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ON THE HAUSDORFF–YOUNG THEOREM
FOR COMMUTATIVE HYPERGROUPS

BY

SINA DEGENFELD-SCHONBURG (München)

Abstract. We study the Hausdorff–Young transform for a commutative hypergroupK
and its dual space K̂ by extending the domain of the Fourier transform so as to encompass
all functions in Lp(K,m) and Lp(K̂, π) respectively, where 1 ≤ p ≤ 2. Our main theorem
is that those extended transforms are inverse to each other. In contrast to the group case,
this is not obvious, since the dual space K̂ is in general not a hypergroup itself.

Introduction. There exist a lot of results on the Hausdorff–Young trans-
form on groups and its applications (see for instance [HR]). Estimates for
the norm of the Lp-Fourier transform on locally compact groups are estab-
lished by Russo [Ru1–Ru3] and Fournier [F1–F2]. For groups which are nei-
ther compact nor Abelian but which are unimodular, the Hausdorff–Young
transform has been defined and a Hausdorff–Young theorem has been proved
by Kunze [K]. Moreover, Führ [Fü] studied Hausdorff–Young inequalities for
certain group extensions, by using Mackey’s theory of induced representa-
tions.

In this paper we introduce a Hausdorff–Young transform for commuta-
tive hypergroups. Our paper is structured in the following way. First we give
some definitions, general notations and basic facts. In Section 2 we prove
our main result, which states that the Hausdorff–Young transform and the
inverse Hausdorff–Young transform are indeed inverse to each other. In con-
trast to the Abelian group case, this is not obvious, since the dual space K̂
of an arbitrary hypergroup K is in general not a hypergroup. To overcome
these difficulties we need some results on the relations between convolution
and Fourier transform, which are of general interest. Section 3 deals with a
few dual results. In Section 4 we give some useful applications in harmonic
analysis.

1. Preliminaries. Hypergroups generalize locally compact groups. For
the theory of hypergroups we refer to [BH] and [J]. A hypergroup K is a
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locally compact Hausdorff space with a convolution, i.e. a map K × K →
M1(K), (x, y) 7→ ω(x, y) (M1(K) is the space of probability measures on
K) and an involution, i.e. K → K, x 7→ x̃, satisfying certain axioms (see
[BH]).

We assume throughout that K is a commutative hypergroup.
For a locally compact Hausdorff space X let C(X), Cb(X), C0(X),

Cc(X) denote the spaces of all continuous functions on X, those which
are bounded, which vanish at infinity, and which have compact support,
respectively.

For x ∈ K we define the translation operator on C(K) by setting

Txf(y) =
�

K

f(z) d(ω(x, y))(z).

Spector [S] has proved that each commutative hypergroup possesses a Haar
measure m, which is translation invariant. We denote by S(K) the m-
integrable simple functions on K. The Banach spaces Lp(K,m), 1 ≤ p ≤ ∞,
are invariant under the translation actions Tx, x ∈ K, and L1(K,m) acts
on Lp(K,m) via

g ∗ f(x) =
�

K

g(y)Tỹf(x) dm(y)

for g ∈ L1(K,m), f ∈ Lp(K,m), 1 ≤ p ≤ ∞.
There exists a net (gi)i∈I of functions gi ∈ Cc(K), gi ≥ 0,

	
K gi(x) dm(x)

= 1 such that limi ‖gi ∗ f − f‖p = 0 for all f ∈ Lp(K,m), 1 ≤ p < ∞ (see
[?, Lemma 1]).

The symmetric structure space of the commutative Banach ∗-algebra
L1(K,m) is a locally compact Hausdorff space, which is defined by

K̂ = {α ∈ Cb(K) : α(e) = 1, Txα(y) = α(x)α(y), α(x̃) = α(x)

for all x, y ∈ K},
where K̂ is equipped with the compact-open topology which is equal to
the Gelfand topology. The Fourier transform of f ∈ L1(K,m) (resp. the
Fourier–Stieltjes transform of µ ∈M(K)) is defined by

f̂(α) =
�

K

f(x)α(x) dm(x) (resp. µ̂(α) =
�

K

α(x) dµ(x)).

for α ∈ K̂. We have f̂ ∈ C0(K̂) with ‖f̂‖∞ ≤ ‖f‖1 and µ̂ ∈ Cb(K̂). There

exists a unique regular positive Borel measure π on K̂ (called the Plancherel
measure) such that �

