g(ej , ek) = εjδjk, εj = ±1, j, k ∈ {1, . . . , n}.

For a generalized curvature tensor B on M we denote by Ric(B), κ(B) and
Weyl(B) its scalar curvature, Ricci tensor and Weyl tensor, respectively. We
have

(2.3)

Ric(B)(X,Y ) =
n∑
j=1

εjB(ej , X, Y, ej),

κ(B) =

n∑
j=1

εj Ric(B)(ej , ej),

Weyl(B) = B − 1

n− 2
g ∧ Ric(B) +

κ(B)

(n− 2)(n− 1)
G.

We denote by URic(B), respectively, UWeyl(B), the set of all points at which
the tensor Ric(B) is not proportional to g, respectively, the tensor Weyl(B)
is non-zero.

Let Bhijk, Thijk, and Aij be the local components of generalized curva-
ture tensors B and T and a symmetric (0, 2)-tensor A on M , respectively,
where h, i, j, k, l,m, p, q ∈ {1, . . . , n}. The local components (B ·T )hijklm and
Q(A, T )hijklm of the tensors B · T , Q(A, T ), B ·A and Q(g,A) are

(B · T )hijklm = gpq(TpijkBqhlm + ThpjkBqilm + ThipkBqjlm + ThijpBqklm),

Q(A, T )hijklm = AhlTmijk +AilThmjk +AjlThimk +AklThijm

−AhmTlijk −AimThljk −AjmThilk −AkmThijl,
(B ·A)hklm = gpq(ApkBqhlm +AphBqklm),

Q(g,A)hklm = ghlAkm + gklAhm − ghmAkl − gkmAhl.

From the last equation, by contraction with gij and ghm, we obtain

grsQ(A, T )hrsklm = AslTskhm −AslTshmk −AsmTskhl +AsmTshlk(2.4)
+Q(A,Ric(T ))hklm,

grsQ(A, T )rijkls = −AsiTsljk +AslTsijk +AsjTsikl +AskTsilj(2.5)

+Alk Ric(T )ij −AjlRic(T )ik − grsArs Tlijk,
grsQ(g,A)rkls = tr(A)gkl − nAkl.(2.6)

[DG7, Lemma 2.1 and Proposition 2.1] yield

Proposition 2.1. Let T be a generalized curvature tensor on a semi-
Riemannian manifold (M, g), n ≥ 4. If on UWeyl(T ) ⊂M we have

T · T −Q(Ric(T ), T ) = L1Q(g,Weyl(T ))
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for some function L1 on UWeyl(T ), then at every point of this set we have

(2.7) Ric(T )shTsklm +Ric(T )slTskmh +Ric(T )smTskhl = 0,

where Ric(T )ij and Thijk are the local components of Ric(T ) and T , respec-
tively.

For a symmetric (0, 2)-tensor A we define the endomorphism A and the
tensor A2 by g(AX,Y ) = A(X,Y ) and A2(X,Y ) = A(AX,Y ), respectively.

Lemma 2.2. Let E1, E2 and F be symmetric (0, 2)-tensors at a point x
of a semi-Riemannian manifold (M, g), n ≥ 3.

(i) ([DG1], [DG2]) At x we have

E1 ∧Q(E2, F ) + E2 ∧Q(E1, F ) +Q(F,E1 ∧ E2) = 0.

In particular, if E = E1 = E2 then at x we have

(2.8) E ∧Q(E,F ) = −Q(F,E).

Moreover (see, e.g., [DG4, Section 3])

(2.9) Q(E,E ∧ F ) = −Q(F,E).

(ii) [K2, Lemma 3.2] At x we have

(2.10)
G · F = Q(g, F ), (g ∧ F ) · F = Q(g, F 2),

−(g ∧ F ) · (g ∧ F ) = Q(F 2, G).

Moreover, if B is a generalized curvature tensor then

(2.11) G ·B = Q(g,B).

(iii) (see, e.g., [DY5, Lemma 2.4(iii)]) At x we have

Q(E1, E2 ∧ F ) +Q(E2, F ∧ E1) +Q(F,E1 ∧ E2) = 0.

Remark 2.3. Let (M, g), n ≥ 3, be a semi-Riemannian manifold. Let
A, E and F be symmetric (0, 2)-tensors and B and T generalized curvature
tensors at a point x ∈M .

