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ON A RELATION BETWEEN NORMS OF
THE MAXIMAL FUNCTION AND

THE SQUARE FUNCTION OF A MARTINGALE

BY

MASATO KIKUCHI (Toyama)

Abstract. Let Ω be a nonatomic probability space, let X be a Banach function space
over Ω, and let M be the collection of all martingales on Ω. For f = (fn)n∈Z+ ∈ M, let
Mf and Sf denote the maximal function and the square function of f , respectively. We
give some necessary and sufficient conditions for X to have the property that if f, g ∈M
and ‖Mg‖X ≤ ‖Mf‖X , then ‖Sg‖X ≤ C‖Sf‖X , where C is a constant independent of f
and g.

1. Introduction. Let (Ω,Σ,P) be a nonatomic probability space. We
denote by F the collection of all filtrations of (Ω,Σ,P), i.e., the collection
of all sequences F = (Fn)n∈Z+ of sub-σ-algebras of Σ such that Fn ⊂ Fn+1

for all n ∈ Z+. For each F = (Fn) ∈ F, we denote by M(F) the collection
of all F-martingales, and we letM =

⋃
F∈FM(F). For f = (fn)n∈Z+ ∈M,

the maximal function and the square function of f are defined by

Mf = sup
n∈Z+

|fn| and Sf =
{ ∞∑
n=0

(∆nf)2
}1/2

,

respectively, where ∆nf = fn − fn−1 for n ≥ 1 and ∆0f = f0.

Let X be a Banach function space over Ω (see Definition 2.1 below).
Recently the author gave in [6] some necessary and sufficient conditions for
X to have the property that if f = (fn) ∈ M(F) is uniformly integrable
and if v = (vn) is an F-predictable process which is uniformly bounded by
one in absolute value, then

‖M(v ∗ f)‖X ≤ C‖Mf‖X ,
where v ∗ f = ((v ∗ f)n) denotes the martingale transform of f by v, and
where C is a constant which is independent of f and v. One such necessary
and sufficient condition is that if F ∈ F, f, g ∈M(F), and ‖Sg‖X ≤ ‖Sf‖X ,
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then

‖Mg‖X ≤ C‖Mf‖X .

It is therefore natural to ask when X has the property that if F ∈ F,
f, g ∈M(F), and ‖Mg‖X ≤ ‖Mf‖X , then

‖Sg‖X ≤ C‖Sf‖X .

Our result gives necessary and sufficient conditions for X to have this prop-
erty.

2. Preliminaries. Throughout this note, we assume that the probabil-
ity space (Ω,Σ,P) is nonatomic, i.e., there is no P-atom in Σ. In addition,
we consider the interval I := (0, 1] as a probability space equipped with
Lebesgue measure ds.

Given two Banach spaces X and Y , we write Y ↪→ X to mean that
Y is continuously embedded in X, i.e., Y ⊂ X and the inclusion map is
continuous.

Definition 2.1. A Banach function space X over a probability space
is a real Banach space of (equivalence classes of) random variables (i.e.,
measurable functions) having the following properties:

(B1) L∞ ↪→ X ↪→ L1.
(B2) If |y| ≤ |x| a.s. and x ∈ X, then y ∈ X and ‖y‖X ≤ ‖x‖X .
(B3) If 0 ≤ xn ↑ x a.s., xn ∈ X for all n, and supn ‖xn‖X < ∞, then

x ∈ X and ‖x‖X = supn ‖xn‖X .

We adopt the convention that ‖x‖X =∞ if x is a random variable which
does not belong to X.

Given two random variables x and y, we write x ' d y to mean that x
and y have the same distribution.

Definition 2.2. A Banach function space X is said to be rearrange-
ment-invariant or r.i. if it has the property that whenever x ' d y and
x ∈ X, then y ∈ X and ‖x‖X = ‖y‖X .

By an r.i. space we mean a rearrangement-invariant Banach function
space.

For example, Lebesgue spaces, Orlicz spaces, and Lorentz spaces are r.i.
spaces, while weighted Lebesgue spaces with suitable weights are Banach
function spaces which are not r.i. in general (cf. [3, Section 4]).