K

|f(x)|2 dm(x) =
�

K̂

|f̂(α)|2 dπ(α)

for all f ∈ L1(K,m) ∩ L2(K,m) (see [BH, pp. 84 ff.]). Since K̂ is a locally
compact Hausdorff space, we note that every compact set C ∈ K̂ has finite
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measure π(C). We emphasize that the support of π, suppπ =: S, defined
as in [BH, p. 8], can be a proper subset of K̂. The extension of the Fourier
transform from L1(K,m) ∩ L2(K,m) to L2(K,m) is called the Plancherel
transform, and denoted by ℘(f) for f ∈ L2(K,m). The Plancherel transform
is an isometric isomorphism from L2(K,m) onto L2(S, π), and Parseval’s
formula �

K

f(x)g(x) dm(x) =
�

S
℘f(α)℘g(ᾱ) dπ(α)

holds for f, g ∈ L2(K,m).

The inverse Fourier transform of f ∈ L1(S, π) (resp. the inverse Fourier–
Stieltjes transform of µ ∈M(K̂)) is defined by

f̌(x) =
�

S
f(α)α(x) dπ(α) (resp. µ̌(x) =

�

K̂

α(x) dµ(α))

for x ∈ K. We have f̌ ∈ C0(K), µ̌ ∈ Cb(K) and ‖f̌‖∞ ≤ ‖f‖1. An inversion

theorem holds: if f ∈ L1(K,m) and f̂ ∈ L1(S, π) then f = (f̂)∨ with
equality in L1(K,m). Furthermore, an inverse uniqueness theorem is valid:
If f ∈ L1(K,m) and f̌ = 0, then f = 0.

2. Main results. We want to extend the domain of the Fourier trans-
form so as to encompass all functions in Lp(K,m) where 1 ≤ p ≤ 2. This
follows as indicated below from the Riesz–Thorin convexity theorem [DS,
VI.10.11].

The Fourier transform coincides on L1(K,m)∩L2(K,m) with the Plan-
cherel transform. Therefore the Riesz–Thorin convexity theorem yields the
inequality

‖f̂‖q ≤ ‖f‖p
for 1 ≤ p ≤ 2, 1/p+1/q = 1, and for all f ∈ S(K). Since we can approximate
each function f ∈ Cc(K) uniformly by functions in S(K), this inequality
holds for all f ∈ Cc(K) and the mapping

f 7→ f̂ , Cc(K)→ Lq(S, π),

can be extended uniquely by continuity to the whole of Lp(K,m). This
extended map is called the Hausdorff–Young transform. To sum up, we have
the following important result.

Proposition 2.1 (Hausdorff–Young). Let 1 ≤ p ≤ 2, 1/p+1/q = 1, and

f ∈ Lp(K,m). The Hausdorff–Young transform f 7→ f̂ is a linear mapping

from Lp(K,m) into Lq(S, π) such that ‖f̂‖q ≤ ‖f‖p.

In the same way we can extend the inverse Fourier transform f 7→ f̌
from Cc(S) into C0(K) ⊆ L∞(K,m) by using the Riesz–Thorin convexity



222 S. DEGENFELD-SCHONBURG

theorem again. Its extension maps from Lp(S, π), 1 ≤ p ≤ 2, into Lq(K,m),
1/p+ 1/q = 1.

Proposition 2.2 (Inverse Hausdorff–Young). Let 1 ≤ p ≤ 2, 1/p +
1/q = 1, and f ∈ Lp(S, π). The inverse Hausdorff–Young transform f 7→ f̌
is a linear mapping from Lp(S, π) into Lq(K,m) such that ‖f̌‖q ≤ ‖f‖p.

For later results it is important to known whether the Lp1-transform
and the Lp2-transform of a function f , which is contained in two different
spaces Lp1(K,m) and Lp2(K,m), agree π-almost everywhere on K̂. The
same question arises for the dual versions.

Proposition 2.3. Let 1 ≤ p1, p2 ≤ 2.

(i) For f ∈ Lp1(K,m) ∩ Lp2(K,m) the Lp1-transform and the Lp2-
transform of f agree π-almost everywhere on K̂.