(i) [G, Lemma 2] states that if R · E = 0 and R ·A = Q(g, F ) at x then(
E − tr(E)

n g
)(
F − tr(F )

n g
)
= 0 at this point. The same proof shows that R

can be replaced by T .
(ii) By [G, Theorem 1], if R · B = 0 and R · A = Q(g, F ) at x then(

F − tr(F )
n g

)(
B − κ(B)

(n−1)nG
)
= 0 at this point. Again, R can be replaced

by T .
(iii) By [DH2, Lemma 1], if R ·E = αQ(g,E), α ∈ R, and R ·A = Q(g, F )

at x then
(
F − αA− tr(F−αA)

n g
)(
E − tr(E)

n g
)
= 0 at this point. Here too, R

can be replaced by T .
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(iv) By [DH2, Lemma 2], if R ·B = αQ(g,B), α ∈ R, and R ·A = Q(g, F )

at x then
(
F − αA− tr(F−αA)

n g
)(
B − κ(B)

(n−1)nG
)
= 0 at this point, and again

we observe that R can be replaced by T .

Proposition 2.4 (see, e.g., [DH3, Lemma 3.4]). Let (M, g), n ≥ 3, be a
semi-Riemannian manifold. Let a non-zero symmetric (0, 2)-tensor E and a
generalized curvature tensor T , defined at x ∈M , satisfy Q(E, T ) = 0 at x.
In addition, let Y be a vector at x such that the scalar ρ = w(Y ) is non-zero,
where w is the covector defined by w(X) = E(X,Y ), X ∈ TxM . Then either

(i) E − ρw ⊗ w 6= 0 and T = λE ∧ E, λ ∈ R, or
(ii) E = ρw ⊗ w and

(2.12) w(X)T (Y,Z,X1, X2) + w(Y )T (Z,X,X1, X2)

+ w(Z)T (X,Y,X1, X2) = 0, X, Y, Z,X1, X2 ∈ TxM.

Moreover, in both cases the following condition holds at x:

(2.13) T · T = Q(Ric(T ), T ).

3. Identities for generalized curvature tensors. In this section we
present results on generalized curvature tensors satisfying some conditions.

Proposition 3.1. If B is a generalized curvature tensor on a semi-Rie-
mannian manifold (M, g), n ≥ 4, then the following identities are satisfied
on M :

(3.1) (n− 2)(B ·Weyl(B)−Weyl(B) ·B) +
κ(B)

n− 1
Q(g,Weyl(B))

= (g ∧ Ric(B)) ·Weyl(B)− g ∧ (Weyl(B) · Ric(B)),

(3.2) Weyl(B) ·Weyl(B) = B ·B

− 1

n− 2
((g ∧ Ric(B)) ·B + g ∧ (B · Ric(B)))

+
κ(B)

(n− 2)(n− 1)
Q(g,Weyl(B))− 1

(n− 2)2
Q((Ric(B))2, G).

Proof. Using (2.3), (2.9) and (2.11), we obtain the identities

Q(g,Weyl(B)) = Q(g,B) +
1

n− 2
Q(Ric(B), G),

Weyl(B) ·Weyl(B) = Weyl(B) ·
(
B − 1

n− 2
g ∧ Ric(B)(3.3)

+
κ(B)

(n− 2)(n− 1)
G

)
= Weyl(B) ·B − 1

n− 2
g ∧ (Weyl(B) · Ric(B)),
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Weyl(B) ·Weyl(B) =

(
B − 1

n− 2
g ∧ Ric(B)(3.4)

+
κ(B)

(n− 2)(n− 1)
G

)
·Weyl(B)

= B ·Weyl(B)− 1

n− 2
(g ∧ Ric(B)) ·Weyl(B)

+
κ(B)

(n− 2)(n− 1)
Q(g,Weyl(B)),

B ·Weyl(B) = B ·B − 1

n− 2
g ∧ (B · Ric(B)).

From (3.3) and (3.4) we easily get (3.1). Further, by making use of (2.3),
(2.10) and (2.11), we find

Weyl(B) ·Weyl(B) = Weyl(B) ·B − 1

n− 2
Weyl(B) · (g ∧ Ric(B))

= B ·B − 1

n− 2
(g ∧ Ric(B)) ·B +

κ(B)

(n− 2)(n− 1)
Q(g,B)

− 1

n− 2
g ∧ (B · Ric(B)) +

1

(n− 2)2
(g ∧ Ric(B)) · (g ∧ Ric(B))

− κ(B)

(n− 2)2(n− 1)
G · (g ∧ Ric(B))

= B ·B +
κ(B)

(n− 2)(n− 1)
Q(g,B)− 1

(n− 2)2
Q((Ric(B))2, G)

− κ(B)

(n− 2)2(n− 1)
Q(g, g ∧ Ric(B))

− 1

n− 2
((g ∧ Ric(B)) ·B + g ∧ (B · Ric(B))).