Let x be a random variable on Ω. The nonincreasing rearrangement of
x is the function x∗ on I = (0, 1] defined by

x∗(t) = inf{λ > 0: P(ω ∈ Ω : |x(ω)| > λ) ≤ t}, t ∈ I,
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with the convention that inf ∅ = ∞. Note that x∗ is a nonincreasing right-
continuous function whose distribution (with respect to Lebesgue measure)
is the same as that of |x|. As a result, nonnegative random variables x and
y have the same distribution if and only if x∗ = y∗ on I.

The nonincreasing rearrangement φ∗ of a measurable function φ on I is
defined in the same way. Of course, if φ is nonincreasing, then φ∗ = φ a.s.
on I.

Suppose that X is an r.i. space over Ω. The Luxemburg representation
theorem ([1, Theorem 4.10, p. 62]) shows that there exists an r.i. space X̂
over I which has the following properties:

• x ∈ X if and only if x∗ ∈ X̂.
• ‖x‖X = ‖x∗‖X̂ for all x ∈ X.

Such an r.i. space X̂ is unique (cf. [1, p. 64]). For example, L̂p(Ω) = Lp(I).

Let L0(I) denote the linear space of real-valued measurable functions
on I. If Z is a Banach function space over I, we denote by B(Z) the collection
of all linear operators T satisfying the following conditions:

• The domain of T contains Z and the range of T is contained in L0(I).
• The restriction of T to Z is a bounded operator from Z into itself.

For T ∈ B(Z), we denote by ‖T‖B(Z) the operator norm of the restriction
of T to Z.

Our result will be stated in terms of the Boyd indices. We now recall
their definition for an r.i. space. For each s > 0, define Ds : L0(I) → L0(I)
by

(Dsφ)(t) =

{
φ(st) if st ∈ I,

0 if st /∈ I.

If Z is an r.i. space over I, then Ds ∈ B(Z) for all s > 0. The lower Boyd
index and the upper Boyd index of Z are defined by

αZ = sup
0<s<1

log ‖D1/s‖B(Z)

log s
and βZ = inf

1<s<∞

log ‖D1/s‖B(Z)

log s
,

respectively. If X is an r.i. space over Ω, then the Boyd indices of X are
defined by αX = αX̂ and βX = βX̂ . For example, αLp

= βLp
= 1/p for all

p ∈ [1,∞]. More generally, we have 0 ≤ αX ≤ βX ≤ 1 for all r.i. spaces X.
See [1, pp. 146–150 and p. 165] for details.

In the proof of our result, we will use an integral operator P and its
formal adjoint Q, which are defined as follows. If φ ∈ L1(I), we let

(Pφ)(t) =
1

t

t�

0

φ(s) ds, t ∈ I,
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and if φ is integrable over (t, 1) for all t ∈ I, we let

(Qφ)(t) =

1�

t

φ(s)

s
ds, t ∈ I.

It is easily checked that if φ ∈ L1(I), then Qφ ∈ L1(I) and

(2.1) P(Qφ) = Pφ+Qφ.
Suppose that X is an r.i. space over Ω. Shimogaki [7] proved (implicitly)
that βX < 1 if and only if P ∈ B(X̂), and that αX > 0 if and only if

Q ∈ B(X̂) (see [1, pp. 150–153] for a proof).

3. The main result. Before stating the results, let us recall our con-
vention that if X is a Banach function space and x is a random variable
which does not belong to X, then ‖x‖X =∞.