(ii) For f ∈ Lp1(S, π) ∩ Lp2(S, π) the inverse Lp1-transform and the
inverse Lp2-transform of f agree m-almost everywhere on K.

Proof. The proof is similar to that of [HR, (31.26)].

Now it is natural to ask whether the inverse Hausdorff–Young transform
is really the inverse mapping of the Hausdorff–Young transform. This turns
out to be true, but in order to prove this we have to take into account that
K̂ is not a hypergroup in general. Thus we need a few preparatory results.

Lemma 2.4. For f, g ∈ L2(K,m) and h ∈ L1(K,m) we have f ∗ g ∈
C0(K) and

�

K

f ∗ g(y)h(ỹ) dm(y) =
�

K

f(ỹ)g ∗ h(y) dm(y).

Proof. It is well-known that f ∗ g ∈ C0(K) for f, g ∈ L2(K,m) and
g ∗ h ∈ L2(K,m). Furthermore, f ∗ g(x) = g ∗ f(x) by the commutativity
of K. Hence we conclude, applying Fubini’s theorem,

�

K

f ∗ g(y)h(ỹ) dm(y) =
�

K

�

K

f(x̃)Tyg(x) dm(x)h(ỹ) dm(y)

=
�

K

f(x̃)
�

K

Tyg(x)h(ỹ) dm(y) dm(x) =
�

K

f(x̃)g ∗ h(x) dm(x).

Proposition 2.5. Let K be a commutative hypergroup and 1 ≤ p ≤ 2.

(i) For f ∈ Lp(K,m) and ϕ ∈ Lp(S, π) we have (f̂ϕ)∨ = f ∗ ϕ̌.
(ii) For µ ∈ M(K) and ϕ ∈ Lp(S, π) we have (µ̂ϕ)∨ = µ ∗ ϕ̌ m-almost

everywhere. In particular, for f ∈ L1(K,m) and ϕ ∈ Lp(S, π) we

have (f̂ϕ)∨ = f ∗ ϕ̌ m-almost everywhere.
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Proof. (i) f̂ϕ is an element in L1(S, π). Hence the inverse Fourier trans-
form is well-defined. Choosing f ∈ Cc(K), ϕ ∈ Cc(S) we obtain, with Fu-
bini’s theorem,

(f̂ϕ)∨(x) =
�

S
f̂(α)ϕ(α)α(x) dπ(α) =

�

S

�

K

f(y)ᾱ(y) dm(y)ϕ(α)α(x) dπ(α)

=
�

S

�

K

α(x)ᾱ(y)f(y)ϕ(α) dm(y)dπ(α) =
�

K

Txϕ̌(ỹ)f(y) dm(y)

= f ∗ ϕ̌(x).

Using the continuity of the transformation and the convolution the state-
ment follows from the denseness of Cc(K) in Lp(K,m) and the denseness of
Cc(S) in Lp(S, π). Indeed, choosing a sequence (ϕn)n∈N in Cc(S) such that
limn→∞ ‖ϕn − ϕ‖p = 0 and using Hölder’s inequality we obtain, for each
f ∈ Cc(K),

‖(f̂ϕ)∨ − f ∗ ϕ̌‖∞ ≤ ‖f̂(ϕ− ϕn)‖1 + ‖f ∗ ϕ̌n − f ∗ ϕ̌‖∞
≤ 2‖f‖p‖ϕ− ϕn‖p → 0 as n→∞.

(ii) By (2.2.15) in [BH] we know already that (µ̂ϕ)∨ = µ ∗ ϕ̌ for all
ϕ ∈ Cc(S). For each ϕ ∈ Lp(S, π), the denseness of Cc(S) in Lp(S, π)
yields the existence of a sequence (ϕn)n∈N in Cc(S) which converges to ϕ in
Lp(S, π). Hence,

‖(µ̂ϕ)∨ − µ ∗ ϕ̌‖q ≤ ‖µ̂(ϕ− ϕn)‖p + ‖µ ∗ (ϕ− ϕn)∨‖q
≤ 2‖µ‖‖ϕ− ϕn‖p → 0

as n→∞. The second statement follows by embedding L1(K,m) intoM(K)
via the mapping f 7→ fm, L1(K,m)→M(K).

We also need the following lemma proved in [FL, Theorem 3.1].