By making use of (2.3), we rewrite this as (3.2), completing the proof.

Proposition 3.2. Let B be a generalized curvature tensor on a semi-
Riemannian manifold (M, g), n ≥ 4, satisfying on URic(B) ∩ UWeyl(B) ⊂M ,

B ·B −Q(Ric(B), B) = L1Q(g,Weyl(B)),(3.5)
Weyl(B) ·Weyl(B) = LWeyl(B)Q(g,Weyl(B)),(3.6)

B · Ric(B) = Q(g,D),(3.7)
where D is a symmetric (0, 2)-tensor and L1 and L2 = LWeyl(B) some func-
tions on this set. Then on URic(B) ∩ UWeyl(B) we have

Weyl(B) · Ric(B) = L2Q(g,Ric(B))),(3.8)
Weyl(B) ·B = L2Q(g,B),(3.9)

(Ric(B))2 = λ0Ric(B) + λ3g,(3.10)
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(3.11) D = (L2 −
κ(B)

(n− 2)(n− 1)
+

λ0
n− 2

)Ric(B) + λ4g,

(3.12) B · Ric(B) =

(
L2 −

κ(B)

(n− 2)(n− 1)
+

λ0
n− 2

)
Q(g,Ric(B)),

(3.13) Q(Ric(B)− α1g,Weyl(B) + α2G)

=
1

4(n− 2)
Q(g,Ric(B) ∧ Ric(B)),

where λ0, λ3 and λ4 are some functions and

2α1 =
κ(B)

n− 1
− L1 + L2, (n− 2)α2 =

λ0 − κ(B)

2(n− 2)
+ L2.

Proof. First of all we note that the following identity is satisfied on a
coordinate domain of a point of URic(B) ∩ UWeyl(B):

(3.14) ((g ∧ Ric(B)) ·B)hijklm = Q(Ric(B), B)hijklm

+ ghlAmijk − ghmAlijk − gilAmhjk + gimAlhjk

+ gjlAmkhi − gjmAlkhi − gklAmjhi + gkmAljhi,

where Amijk = grsRic(B)rmBsijk. Further, applying (2.8), (2.9), (3.5), (3.6),
(3.7) and (3.14) to (3.2) we get

(3.15) ghlAmijk − ghmAlijk − gilAmhjk + gimAlhjk

+ gjlAmkhi − gjmAlkhi − gklAmjhi + gkmAljhi

=

(
κ(B)

n− 1
+ (n− 2)(L1 − LWeyl(B))

)
Q(g,Weyl(B))hijklm

+ (n− 3)Q(Ric(B), B)hijklm

−Q
(
g, g ∧

(
D − 1

n− 2
(Ric(B))2

))
hijklm

.

Furthermore (2.6) and (3.7) yield

(3.16)
(a) Ailjk = −Alijk +Q(g,D)lijk,

(b) Eij = Ric(B)rsBsijr = ((Ric(B))2)ij − nDij + tr(D)gij .

Contracting (3.15) with ghm and using (2.4), (2.5), (2.7) and (3.16)(a) we
find

(3.17) − 2(n− 2)Alijk + gklEij − gjlEik
= −(κ(B) + (n− 2)(n− 1)(L1 − L2))Weyl(B)lijk

+ (n− 3)(Ric(B)ij Ric(B)lk − Ric(B)ik Ric(B)jl)

− (n− 3)κ(B)Blijk
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− (n− 3)Q(g,D)lijk + (n− 1)

(
g ∧

(
D − 1

n− 2
(Ric(B))2

))
lijk

− (n− 2)

(
glk

(
D − 1

n− 2
(Ric(B))2

)
ij

− gjl
(
D − 1

n− 2
(Ric(B))2

)
ik

)
−
(
tr(D)− 1

n− 2
tr((Ric(B))2)

)
(glkgij − gjlgik).

Now (3.17), combined with (2.3) and (3.16)(b), yields

(3.18) 2(n− 2)Alijk = (n− 2)(κ(B) + (n− 1)(L1 − L2))Weyl(B)lijk

− (n− 3)(Ric(B)lk Ric(B)ij − Ric(B)ik Ric(B)jl)

+ (n− 3)Q(g,D)lijk − 2(gklDij − gjlDik)

−
(
g ∧

(
(n− 1)D − n− 1

n− 2
(Ric(B))2 − (n− 3)κ(B)

n− 2
Ric(B)

))
lijk

−
(
(n− 3)(κ(B))2

(n− 2)(n− 1)
− 2 tr(D) +

1

n− 2
tr((Ric(B))2)

)
Glijk.