Our result is the following:

Main Theorem. Let X be a Banach function space over Ω. Then the
following are equivalent:

(i) There exists a constant C > 0 such that if F ∈ F, f, g ∈ M(F),
and ‖Mg‖X ≤ ‖Mf‖X , then

‖Sg‖X ≤ C‖Sf‖X .
(ii) There exists a constant C > 0 such that if F ∈ F, f, g ∈ M(F),

and Mg ≤Mf a.s., then

‖Sg‖X ≤ C‖Sf‖X .
(iii) There exists a constant C > 0 such that if F ∈ F, f, g ∈ M(F),

and ‖Sg‖X ≤ ‖Sf‖X , then

‖Mg‖X ≤ C‖Mf‖X .
(iv) There exists a constant C > 0 such that if F ∈ F, f, g ∈ M(F),

and Sg ≤ Sf a.s., then

‖Mg‖X ≤ C‖Mf‖X .
(v) There exists a constant C > 0 such that if f ∈M, then

C−1‖Sf‖X ≤ ‖Mf‖X ≤ C‖Sf‖X .
(vi) X can be equivalently renormed so as to be an r.i. space such that

αX > 0.

It is known that the second inequality of (v) holds for all f ∈ M if and
only if (vi) holds (see [5]). The Main Theorem extends this result.

The rest of this note is devoted to the proof of the Main Theorem. We
begin by introducing the following notation:
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• Given a random variable x on Ω and a real number λ, we denote by
{x > λ} the set of all ω ∈ Ω for which x(ω) > λ.
• Let φ be a function on I and let x be a random variable on Ω. If

the range of x is contained in I, we denote by φ(x) the composition
ω 7→ φ(x(ω)).
• If A is a subset of Ω or of I, we denote by 1A the indicator function

of A.
• Let Z be a Banach function space over I. We denote by D(Z) the

collection of all functions in Z which are nonnegative, nonincreasing,
and right-continuous.

The proof of the Main Theorem requires a series of lemmas.

Lemma 3.1 ([4, Lemma 4]). Let X be an r.i. space over Ω. Suppose
there exists a constant c > 0 such that ‖Qψ‖X̂ ≤ c‖ψ‖X̂ for all ψ ∈ D(X̂).

Then Q ∈ B(X̂), or equivalently, αX > 0.

Note that, since (Ω,Σ,P) is nonatomic, there exist nonnegative random
variables ξ1 and ξ2 on Ω satisfying the following conditions (cf. [2, (5.6)]):

{ξ1 > 0} ∩ {ξ2 > 0} = ∅,(3.1)

ξ∗1(t) = ξ∗2(t) = max{1− 2t, 0} for all t ∈ I.(3.2)

A straightforward calculation yields the following:

Lemma 3.2. Let ξ1 and ξ2 be as above, and let ψ ∈ L1(I). Define ran-
dom variables x1 and x2 by letting

x1 = ψ(1− ξ1)1{ξ1>0} and x2 = ψ(1− ξ2)1{ξ2>0},

and define families of sets {A1(t) : t ∈ (0, 1/2]} and {A2(t) : t ∈ (0, 1/2]} by
letting

A1(t) = {ξ1 > 1− 2t}, t ∈ (0, 1/2],

A2(t) = {ξ2 > 1− 2t}, t ∈ (0, 1/2].

Then:

• {|x1| > 0} ⊂ A1(1/2) and {|x2| > 0} ⊂ A2(1/2).
• A1(1/2) ∩A2(1/2) = ∅.
• A1(s) ⊂ A1(t) and A2(s) ⊂ A2(t) whenever 0 < s < t ≤ 1/2.
• P(A1(t)) = P(A2(t)) = t for all t ∈ (0, 1/2].
• (x1 − x2)∗(t) = (x1 + x2)

∗(t) = ψ∗(t) for all t ∈ I.
• E[x11A1(t)] = E[x21A2(t)] = t(Pψ)(2t) for all t ∈ (0, 1/2].

Lemma 3.3. Let X be a Banach function space over Ω. If X is r.i. and
if (ii) of the Main Theorem holds, then αX > 0.

Proof. Suppose that (ii) holds. By Lemma 3.1, it suffices to prove that

(3.3) ‖Qψ‖X̂ ≤ C‖ψ‖X̂ for all ψ ∈ D(X̂),
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where C is a constant which is independent of ψ. Fix ψ ∈ D(X̂) and let
φ = Qψ − ψ. Of course, we may assume that ψ 6≡ 0, which implies that
(Qψ)(t)→∞ as t→ 0+. Note that ψ, Qψ, and φ are integrable over I. Let
ε > 0 and define a sequence {tn}n∈Z+ of numbers in I as follows:

t0 = 1/2,

tn = inf{t ∈ I : (Qψ)(2t) < (Qψ)(2tn−1) + ε/n}, n ≥ 1.