Lemma 2.6. Given α ∈ S and a compact neighborhood C of α there
exists a sequence (fn)n∈N in Cc(K) such that ‖(fn ∗ f∗n)∧ − χC‖1 → 0 as
n→∞.

The following proposition is essential for our main theorem.

Proposition 2.7.

(i) Let 1 ≤ p ≤ 2 and f ∈ Lp(K,m) be such that the Hausdorff–Young

transform f̂ belongs to L2(S, π). Then f ∈ L2(K,m) and f = ℘−1(f̂)
m-almost everywhere.

(ii) The same holds true for the dual S: If 1 ≤ p ≤ 2 and ϕ ∈ Lp(S, π)
such that the inverse Hausdorff–Young transform ϕ̌ belongs to
L2(K,m), then ϕ ∈ L2(S, π) and ϕ = ℘(ϕ̌) π-almost everywhere.

Proof. (i) There exists a net (ki)i∈I in Cc(K) such that ki ∗ f → f in

Lp(K,m). We can choose (ki)i∈I such that (k̂i)i∈I converges uniformly to 1



224 S. DEGENFELD-SCHONBURG

on compact subsets of S (see [?]). Further ki ∗ f ∈ Lp(K,m) ∩ C0(K) ⊆
Lp(K,m)∩L∞(K,m) ⊆ L2(K,m). Thus, (ki ∗ f)∧ = ℘(ki ∗ f) ∈ L2(S, π)∩
Lq(S, π), 1/p + 1/q = 1. Furthermore, we can find a sequence (fn)n∈N in
Cc(K) such that ‖fn − f‖p → 0 as n→∞. Since

‖)(ki ∗ f)∧ − k̂if̂‖q ≤ ‖(ki ∗ f)∧ − (ki ∗ fn)∧‖q + ‖k̂if̂n − k̂if̂‖q → 0

as n → ∞, we conclude (ki ∗ f)∧ = k̂if̂ π-almost everywhere. Hence, by
Plancherel’s theorem we have

‖ki ∗ f − ℘−1(f̂)‖2 = ‖(ki ∗ f)∧ − f̂‖2 = ‖k̂if̂ − f̂‖2.
We can choose for each ε > 0 a compact set C ⊆ S such that�

C

|(k̂i − 1)f̂(α)|2 dπ(α) +
�

S\C

|(k̂i − 1)f̂(α)|2 dπ(α)

<
�

C

|(k̂i − 1)f̂(α)|2 dπ(α) + ε/2→ ε/2.

Thus ‖ki∗f−℘−1(f̂)‖2 → 0 and we obtain f = ℘−1(f̂)m-almost everywhere.
(ii) Let α ∈ S, C be a compact neighborhood of α and (fn)n∈N a sequence

in Cc(K) such that ‖(fn ∗ f∗n)∧ − χC‖1 → 0 as n→∞. Put ψ = (fn ∗ f∗n)∧

∈ L1(S, π) ∩ L2(S, π) ∩ C0(S). For any h ∈ L1(K,m) we have, applying
Parseval’s formula and Proposition 2.5(ii),�

S
℘(ϕ̌)(ᾱ)ĥ(α)ψ(α) dπ(α) =

�

K

ϕ̌(x)℘−1(ĥψ)(x) dm(x)

=
�

K

ϕ̌(x)h ∗ ψ̌(x) dm(x).

Defining ψ̃ and h̃ by ψ̃(α) := ψ(ᾱ) and h̃(x) = h(x̃) we easily see that
h̃ ∗ (ψ̃)∨(x̃) = h ∗ ψ̌(x). Applying successively Fubini’s theorem, Proposi-
tion 2.5(i) and Lemma 2.4, we obtain�

S
ϕ(ᾱ)ĥ(α)ψ(α) dπ(α) =

�

K

h(x̃)(ϕψ̃)∨(x) dm(x) =
�

K

h(x̃)ϕ̌ ∗ (ψ̃)∨(x) dm(x)

=
�

K

ϕ̌(x̃)h̃ ∗ (ψ̃)∨(x) dm(x) =
�

K

ϕ̌(x)h ∗ (fn ∗ f∗n)(x) dm(x).