Multiplying (3.15) by 2(n− 2) and using (3.18) we obtain

(n− 2)(κ(B) + (n− 1)(L1 − L2))Q(g,Weyl(B))

− n− 3

2
Q(g,Ric(B) ∧ Ric(B))− (n− 1)Q(g, g ∧D)

+
n− 1

n− 2
Q(g, g ∧ (Ric(B))2) +

(n− 3)κ(B)

n− 2
Q(g, g ∧ Ric(B))

+ (n− 3)Q(g, g ∧D)

= 2(n− 2)

(
κ(B)

n− 1
+ (n− 2)(L1 − L2)

)
Q(g,Weyl(B))

+ 2(n− 2)(n− 3)Q(Ric(B), B)− 2(n− 2)Q(g, g ∧D)

+ 2Q(g, g ∧ (Ric(B))2),

which leads to

(3.19) Q(Ric(B), B) = Q(g, T1),

where

T1 =
1

2

(
κ(B)

n− 1
− L1 + L2

)
Weyl(B)− 1

4(n− 2)
Ric(B) ∧ Ric(B)

+
1

2(n− 2)2
g ∧ (κ(B)Ric(B)− (Ric(B))2 + 2(n− 2)D),
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(3.20) D =
1

n− 2
(Ric(B))2 +

(
L2 −

κ(B)

(n− 2)(n− 1)

)
Ric(B) + λg,

and λ is some function. Now (3.5) and (3.19) yield

B ·B = Q(g, T ) where T = T1 + L1Weyl(B).

We can easily check that

(3.21) Weyl(B) ·Ric(B) = Q

(
g,D− 1

n− 2

(
(Ric(B))2− κ(B)

n− 1
Ric(B)

))
,

is an immediate consequence of Lemma 2.2(ii), (2.3) and (3.7). Next (3.6)
and (3.21), in view of Remark 2.3(iv), lead to (3.20). Further, (3.20) and
(3.21) give (3.8). Now (3.9) is a consequence of (2.3), (2.8), (2.9), (3.3), (3.6)
and (3.8).

Transvecting (3.18) with Ric(B)km = Ric(B)mrg
rk we get

(3.22) 2(n− 2)Ric(B)rmRic(B)slBrjis = α1Ric(B)rmWeyl(B)rjil

− (n− 3)(Ric(B)ij(Ric(B))2lm − Ric(B)jl(Ric(B))2im)

+ (n− 3)(gljFim + gijFlm − Ric(B)lmDij − Ric(B)imDlj)

− 2(Ric(B)lmDij − gjlFim) + λ1(gij Ric(B)lm − glj Ric(B)im)

+ (κ(B)− (n− 1)L2)(gij(Ric(B))2lm − glj(Ric(B))2im
+Ric(B)ij Ric(B)lm − Ric(B)imRic(B)jl),

where Fim = Ric(B)riDrm, α1 = (n − 2)(κ(B) + (n − 1)(L1 − L2)) and λ1
is some function. Symmetrizing (3.22) in j,m and using (3.7) and (3.8), we
obtain

2(n− 2)(gimFjl + gijFlm − Ric(B)lmDij − Ric(B)jlDim)

= α2Q(g,Ric(B))jmil − (n− 3)Q(Ric(B), (Ric(B))2)jiml

+ (κ(B)− (n− 1)L2)Q(g, (Ric(B))2)jmil

− (n− 1)(Ric(B)lmDij +Ric(B)ljDim)

− (n− 3)(Ric(B)imDlj +Ric(B)ijDlm)

+ (n− 1)(gjlFim + glmFij) + (n− 3)(gilFlm + gimFjl),

α2 = α1L2 + λ1, and

α2Q(g,Ric(B))− (n− 3)Q(Ric(B), (Ric(B))2)

+ (κ(B)− (n− 1)L2)Q(g, (Ric(B))2)

− (n− 3)Q(Ric(B), D)− (n− 1)Q(g, F ) = 0,
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which, by (3.20), turns into

Q(g, F ) = Q

(
g,

α2

n− 1
Ric(B) +

(
κ(B)

n− 1
− L2

)
(Ric(B))2

)
(3.23)

− n− 3

n− 2
Q(Ric(B), (Ric(B))2).