Since Qψ is continuous and (Qψ)(t)→∞ as t→ 0+, we have

(3.4) (Qψ)(2tn) = (Qψ)(2tn−1) + ε/n for all n ≥ 1.

It is easy to check that {tn} is strictly decreasing and tn → 0 as n→∞.

Let ξ1 and ξ2 be random variables satisfying (3.1) and (3.2), and let
{A1(t) : t ∈ (0, 1/2]} and {A2(t) : t ∈ (0, 1/2]} be the families of sets defined
as in Lemma 3.2. We define random variables x1, x2, y1, y2, z1, and z2 as
follows:

x1 = φ(1− ξ1)1{ξ1>0}, x2 = φ(1− ξ2)1{ξ2>0},

y1 = (Qψ)(1− ξ1)1{ξ1>0}, y2 = (Qψ)(1− ξ2)1{ξ2>0},

z1 = ψ(1− ξ1)1{ξ1>0}, z2 = ψ(1− ξ2)1{ξ2>0}.

Let Λn = A1(tn) ∪A2(tn) for each n ∈ Z+. Define F = (Fn) ∈ F by

Fn = σ({Λ \ Λn : Λ ∈ Σ}), n ∈ Z+,

and define g = (gn) ∈M(F) by

gn = E[y1 − y2 | Fn], n ∈ Z+.

Since E[y11A1(tn)] = E[y21A2(tn)] by Lemma 3.2, it follows that

gn =
1Λn

P(Λn)
E[(y1 − y2)1Λn ] + (y1 − y2)1Ω\Λn

=
1Λn

P(Λn)
{E[y11A1(tn)]− E[y21A2(tn)]}+ (y1 − y2)1Ω\Λn

= (y1 − y2)1Ω\Λn
a.s.

for all n ∈ Z+. Therefore ∆ng = (y1 − y2)1Λn−1\Λn
a.s. for all n ≥ 1, and

∆0g = g0 = 0 a.s. Moreover, we have

(3.5) Mg = Sg = |y1 − y2| = y1 + y2 a.s.,

because P(Λn) = 2tn → 0. Since Qψ is nonincreasing, Lemma 3.2 implies

(Sg)∗(t) = (y1 + y2)
∗(t) = (Qψ)(t) for all t ∈ I.(3.6)

Now define h = (hn) ∈M(F) by

hn = E[x1 + x2 | Fn], n ∈ Z+.
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Since Pφ = Qψ by (2.1), it follows from Lemma 3.2 that

hn =
1Λn

P(Λn)
E[(x1 + x2)1Λn ] + (x1 + x2)1Ω\Λn

(3.7)

=
1Λn

2tn
{E[x11A1(tn)] + E[x21A2(tn)]}+ (x1 + x2)1Ω\Λn

= (Pφ)(2tn)1Λn + (x1 + x2)1Ω\Λn

= (Qψ)(2tn)1Λn + (x1 + x2)1Ω\Λn
a.s.

for all n ∈ Z+. We need to estimate Sh. If n = 0, then ∆nh = h0 = 0 a.s.;
and if n ≥ 1, then by (3.4),

∆nh =
{

(Qψ)(2tn)− (Qψ)(2tn−1)
}
1Λn(3.8)

+ {x1 + x2 − (Qψ)(2tn−1)}1Λn−1\Λn

=
ε

n
1Λn + {x1 + x2 − (Qψ)(2tn−1)}1Λn−1\Λn

a.s.