Hence, we have�

S
(℘(ϕ̌)(ᾱ)− ϕ(ᾱ))ĥ(α)(fn ∗ f∗n)∧(α) dπ(α) = 0

for all h ∈ L1(K,m). Since {ĥ : h ∈ L1(K,m)} is uniformly dense in C0(K̂)
(see Theorem 2.2.4(ix) in [BH]), we conclude that (℘(ϕ̌)−ϕ)(ᾱ)(fn∗f∗n)∧(α)
= 0 for each n ∈ N and for almost all α ∈ S. So (℘(ϕ̌)−ϕ)(ᾱ)(fn ∗ f∗n)∧(α)
= 0 for all α ∈ S \N , where N is a π-zero set, for all n ∈ N.
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Further, as ‖(fn∗f∗n)∧−χC‖1→ 0 we can find a subsequence (fnk
∗f∗nk

)k∈N
of (fn ∗ f∗n)n∈N such that (fnk

∗ f∗nk
)∧(α)− χC(α)→ 0 for almost all α ∈ S.

Thus ℘(ϕ̌) = ϕ π-almost everywhere on C. Therefore ℘(ϕ̌) = ϕ π-almost
everywhere, and in particular ϕ ∈ L2(S, π).

The last proposition leads to our main theorem, which implies that the
inverse Hausdorff–Young transformation is indeed the inverse mapping to
the Hausdorff–Young transformation.

Theorem 2.8. Let K be a commutative hypergroup, 1 ≤ p ≤ 2 and
1 ≤ r ≤ 2.

(i) For f ∈ Lp(K,m) such that f̂ ∈ Lr(S, π) we have (f̂)∨ = f in
Lp(K,m).

(ii) For g ∈ Lp(S, π) such that ǧ ∈ Lr(K,m) we have (ǧ)∧ = g in
Lp(S, π).

Proof. First let f ∈ Lp(K,m) be such that f̂ ∈ Lr(S, π). Then f̂ ∈
Lq(S, π) ∩ Lr(S, π) ⊆ L2(S, π), 1/p + 1/q = 1, and by Proposition 2.7

f = ℘−1(f̂) = (f̂) ∨, since the inverse Hausdorff–Young transform and the
inverse Plancherel transform coincide on L2(S, π) ∩ Lr(S, π). The second
statement follows in a similar manner by Proposition 2.7.

Remark. The special case r = 1 in Theorem 2.8 is of particular interest.
If f ∈ Lp(K,m) and f̂ ∈ L1(S, π), then the integral

	
S f̂(α)α(x) dπ(α)

equals f(x) m-almost everywhere.

Corollary 2.9 (Uniqueness theorem). Let K be a commutative hyper-
group and 1 ≤ p ≤ 2.

(i) If f ∈ Lp(K,m) is such that f̂ = 0 almost everywhere on S, then
f = 0 almost everywhere.

(ii) If g ∈ Lp(S, π) is such that ǧ = 0 almost everywhere, then g = 0
almost everywhere.

Another consequence of Proposition 2.5 is the following corollary.

Corollary 2.10. Let 1 ≤ p ≤ 2 and 1/p + 1/q = 1. Suppose that
f ∈ Lp(K,m), g ∈ Lp(S, π) and x ∈ K. Further, let ϕ ∈ L2(S, π) and
β ∈ K̂. Then:

(i) (Txf)∧(α) = α(x)f̂(α) for π-almost all α ∈ K̂ and (ε̂xg)∨ = Tx̃ǧ
m-almost everywhere.

(ii) Define f∗ by f∗(x) = f(x̃). Then (f∗)∧ = f̂ π-almost everywhere
and (ḡ)∨ = (ǧ)∗ m-almost everywhere.

Proof. (i) (Txf)∧(α) = (εx̃ ∗ f)∧(α) = ε̂x̃(α)f̂(α) = α(x)f̂(α) for π-
almost all α ∈ K̂. The second statement follows from Proposition 2.5(ii).
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(ii) See [BH, (2.2.32), (2.2.15)] and argue as in the proof of Proposition
3.1 below.

3. Further convolution results. In this section we give some further
convolution results concerning the Hausdorff–Young transformation.

The following result is proved by standard arguments. We include the
proof for completeness.

Proposition 3.1. Let 1 ≤ p ≤ 2, 1/p+ 1/q = 1. For f ∈ Lp(K,m) and

each measure µ ∈M(K) we have (µ∗f)∧ = µ̂f̂ π-almost everywhere. In par-

ticular, for each function g ∈ L1(K,m), (g ∗ f)∧ = ĝf̂ π-almost everywhere.