Applying a suitable contraction to (3.23) and making use of (2.6), we get

F =

(
α2

n− 1
+

(n− 3) tr((Ric(B))2)

(n− 2)n

)
Ric(B)

+

(
(2n− 3)κ(B)

(n− 2)(n− 1)n
− L2

)
(Ric(B))2 + λ2g,

where λ2 is some function. Substituting this into (3.23) and using [DV,
Lemma 2.4(ii)] we obtain (3.10). Now (3.10) and (3.20) lead to (3.11). Next,
using (3.7), (3.10) and (3.20) we find (3.12). From (3.11) we have

2(n− 2)D =

(
2λ0 + 2(n− 2)L2 −

2κ(B)

n− 1

)
Ric(B) + 2(n− 2)λ4g,

which can be rewritten in the form

(3.24) κ(B)Ric(B)− (Ric(B))2 + 2(n− 2)D

=

(
λ0 + 2(n− 2)L2 +

(n− 3)κ(B)

n− 1

)
Ric(B) + λ5g.

Now (3.19), by (3.24), turns into

Q(Ric(B), B)

= Q

(
g,

1

2

(
κ(B)

n− 1
− L1 + L2

)
Weyl(B)− 1

4(n− 2)
Ric(B) ∧ Ric(B)

+
1

2(n− 2)2
g ∧

(
λ0 + 2(n− 2)L2 +

(n− 3)κ(B)

n− 1

)
Ric(B)

)
.

This together with the identity

Q

(
Ric(B),− 1

n− 2
g ∧ Ric(B) +

κ(B)

(n− 2)(n− 1)
G

)
= Q

(
g,

1

2(n− 2)
Ric(B) ∧ Ric(B)− κ(B)

(n− 2)(n− 1)
g ∧ Ric(B)

)
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gives

Q

(
Ric(B), B − 1

n− 2
g ∧ Ric(B) +

κ(B)

(n− 2)(n− 1)
G

)
= Q

(
g,

1

2

(
κ(B)

n− 1
− L1 + L2

)
Weyl(B) +

1

4(n− 2)
Ric(B) ∧ Ric(B)

+ g ∧
(

λ0
2(n− 2)2

+
L2

n− 2
− κ(B)

2(n− 2)2

)
Ric(B)

)
,

and

Q

(
Ric(B)− 1

2

(
κ(B)

n− 1
− L1 + L2

)
g,Weyl(B)

)
=

1

4(n− 2)
Q(g,Ric(B)∧Ric(B))+

(
λ0 − κ(B)

2(n− 2)2
+

L2

n− 2

)
Q(g, g∧Ric(B)),

i.e. (3.13). Our proposition is thus proved.

Theorem 3.3. Let B be a generalized curvature tensor on a semi-Rieman-
nian manifold (M, g), n ≥ 4, such that the conditions (3.5)–(3.7) hold on
URic(B) ∩ UWeyl(B) ⊂M . Then on this set we have

(3.25) B ·B =

(
L2 −

κ(B)

(n− 2)(n− 1)
+

λ0
n− 2

)
Q(g,B).

Moreover, if rank(Ric(B)− α1g) ≥ 2 at a point x ∈ URic(B) ∩ UWeyl(B) then
on some open neighbourhood U1 ⊂ URic(B) ∩ UWeyl(B) of x we have

(3.26) B =
φ

2
Ric(B) ∧ Ric(B) + µg ∧ Ric(B) + ηG,

where φ, η and µ are some functions on U1.
Proof. (i) Let rank(Ric(B)−α1g) = 1 at a point x ∈ URic(B) ∩UWeyl(B),

i.e. at this point we have

(3.27) Ric(B)− α1g = εw ⊗ w, ε = ±1, w ∈ T ∗xM.

Applying (3.27) in (3.13) we find

(3.28) Q(w ⊗ w, T ) = 0, T = B + α3G, α3 ∈ R.
From (3.28), in view of Proposition 2.4(ii), it follows that (2.12) and (2.13)
hold at x. Since Ric(T ) = Ric(B) + (n− 1)α3g, (2.13) turns into

(B + α3G) · (B + α3G) = Q(Ric(B), T ) + (n− 1)α3Q(g, T ),

which, as a consequence of (2.11), turns into

B ·B = Q(Ric(B)− α1g, T ) + (α1 + (n− 2)α3)Q(g, T ).