Since 2tn ≤ 1− ξi < 2tn−1 on Ai(tn−1) \Ai(tn), we see from (3.4) that

|xi − (Qψ)(2tn−1)|1Ai(tn−1)\Ai(tn)

= |(Qψ)(1− ξi)− ψ(1− ξi)− (Qψ)(2tn−1)|1Ai(tn−1)\Ai(tn)

≤ {|(Qψ)(1− ξi)− (Qψ)(2tn−1)|+ ψ(1− ξi)}1Ai(tn−1)\Ai(tn)

≤ {(Qψ)(2tn)− (Qψ)(2tn−1) + zi}1Ai(tn−1)\Ai(tn)

≤ (ε/n+ zi)1Ai(tn−1)\Ai(tn)

for n ≥ 1 and i = 1, 2. Note that xi = zi = 0 on Aj(tn−1) when i 6= j, and
that Λn−1\Λn is the disjoint union of A1(tn−1)\A1(tn) and A2(tn−1)\A2(tn).
Then we have

|x1 + x2 − (Qψ)(2tn−1)|1Λn−1\Λn
=

2∑
i=1

|xi − (Qψ)(2tn−1)|1Ai(tn−1)\Ai(tn)

≤
2∑
i=1

(
ε

n
+ zi

)
1Ai(tn−1)\Ai(tn)

≤ (ε+ z1 + z2)1Λn−1\Λn
.

Therefore by (3.8),

(Sh)2 =

∞∑
n=1

{
ε2

n2
1Λn + |x1 + x2 − (Qψ)(2tn−1)|21Λn−1\Λn

}

≤ ε2
∞∑
n=1

1

n2
+
∞∑
n=1

(ε+ z1 + z2)
21Λn−1\Λn

= κ2ε2 + (ε+ z1 + z2)
2 a.s.,
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where κ2 =
∑∞

n=1(1/n
2) = π2/6. Thus

Sh ≤ {κ2ε2 + (ε+ z1 + z2)
2}1/2 ≤ (κ+ 1)ε+ z1 + z2 a.s.

Notice that by Lemma 3.2, the nonincreasing rearrangement of the right-
hand side is equal to

(κ+ 1)ε+ (z1 + z2)
∗(t) = (κ+ 1)ε+ ψ(t).

It follows that

(3.9) (Sh)∗(t) ≤ (κ+ 1)ε+ ψ(t) for all t ∈ I.

Now let f = (fn) be the martingale defined by

(3.10) fn = hn + ε, n ∈ Z+.

We estimate Mf . Since 2tn ≤ 1− ξi < 2tn−1 on Ai(tn−1) \Ai(tn), we have

(Qψ)(2tn)1Λn−1\Λn
=

2∑
i=1

(Qψ)(2tn)1Ai(2tn−1)\Ai(2tn)(3.11)

≥
2∑
i=1

(Qψ)(1− ξi)1Ai(2tn−1)\Ai(2tn)

=

2∑
i=1

yi1Ai(2tn−1)\Ai(2tn) = (y1 + y2)1Λn−1\Λn

for all n ≥ 1. From (3.4), (3.7), (3.10), and (3.11) we see that

Mf = sup
n∈Z+

[{(Qψ)(2tn) + ε}1Λn + |x1 + x2 + ε|1Ω\Λn
]

≥ sup
n∈Z+

{(Qψ)(2tn) + ε}1Λn =

∞∑
n=1

{(Qψ)(2tn−1) + ε}1Λn−1\Λn

≥
∞∑
n=1

(Qψ)(2tn)1Λn−1\Λn
≥
∞∑
n=1

(y1 + y2)1Λn−1\Λn
= y1 + y2 a.s.

Therefore Mg ≤Mf a.s. by (3.5). Since

Sf =
{ ∞∑
n=1

(∆nf)2 + f20

}1/2
=
{ ∞∑
n=1

(∆nh)2 + ε2
}1/2

≤ Sh+ ε

and since we are assuming that (ii) of the Main Theorem holds, it follows
from (3.9) that

‖Sg‖X ≤ C‖Sf‖X ≤ C‖Sh+ ε‖X ≤ C‖Sh‖X + Cε‖1Ω‖X
≤ C‖(Sh)∗‖X̂ + Cε‖1Ω‖X ≤ C‖(κ+ 1)ε+ ψ‖X̂ + Cε‖1Ω‖X
≤ C(κ+ 2)ε‖1Ω‖X + C‖ψ‖X̂ .
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On the other hand, ‖Qψ‖X̂ = ‖(Sg)∗‖X̂ = ‖Sg‖X by (3.6). Thus

‖Qψ‖X̂ ≤ C(κ+ 2)ε‖1Ω‖X + C‖ψ‖X̂ .