Proof. By [BH, Lemma 1.4.6], µ∗f ∈ Lp(K,m). Thus (µ∗f)∧ is defined
thanks to Proposition 2.1. Let (fn)n∈N be a sequence in L1(K,m)∩Lp(K,m)

such that limn→∞ ‖fn − f‖p = 0. Then (µ ∗ fn)∧ = µ̂f̂n for each n ∈ N (see
[BH, (2.2.15)]). Since the Hausdorff–Young transform is norm decreasing,

we obtain (µ∗f)∧ = µ̂f̂ π-almost everywhere. The second statement follows
by embedding L1(K,m) into M(K) via the mapping f 7→ fm, L1(K,m)→
M(K).

Taking p = 2 we can conclude immediately

Proposition 3.2. Let f, g ∈ L2(S, π). Then (fg)∨ = ℘−1(f) ∗ ℘−1(g)
m-almost everywhere.

Proof. Use [BH, (2.2.15)] and Parseval’s identity.

Corollary 3.3. We have the equality L2(K,m)∗L2(K,m) = L1(S, π)∨.
In particular, L2(K,m) ∗ L2(K,m) is a linear space.

In order to obtain a dual version of the last corollary we need some
preliminary results.

Applying the Plancherel transform we can define a (rather weak) trans-
lation operator for L2(S, π) (see [DSL]). For every f ∈ L∞(K,m) define
Mf ∈ B(L2(S, π)) by

Mf (ϕ) := ℘(f̄℘−1(ϕ)), ϕ ∈ L2(S, π).

Then Mf is a bounded linear operator satisfying ‖Mf (ϕ)‖2 ≤ ‖f‖∞‖ϕ‖2.

We call Mα, α ∈ K̂, the translation operator on L2(S, π).
Furthermore, we can introduce an action of L1(S, π) on L2(S, π). Given

ψ ∈ Cc(S) and ϕ ∈ L2(S, π) we define the L2(S, π)-valued integral

ψ ∗ ϕ :=
�

S
ψ(α)Mᾱ(ϕ) dπ(α) ∈ L2(S, π).

For any ψ ∈ L1(S, π) we can define ψ∗ϕ by setting ψ∗ϕ := limn→∞ ψn∗ϕ ∈
L2(S, π), where any sequence (ψn)n∈N in Cc(S) converges to ψ in L1(S, π).
Then ‖ψ ∗ ϕ‖2 ≤ ‖ψ‖1‖ϕ‖2.
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Proposition 3.4. Let S be compact and let ψ ∈ L1(S, π) and ϕ ∈
L2(S, π). Then (ψ ∗ ϕ)∨ = ψ̌ϕ̌.

Proof. Choose a sequence (ψn)n∈N in Cc(S) such that ‖ψn−ψ‖1 → 0 as
n→∞. Since S is compact, ψn ∗ϕ ∈ L1(S, π) for all n ∈ N and by Fubini’s
theorem we deduce

(ψn ∗ ϕ)∨(x) =
�

S

�

S
ψn(β)Mβ̄ϕ(α)α(x) dπ(β) dπ(α) = ψ̌n(x)ϕ̌(x)

for all x ∈ K. The statement follows from

‖(ψ ∗ ϕ)∨ − ψ̌ϕ̌‖∞ ≤ ‖(ψ ∗ ϕ)− (ψn ∗ ϕ)‖2 + ‖ψ̌n − ψ̌‖∞‖ϕ̌‖∞ → 0

as n→∞.
Corollary 3.5. Let S be compact. Then (L2(S, π)∗L2(S, π))∨=L1(K,m)

as linear spaces.

Proof. Let ψ,ϕ∈L2(S, π). By Proposition 3.4, (ψ∗ϕ)∨= ψ̌ϕ̌∈L1(K,m).
Conversely, for each h ∈ L1(K,m) there exist ψ,ϕ ∈ L2(S, π) such that
h = ψ̌ϕ̌ in L1(K,m). Hence h ∈ (L2(S, π) ∗ L2(S, π))∨.

Corollary 3.6. Let S be compact. Then L2(S, π)∗L2(S, π) =L1(K,m)∧

as linear spaces. In particular L2(S, π) ∗ L2(S, π) is a linear space.