This, by (3.27), takes the form

B ·B = εQ(w ⊗ w, T ) + (α1 + (n− 2)α3)Q(g,B),
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which by (3.28) reduces to

(3.29) B ·B = (α1 + (n− 2)α3)Q(g,B).

This, by a suitable contraction, yields

(3.30) B · Ric(B) = (α1 + (n− 2)α3)Q(g,Ric(B)).

Comparing the right-hand sides of (3.12) and (3.30) we get

α1 + (n− 2)α3 = L2 −
κ(B)

(n− 2)(n− 1)
+

λ0
n− 2

.

Therefore (3.29) turns into (3.25).
(ii) Let rank(Ric(B)− α1g) ≥ 2 at a point x ∈ URic(B) ∩ UWeyl(B).
If α1 6= 0 at x then from (3.13) it follows that

Q(Ric(B)− α1g,Weyl(B) + α2G)

= Q

(
Ric(B)− α1g,−

1

4(n− 2)α1
Ric(B) ∧ Ric(B)

)
,

i.e.

(3.31) Q

(
Ric(B)− α1g,

Weyl(B) +
1

4(n− 2)α1
Ric(B) ∧ Ric(B) + α2G

)
= 0

holds at x. From (3.31), in view of Proposition 2.4(i), at x we have:

Weyl(B) +
1

4(n− 2)α1
Ric(B) ∧ Ric(B) + α2G

= τ1(Ric(B)− α1g) ∧ (Ric(B)− α1g),

which leads to (3.26).
If α1 = 0 at x then from (3.13) it follows that

Q(Ric(B),Weyl(B) + α2G) = −
1

2(n− 2)
Q(Ric(B), g ∧ Ric(B)),

i.e.

(3.32) Q

(
Ric(B),Weyl(B) +

1

2(n− 2)
g ∧ Ric(B) + α2G

)
= 0

at x. From (3.32), in view of Proposition 2.4(i), at x we have

Weyl(B) +
1

2(n− 2)
g ∧ Ric(B) + α2G = τ2Ric(B) ∧ Ric(B),

which leads to (3.26).
From (3.26), in view of [K2, Proposition 4.1], it follows that

(3.33) B ·B = LRQ(g,B)



SEMI-RIEMANNIAN MANIFOLDS 163

on U1, where LR is some function on this set. But (3.33), by a suitable
contraction, gives

(3.34) B · Ric(B) = LRQ(g,Ric(B)).

Comparing the right-hand sides of (3.12) and (3.34) we get

LR = L2 −
κ(B)

(n− 2)(n− 1)
+

λ0
n− 2

.

Therefore (3.33) turns into (3.25). Our proposition is thus proved.

4. Conditions of pseudosymmetry type. Let (M, g), n = dimM ,
be a semi-Riemannian manifold. The manifold (M, g), n ≥ 3, is said to be
pseudosymmetric ([BDG], [D3, Section 3.1], [DH1]) if at every point of M
the tensors R ·R and Q(g,R) are linearly dependent. This is equivalent to

(4.1) R ·R = LRQ(g,R)

on UR ⊂ M , where LR is some function on UR. The class of pseudosym-
metric manifolds is an extension of the class of semisymmetric manifolds
(R · R = 0). We refer to Sections 3 and 4 of [BDG] for a survey of related
results. A geometric interpretation of the notion of pseudosymmetry is given
in [HV1]. We also refer to [DH1, Chapter 6] and [HV2] for a recent exposition
of the notion of pseudosymmetry.

We note that the tensor Q(g,R) of a manifold (M, g), n ≥ 3, vanishes at
x ∈M if and only if R = κ

(n−1)nG at x (see, e.g., [D2, Remark 1]). Moreover,
the last condition also implies R · R = 0 at x. Therefore, if R · R 6= 0 at a
point of M then Q(g,R) is non-zero at this point.

The manifold (M, g), n ≥ 3, is said to be Ricci-pseudosymmetric ([BDG],
[D3, Section 4.1], [DH1]) if at every point ofM the tensors R ·S and Q(g, S)
are linearly dependent. This is equivalent to

(4.2) R · S = LSQ(g, S)

on US ⊂ M , where LS is some function on US . The class of Ricci-pseudo-
symmetric manifolds is an extension of the class of Ricci-semisymmetric
manifolds (R · S = 0), as well as of the class of pseudosymmetric mani-
folds (see [BDG], [D3]). A geometric interpretation of the notion of Ricci-
pseudosymmetry is given in [JH2].