Since ε > 0 is arbitrary, we conclude that (3.3) holds, as required.

Lemma 3.4 ([4, Lemma 1]; [5, Lemma 5.1]). Let X be a Banach function
space over Ω and let S+ be the set of all nonnegative simple random variables
on Ω. Then the following are equivalent:

• There exists a constant c > 0 such that if x, y ∈ S+, x ' d y, and
{x > 0} ∩ {y > 0} = ∅, then ‖y‖X ≤ c‖x‖X .
• X can be equivalently renormed so as to be r.i.

Lemma 3.5. Let X be a Banach function space over Ω. If (ii) of the
Main Theorem holds, then X can be equivalently renormed so as to be r.i.

Proof. Suppose that x, y ∈ S+, x ' d y, and {x > 0} ∩ {y > 0} = ∅. By
the previous lemma, it suffices to prove that

(3.12) ‖y‖X ≤ c‖x‖X ,

where c is a constant which is independent of x and y. We can write

x =
∑̀
k=1

λk1Ak
and y =

∑̀
k=1

λk1Bk
,

where λk > 0 for all k = 1, . . . , `, and where {Ak}`k=1 and {Bk}`k=1 are
pairwise disjoint sequences of Σ-measurable subsets of Ω such that

P(Ak) = P(Bk) > 0 for all k = 1, . . . , `

and (⋃̀
k=1

Ak

)
∩
(⋃̀
k=1

Bk

)
= ∅.

Let {sn}n∈Z+ be the sequence of real numbers defined by

sn =

n∑
k=0

1

k + 1
, n ∈ Z+,

and fix an integer N such that sN ≥ Cπ/
√

6 + 1, where C is the constant
in (ii) of the Main Theorem. For each k = 1, . . . , `, let {Ck,n}Nn=0 be a finite
sequence of Σ-measurable subsets of Ak such that

Ck,0 = Ak, Ck,0 ⊃ Ck,1 ⊃ Ck,2 ⊃ · · · ⊃ Ck,N ,

and

P(Ck,n) =
1

2n
P(Ak) =

1

2n
P(Bk) for all n = 1, . . . , N .
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Such sequences {Ck,n}Nn=0 certainly exist, because (Ω,Σ,P) is nonatomic.
Furthermore, for each k = 1, . . . , `, define a sequence {Dk,n}Nn=1 by

Dk,n = Ck,n−1 \ Ck,n, n = 1, . . . , N,

and define a sequence {Ek,n}Nn=0 by

Ek,0 = ∅, Ek,n =

n⋃
m=1

Dk,m, n = 1, . . . , N.

Then clearly P(Dk,n) = P(Ck,n) and Ek,n = Ak \ Ck,n for all k = 1, . . . , `
and all n = 1, . . . , N . We define F = (Fn) ∈ F by letting

F0 = σ
(⋃̀
k=1

{Bk ∪ Ck,0}
)
,

F1 = σ
(⋃̀
k=1

{Bk ∪ Ck,1, Dk,1}
)
,

F2 = σ
(⋃̀
k=1

{Bk ∪ Ck,2, Dk,1, Dk,2}
)
,

...