Concerning the translation on the dual, the following result holds and
can be proved using Proposition 3.4.

Corollary 3.7. Let S be compact and ϕ ∈ L2(S, π). Then (Mαϕ)(β) =
(Mβϕ)(α) for π-almost all α, β ∈ K̂.

Proof. There exists a unique g ∈ L2(K,m) such that ϕ = ℘(g) in
L2(S, π). Let f ∈ L2(K,m) be arbitrary. By Proposition 3.4 and Parseval’s
identity we have

℘(f) ∗ ℘(g)(α) = (fg)∧(α) =
�

K

f(x)g(x)α(x) dm(x)

=
�

S
℘(f)(β)℘(ᾱg)(β̄) dπ(β).

By definition, ℘(f) ∗ ℘(g)(α) =
	
S ℘(f)(β)Mβ̄(℘(g))(α) dπ(β). Hence,

�

S
℘(f)(β)[Mβ̄(℘(g))(α)− ℘(ᾱg)(β̄)] dπ(β) = 0.

Since f was arbitrary, we conclude that Mβ̄(ϕ)(α) = ℘(ᾱg)(β̄) = Mα(ϕ)(β̄)

for π-almost all α, β ∈ K̂.

4. Further consequences of the main theorem. In this section we
mention some further consequences of our main theorem of Section 2.
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Proposition 4.1 (Generalization of Parseval’s identity). For 1 ≤ p ≤ 2
and 1/p+ 1/q = 1 we have the following:

(i) For f ∈ Lp(K,m), g ∈ Lp(S, π) we have�

K

f(x)ǧ(x) dm(x) =
�

S
f̂(α)g(α) dπ(α).

(ii) If K is compact, f ∈ Lp(K,m) and g ∈ Lq(K,m) is such that
ĝ ∈ Lp(S, π), then�

K

f(x)g(x) dm(x) =
�

S
f̂(α)ĝ(α) dπ(α).

(iii) If S compact, ϕ ∈ Lp(S, π) and ψ ∈ Lq(S, π) is such that ψ̌ ∈
Lp(K,m), then

�

S
ϕ(α)ψ(α) dπ(α) =

�

K

ϕ̌(x)ψ̌(x) dm(x).

Proof. The proof is similar to the proof of [HR, 31.48].

Proposition 4.2. Let 1 < p < 2 and 1/p + 1/q = 1. The mapping

f 7→ f̂ , Lp(K,m)→ Lq(S, π), is onto if and only if K is finite.

Proof. If K is finite the mapping is obviously onto. Conversely, let K
be infinite and suppose that every function in Lq(S, π) is the Hausdorff–

Young transform of a function in Lp(K,m). Thus the mapping f 7→ f̂ ,
Lp(K,m)→ Lq(S, π), is linear, bijective and continuous. Hence by the open
mapping theorem the inverse mapping is also continuous, and hence there
exists a constant C > 0 such that ‖f̂‖q ≤ ‖f‖p ≤ C‖f̂‖q.

Now consider a sequence (fn)n∈N in Lp(K,m) which converges weakly
to zero in Lp(K,m) and satisfies ‖fn1 + · · · + fnm‖p = m1/p for all subsets
{fn1 , . . . , fnm} of (fn)n∈N, m ∈ N. Such a sequence exists by [H, Lemma A].

The sequence (f̂n)n∈N converges weakly to zero in Lq(S, π) by Proposi-

tion 4.1. By Lemma B in [H] there exists a subsequence (f̂nk
)k∈N of (f̂n)n∈N

and a constant A > 0 such that ‖
∑m

k=1 f̂nk
‖q ≤ Am1/2. It follows that

m1/p = ‖fn1 + · · ·+ fnm‖p ≤ C
∥∥∥ m∑
k=1

f̂nk

∥∥∥
q
≤ ACm1/2

for all m ∈ N. We see at once that 1/p ≤ 1/2, which contradicts our hypoth-

esis. Hence the mapping f 7→ f̂ , Lp(K,m)→ Lq(S, π), cannot be onto.

Considering the dual case, we can still show that the range of the map-
ping f 7→ f̌ , Lp(S, π) → Lq(K,m), is always dense in Lq(K,m). To verify
this we need the following lemma. The dual spaces K̂ or S do not, in general,
carry a dual hypergroup structure. Therefore, there does not exist a dual
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version of the following lemma and we cannot say anything about the range
of the mapping f 7→ f̂ , Lp(K,m)→ Lq(S, π).