We note that the tensor Q(g, S) of a manifold (M, g), n ≥ 3, vanishes at
x ∈ M if and only if S = (κ/n)g at x (see, e.g., [D2, Lemma 3]). The last
condition also implies R · S = 0 at x. Clearly, if R · S 6= 0 at a point of M
then Q(g, S) is non-zero at this point.

The manifold (M, g), n ≥ 4, is said to be Weyl-pseudosymmetric ([BDG],
[DH2, Section 4.1], [DH1]) if at every point ofM the tensors R·C andQ(g, C)
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are linearly dependent. This is equivalent to

(4.3) R · C = L1Q(g, C)

on UC ⊂ M , where L1 is some function on UC . It is obvious that on UR
(4.1) implies (4.3), with L1 = LR. Conversely, for manifolds (M, g), n ≥ 5,
on UC ⊂M (4.3) implies (4.1), with LR = L1. For n = 4 the last statement
is not true (see, e.g., [D3, Section 4.2] and references therein). A geometric
interpretation of the notion of Weyl-pseudosymmetry is given in [JH1].

The manifold (M, g), n ≥ 4, is said to be a manifold with pseudosym-
metric Weyl tensor ([BDG], [D3, Section 12.6]) if at every point of M the
tensors C ·C and Q(g, C) are linearly dependent. This is equivalent to (1.4)
on UC ⊂M , where LC is some function on UC .

We note that the tensor Q(g, C) of a manifold (M, g), n ≥ 4, vanishes
at x ∈ M if and only if C = 0 at x (see, e.g., [D2, Remark 1]). The last
condition also implies R ·C = C ·C = 0 at x. Clearly, if R ·C 6= 0 or C ·C 6= 0
at a point of M then Q(g, C) is non-zero at this point.

We can also investigate manifolds (M, g), n ≥ 4, satisfying the following
condition on UC ⊂M (see, e.g., [DDP], [DH3]):

(4.4) R ·R−Q(S,R) = LQ(g, C).

Wemention that (4.4) holds on every hypersurfaceM isometrically immersed
in a semi-Riemannian space of constant curvature Nn+1

s (c), n ≥ 4. Precisely,
we have ([DV])

(4.5) R ·R−Q(S,R) = − (n− 2)κ̃

n(n+ 1)
Q(g, C),

where κ̃ is the scalar curvature of the ambient space. We also mention that
conformally flat manifolds, of dimension ≥ 4, satisfying R ·R = Q(S,R) were
investigated in [D1].

The conditions (4.1)–(4.4), as well as other relations of this kind, are
called curvature conditions of pseudosymmetry type. For a survey of results
on such conditions we refer to [BDG], [DG3] and [DG5] (see also [DH1], [G2]
and [S2]).

Remark 4.1. (i) Let (M, g), n ≥ 4, be a semi-Riemannian manifold and
let U be the set of all points of US ∩UC ⊂M at which rank(S −αg) ≥ 2 for
any α ∈ R. In [DY4, Theorem 3.1] it is proved that if a pseudosymmetric
manifold (M, g), n ≥ 4, satisfies (1.4) on UC ⊂M then

(4.6) Q(S − β1g, C − β2G) = 0

on this set, where β1 and β2 are some functions on UC . From (4.6), in view
of Proposition 2.4(i) it follows that

C − β2G = λ(S − β1g) ∧ (S − β1g)
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on U ⊂M , where λ is some function on this set. The last equation, together
with (2.2), leads to (1.3).

(ii) In [DH3, p. 40] it is proved that if a pseudosymmetric manifold (M, g),
n ≥ 4, satisfies (4.4) on UC ⊂M then

Q(S − β3g,R− β4G) = 0(4.7)

on this set, where β3 and β4 are some functions on UC . Now from (4.7), in
view of Proposition 2.4(i) it follows that (1.3) holds on U ⊂M .

But on the other hand we have

Theorem 4.2 (see, e.g., [G2]). If (M, g), n ≥ 4, is a semi-Riemannian
manifold satisfying (1.3) on U ⊂M then the following conditions hold on U :

S2 = αS + βg, α = κ+
(n− 2)µ− 1

φ
, β =

µκ+ (n− 1)η

φ
,

R · C = LRQ(g, C), C ·R = LCQ(g,R),

and (4.1), (1.4) and (4.4), with the functions LR = 1
φ((n− 2)(µ2−φη)− η),

LC = LR + 1
n−2
(

κ
n−1 − α

)
and L = LR + µ

φ , respectively.