FN = σ
(⋃̀
k=1

{Bk ∪ Ck,N , Dk,1, . . . , Dk,N}
)
,

and

Fn = Σ, n ≥ N + 1;

and we define a process f = (fn) by letting

f0 =
∑̀
k=1

λks01Bk∪Ck,0
= x+ y,

f1 =
∑̀
k=1

[
λk

(
s11Bk∪Ck,1

+

(
s0 −

3

2

)
1Dk,1

)
+ f01Ek,0

]
,

f2 =
∑̀
k=1

[
λk

(
s21Bk∪Ck,2

+

(
s1 −

22 + 1

3

)
1Dk,2

)
+ f11Ek,1

]
,

...

fN =
∑̀
k=1

[
λk

(
sN1Bk∪Ck,N

+

(
sN−1 −

2N + 1

N + 1

)
1Dk,N

)
+ fN−11Ek,N−1

]
,
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and

fn = fN , n ≥ N + 1.

We claim that f = (fn) is an F-martingale. To see this, let 2 ≤ n ≤ N and
let ak,n = E[fn1Bk∪Ck,n−1

]. It is easy to see that

ak,n = E
[
λk

(
sn1Bk∪Ck,n

+

(
sn−1 −

2n + 1

n+ 1

)
1Dk,n

)
1Bk∪Ck,n−1

]
= λksn−1(1 + 2−n+1)P(Bk).

Therefore

E[fn | Fn−1] =
∑̀
k=1

E[fn1Bk∪Ck,n−1
+ fn1Ek,n−1

| Fn−1]

=
∑̀
k=1

[
1Bk∪Ck,n−1

P(Bk ∪ Ck,n−1)
ak,n + fn−11Ek,n−1

]

=
∑̀
k=1

[
1Bk∪Ck,n−1

(1 + 2−n+1)P(Bk)
ak,n + fn−11Ek,n−1

]

=
∑̀
k=1

[λksn−11Bk∪Ck,n−1
+ fn−11Ek,n−1

]

=
∑̀
k=1

[
λksn−11Bk∪Ck,n−1

+ λk

(
sn−2 −

2n−1 + 1

n

)
1Dk,n−1

+ fn−11Ek,n−2

]

=
∑̀
k=1

[
λk

(
sn−11Bk∪Ck,n−1

+

(
sn−2 −

2n−1 + 1

n

)
1Dk,n−1

)
+ fn−21Ek,n−2

]
= fn−1 a.s.

In the same way, we have E[f1 | F0] = x + y = f0 a.s. Thus f = (fn) is an
F-martingale.

We have to estimate Sf . Let

U = {y > 0} ∪
⋃̀
k=1

Ck,N =
⋃̀
k=1

(Bk ∪ Ck,N ) and V =
⋃̀
k=1

Ek,N .

Then

(3.13) Sf = (Sf)1U + (Sf)1V .

The estimate of (Sf)1U is easy. Indeed if 0 ≤ j ≤ N , then

(∆jf)1U =
∑̀
k=1

(∆jf)1Bk∪Ck,N
=

1

j + 1

∑̀
k=1

λk1Bk∪Ck,N
=
x+ y

j + 1
1U ,
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and if j > N , then ∆jf = 0. Therefore

(3.14) (Sf)21U =
N∑
j=0

(∆jf)21U =
N∑
j=0

(x+ y)2

(j + 1)2
1U ≤

π2(x2 + y2)

6
1U .

We now estimate (Sf)1V . If 0 ≤ j < m ≤ N , then Dk,m ⊂ Ck,j and hence
(∆jf)1Dk,m

= (λk/(j + 1))1Dk,m
for each k = 1, . . . , `. On the other hand,

if 1 ≤ m < j ≤ N , then Dk,m ⊂ Ek,j−1 and hence (∆jf)1Dk,m
= 0 for each

k = 1, . . . , `. Moreover, (∆mf)1Dk,m
= −((2m + 1)λk/(m + 1))1Dk,m

Thus,
if 1 ≤ m ≤ N , then

(Sf)21⋃`
k=1Dk,m

=
m−1∑
j=0

(∆jf)21⋃`
k=1Dk,m

+ (∆mf)21⋃`
k=1Dk,m

=
∑̀
k=1

[m−1∑
j=0

(∆jf)21Dk,m
+ (∆mf)21Dk,m

]

=
∑̀
k=1

[m−1∑
j=0

1

(j + 1)2
+

(2m + 1)2

(m+ 1)2

]
λ2k1Dk,m

≤ K2
∑̀
k=1

λ2k1Dk,m
= K2x21⋃`

k=1Dk,m
,

where K is a constant > π/
√

6 which depends only on the value of the
constant C. (Indeed, we can take K = (2N + 1)π/

√
6.) Notice that

V =

N⋃
m=1

⋃̀
k=1

Dk,m

and that if m 6= m′, then(⋃̀
k=1

Dk,m

)
∩
(⋃̀
k=1

Dk,m′

)
= ∅.