Lemma 4.3. Let A be a compact subset of K, and H an open subset
of K such that A ⊆ H. Then there is a function ψ ∈ L1(S, π) ∩ L2(S, π)
such that ψ̌ ∈ Cc(K) and χA ≤ ψ̌ ≤ χH .

Proof. We may suppose that H has compact closure in K. Let P be an
m-measurable symmetric neighborhood of e ∈ K such that P ∗ P ∗A ⊆ H.
Let

f =
1

m(P )
χP∗A ∗ χP .

By Corollary 3.3 there exists ψ ∈ L1(S, π) such that f = ψ̌. Since

ψ̌(x) = f(x) =
1

m(P )

( �

P

ω(x, y)(P ∗A) dm(y)
)

and (P ∗{x})∩ (P ∗A) = ∅ if and only if P̃ ∗P ∗A∩{x} = ∅, it is immediate
that χA ≤ ψ̌ ≤ χP∗P∗A ≤ χH . Since ψ̌ ∈ L2(K,m), Proposition 2.7 implies
ψ ∈ L2(S, π).

Proposition 4.4. Let 1 < p ≤ 2 and 1/p+ 1/q = 1. Then Lp(S, π)∨ is
a dense linear subspace of Lq(K,m).

Proof. For p = 2 the statement is obviously true. Therefore suppose
1 < p < 2. Consider an m-measurable subset B of K such that m(B) <∞.
Given ε > 0, let A be a compact subset of B, and H an open subset of K,
such that B ⊆ H and m(H \A) < εq. By Lemma 4.3 there exists a function
f ∈ (L1(S, π) ∩ L2(S, π))∨ ⊆ Lp(S, π)∨ such that χA ≤ f ≤ χH . Then
‖f −χB‖q < ‖χH −χA‖q < ε. Now linear combinations of functions χB are
dense in Lq(K,m), and so Lp(S, π)∨ is dense in Lq(K,m).

Before we proceed, we mention another consequence of Lemma 4.3.

Proposition 4.5. L1(S, π)∨ ∗ Cc(K) = Cc(K).

Concluding, we give two further results which are very interesting in the
context of harmonic analysis.

Proposition 4.6. Let 1 ≤ p ≤ 2, µ ∈M(K), f ∈ Lp(K,m) and suppose

that µ̂ = f̂ π-almost everywhere on K̂. Then f ∈ L1(K,m), µ is absolutely
continuous and µ = fdm.

Proof. The proof is similar to the proof of [HR, 31.33].

Proposition 4.7. Suppose that f ∈ L1(K,m) ∩ L∞(K,m) and f̂ is

nonnegative. Then f̂ ∈ L1(S, π) and ‖f̂‖1 ≤ ‖f‖∞.

Proof. Since f ∈ L1(K,m) ∩ L∞(K,m), by Hölder’s interpolation theo-

rem f ∈ L2(K,m) and hence f̂ = ℘(f) ∈ L2(S, π). Let (ki)i∈I ∈ Cc(K) be
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an approximate identity in L1(K,m). Then by Parseval’s theorem, for all
i ∈ I, �

S
f̂(ki ∗ k∗i )∧ dπ =

�

K

f(ki ∗ k∗i ) dm ≤ ‖f‖∞‖ki ∗ k∗i ‖1 ≤ ‖f‖∞.

We observe that f̂(ki∗k∗i )∧ converges pointwise to f̂ and f̂ |k̂i|2 is nonnegative
by assumption. Hence applying Fatou’s lemma, we obtain�

S
f̂ dπ =

�

S
lim
i
f̂(ki ∗ k∗i )∧ dπ ≤ lim sup

i

�

S
f̂(ki ∗ k∗i )∧ dπ ≤ ‖f‖∞.

Remark. We do not know whether Propositions 4.6 and 4.7 admit dual
versions.

Remark. We remark that Rodionov established expansions of functions
in Lp with respect to systems similar to orthogonal ones. His results are
analogues of the Hausdorff–Young theorems in the theory of trigonometric
series (see [R]). However, Rodionov’s results apply only to a few polynomial
hypergroups, since orthonormal polynomials which are also bounded are
very rare.
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