Remark 4.3. Let (M, g), n ≥ 4, be a semi-Riemannian manifold with
parallel Weyl conformal curvature tensor (∇C = 0) which is neither con-
formally flat nor locally symmetric. Such manifolds are named essentially
conformally symmetric manifolds (e.c.s. manifolds, for short; see e.g. [DR1]).
The local structure of e.c.s. manifolds has been determined ([DR2]). Certain
e.c.s. metrics are realized on compact manifolds (see [DR3] and references
therein). It is known that on every e.c.s. manifold the following conditions
are satisfied: κ = 0, R · R = 0, C · C = 0 and Q(S,C) = 0. Moreover, (4.4)
holds ([DH3, Theorem 4.3]). In addition,

(4.8) FC =
1

2
S ∧ S

on M , where F is some function on M , called the fundamental function
([DR1]). At every point of M we also have rank S ≤ 2 ([DR1, Theorem 5]).
We note that from (4.8) it follows immediately that (1.3) holds at all points
of an e.c.s. manifold at which rankS = 2. It is clear that such points form
the set U .

An immediate consequence of Theorem 3.3 is the following result related
to Roter type manifolds.

Theorem 4.4. If (M, g), n ≥ 4, is a semi-Riemannian manifold satis-
fying on US ∩ UC ⊂M conditions (1.4), (4.4) and

(4.9) R · S = Q(g,D),
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where D is a symmetric (0, 2)-tensor, then (4.1) holds on this set. Moreover,
the Roter type equation (1.3) is satisfied on U ⊂ US ∩ UC .

From this we have

Corollary 4.5. If (M, g), n ≥ 4, is a semi-Riemannian manifold satis-
fying on UC ∩US ⊂M conditions (1.4), (4.2) and (4.4), then (4.1) holds on
this set. Moreover, the Roter type equation (1.3) is satisfied on U ⊂ US ∩UC .

Let M ×F M̃ be the warped product of the semi-Riemannian manifolds
(M, g), p = dimM , and (M̃, g̃), n − p = dim M̃ , 1 ≤ p ≤ n − 1, n ≥ 4,
with the warping function F . In [DDP] it is proved that (4.4) holds on every
4-dimensional warped product M ×F M̃ with p = 1. Thus we have

Corollary 4.6. If the 4-dimensional warped product M ×F M̃ , with
p = 1, satisfies on US ∩ UC ⊂ M ×F M̃ conditions (1.4) and (4.9), then
(4.1) holds on this set. Moreover, the Roter type equation (1.3) is satisfied
on U ⊂ US ∩ UC .

Roter type warped products M ×F M̃ , with p = 1, were investigated in
[DS]. In [D2] it is proved that (1.4) holds on every 4-dimensional warped
product M ×F M̃ , with p = 2. Thus we have

Corollary 4.7. If the 4-dimensional warped product M ×F M̃ , with
p = 2, satisfies on US ∩ UC ⊂ M ×F M̃ conditions (4.4) and (4.9), then
(4.1) holds on this set. Moreover, the Roter type equation (1.3) is satisfied
on U ⊂ US ∩ UC .

Roter type warped products M ×F M̃ , with 2 ≤ p ≤ n − 2, were inves-
tigated in [DK] and [K2]. We also refer to [DP] for results on Roter type
warped products M ×F M̃ , with p = n− 1.

Finally, we present an application of our main results to hypersurfaces
M immersed isometrically in a semi-Riemannian space of constant curvature
Nn+1
s (c), n ≥ 4. Since (4.5) holds onM , Theorem 4.4 and Corollary 4.5 imply

Theorem 4.8. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying on

US ∩ UC ⊂ M conditions (1.4) and (4.9), for some symmetric (0, 2)-tensor
D, then (4.1) holds on this set. Moreover, the Roter type equation (1.3) is
satisfied on U ⊂ US ∩ UC .

Corollary 4.9. If M is a hypersurface in Nn+1
s (c), n ≥ 4, satisfying

on US ∩ UC ⊂ M conditions (1.4) and (4.2), then (4.1) holds on this set.
Moreover, the Roter type equation (1.3) is satisfied on U ⊂ US ∩ UC .

We refer to [G1, Section 3] for results on hypersurfaces in Nn+1
s (c), n ≥ 4,

satisfying the Roter type equation (1.3). We mention that every Clifford torus
Sp(
√
p/n)×Sn−p(

√
(n− p)/n), 2 ≤ p ≤ n−2, n 6= 2p, is a non-conformally

flat and non-Einstein hypersurface satisfying (1.3) ([G1, Corollary 3.1]).
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