Then we have

(3.15) (Sf)21V =
N∑
m=1

(Sf)21⋃`
k=1Dk,m

≤
N∑
m=1

K2x21⋃`
k=1Dk,m

= K2x21V .

Since K2 > π2/6, it follows from (3.13)–(3.15) that

(Sf)2 ≤ π2(x2 + y2)

6
1U +K2x21V

≤ π2y2

6
+K2x2(1U + 1V ) =

π2y2

6
+K2x2.
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Thus we obtain

(3.16) Sf ≤ πy√
6

+Kx.

Now, for each k = 1, . . . , `, let {Bk,1, Bk,2} be a partition of Bk such that

P(Bk,1) = P(Bk,2) = 1
2P(Bk),

and let y1 and y2 be the random variables defined by

y1 = sN
∑̀
k=1

λk1Bk,1
and y2 = sN

∑̀
k=1

λk1Bk,2
.

Define g = (gn) ∈M(F) by gn = E[y1 − y2 | Fn], n ∈ Z+. Then

gn =

{
0 if 0 ≤ n ≤ N ,

y1 − y2 if n ≥ N + 1,
a.s.

and hence

Mg = Sg = |y1 − y2| = sNy a.s.

Since (Mf)1{y>0} = sNy, it follows that Mg ≤Mf a.s.
Suppose that (ii) of the Main Theorem holds. Then (3.16) yields

sN‖y‖X = ‖Sg‖X ≤ C‖Sf‖X ≤
Cπ√

6
‖y‖X + CK‖x‖X .

By the choice of N , we obtain

‖y‖X ≤ (sN − Cπ/
√

6)‖y‖X ≤ CK‖x‖X .
Thus (3.12) holds with c = CK. This completes the proof.

Remark. Let X be a Banach function space over Ω. In [5] the author
proved that if the inequality

(3.17) sup
n∈Z+

‖fn‖X ≤ C‖Sf‖X

holds for all f ∈ M, then X can be equivalently renormed so as to be an
r.i. space such that αX > 0. We can now give a simpler proof that if (3.17)
holds for all f ∈M, then X can be renormed so as to be r.i.

Let f = (fn) be the martingale used in the proof of Lemma 3.5, and
suppose that (3.17) holds. Since |fn|1{y>0} = sny for n = 0, 1, . . . , N , it
follows from (3.16) and (3.17) that

sN‖y‖X = sup
0≤n≤N

‖fn1{y>0}‖X ≤ sup
n∈Z+

‖fn‖X

≤ C‖Sf‖X ≤
Cπ√

6
‖y‖X + CK‖x‖X .

As in the proof of Lemma 3.5, we see that (3.12) holds with c = CK. Thus
X can be equivalently renormed so as to be r.i.
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Proof of the Main Theorem. It has been proved in [6] that (iii), (iv), (v),
and (vi) are equivalent; moreover it is clear that (i) implies (ii). So it suffices
to show that (ii) implies (vi) and (v) implies (i).

(ii)⇒(vi). Suppose that (ii) holds. Then Lemma 3.5 implies that X can
be renormed so as to be r.i. Hence we may apply Lemma 3.3 to deduce that
αX > 0. Thus (vi) holds.

(v)⇒(i). Suppose that F ∈ F, f, g ∈ M(F) and ‖Mg‖X ≤ ‖Mf‖X . If
(v) holds, then

‖Sg‖X ≤ C‖Mg‖X ≤ C‖Mf‖X ≤ C2‖Sf‖X .
Thus (i) holds. This completes the proof.
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