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CYCLIC MEAN-VALUE INEQUALITIES FOR
THE GAMMA FUNCTION
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HORST ALZER (Waldbröl)

Abstract. We present two cyclic inequalities involving the classical Γ -function of
Euler and the (unweighted) power mean

Mt(a, b) =

(
at + bt

2

)1/t

(t 6= 0), M0(a, b) =
√
ab (a, b > 0).

(I) Let 2 ≤ n ∈ N and r ∈ R. The inequality

n∏
j=1

Γ

(
1

1 +Mr(xj , xj+1)

)
≤

n∏
j=1

Γ

(
1

1 + xj

)
(xn+1 = x1)

holds for all xj > 0 (j = 1, . . . , n) if and only if r ≤ 0.

(II) Let 2 ≤ n ∈ N and s ∈ R. The inequality

n∏
j=1

Γ

(
1

1 + xj

)
≤

n∏
j=1

Γ

(
1

1 +Ms(xj , xj+1)

)
(xn+1 = x1)

is valid for all xj > 0 (j = 1, . . . , n) if and only if

s ≥ max
0<x<1

P (x) = 1.0309 . . . .

Here,

P (x) = 2x− 1 + x(x− 1)
ψ′(x)

ψ(x)
and ψ = Γ ′/Γ .

1. Introduction. In 1954, H. S. Shapiro [12] published the following
cyclic inequality in the Problem section of The American Mathematical
Monthly:

(1.1)
n

2
≤ x1
x2 + x3

+
x2

x3 + x4
+ · · ·+ xn−1

xn + x1
+

xn
x1 + x2

,

where x1, . . . , xn (n ≥ 3) are positive real numbers. This inequality attracted
the attention of numerous mathematicians, who tried to answer the ques-
tion: for which n is (1.1) true? The problem is now solved: inequality (1.1)
is valid for odd n ≤ 23 and for even n ≤ 12. For all other n it is false.
Detailed information on the history of Shapiro’s inequality can be found in
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the survey paper [6]. A collection of many other cyclic inequalities is given
in the recently published monograph [4]; see also [9].

Shapiro’s inequality is a typical example of those cyclic inequalities pre-
sented in the literature. Indeed, most of them provide sums or products of
real numbers, whereas only few cyclic inequalities involving classical special
functions are known. In 1956, E. M. Wright [15] offered an elegant cyclic
inequality which is valid for a whole class of functions. In fact, he presented
a short proof for the following theorem.

If f is a positive function, monotone or convex on an interval I, then
for x, y, z ∈ I we have

(1.2) 0 < (x− y)(x− z)f(x) + (y − x)(y − z)f(y) + (z − x)(z − y)f(z),

unless x = y = z.

The famous gamma function of Euler, defined for positive real numbers
x by

Γ (x) =

∞�

0

e−ttx−1dt =
1

x

∞∏
n=1

{(
1 +

1

n

)x(
1 +

x

n

)−1}
,

is strictly convex on (0,∞), so that we obtain, for x, y, z > 0,

(1.3) 0 ≤ (x− y)(x− z)Γ (x) + (y − x)(y − z)Γ (y) + (z − x)(z − y)Γ (z).

A refinement of (1.3) is given in [2]. It was proved that the lower bound 0
can be replaced by

c · ((x− y)2 + (y − z)2 + (z − x)2
)

with

c =
1

2
min
t>0

Γ (t) = 0.442 . . . .

The constant factor is the best possible.

Here, we are concerned with another cyclic inequality involving the Γ -
function:

(1.4) Γ

(
1

1 +
√
xy

)
Γ

(
1

1 +
√
yz

)
Γ

(
1

1 +
√
zx

)
≤ Γ

(
1

1 + x

)
Γ

(
1

1 + y

)
Γ

(
1

1 + z

)
.

Many numerical examples led to the conjecture that (1.4) is valid for all posi-
tive real numbers x, y, z. On the left-hand side of (1.4) the classical geometric
mean of two numbers appears. This mean-value is a member of the well-
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known family of power means, defined for a, b > 0 and real parameters t by

(1.5)
Mt(a, b) =

(
at + bt

2

)1/t

(t 6= 0),

M0(a, b) = lim
t→0

Mt(a, b) =
√
ab;

see [8].

In view of (1.4) and (1.5) it is natural to look for an extension of (1.4)
involving power means and to ask for all real parameters r such that

(1.6) Γ

(
1

1 +Mr(x, y)

)
Γ

(
1

1 +Mr(y, z)

)
Γ

(
1

1 +Mr(z, x)

)
≤ Γ

(
1

1 + x

)
Γ

(
1

1 + y

)
Γ

(
1

1 + z

)
is valid for all x, y, z > 0.

In Section 3, we solve this problem. We show that (1.6) holds for all
positive x, y, z if and only if r ≤ 0. In particular, this reveals that the
geometric mean inequaliy (1.4) is true.

Does there exist a converse of (1.6)? This means we ask for all real
parameters s such that

(1.7) Γ

(
1

1 + x

)
Γ

(
1

1 + y

)
Γ

(
1

1 + z

)
≤ Γ

(
1

1 +Ms(x, y)

)
Γ

(
1

1 +Ms(y, z)

)
Γ

(
1

1 +Ms(z, x)

)
for all x, y, z > 0. With regard to (1.4) it is natural that the first step to
investigate (1.7) is to consider the case s = 1 which yields an inequality
involving the arithmetic mean M1(x, y) = (x+ y)/2. However, this inequal-
ity is not true. A counterexample is given by setting x = 0.3, y = z = 0.
Numerous computer calculations supported the conjecture that (1.7) holds
with the quadratic mean M2(x, y) = (x2/2+y2/2)1/2. And, in fact, it turned
out that this conjecture is true. In Section 3, we prove even more. We es-
tablish that (1.7) is valid for all x, y, z > 0 if and only if s ≥ 1.0309 . . . . In
order to prove our main results we need three lemmas. They are presented
in the next section.

The numerical values given in this paper have been calculated via the
computer program Maple 13.

2. Lemmas. Here, we provide monotonicity and concavity properties of
the Γ -function, and we offer a maximum property of the psi function which
is defined by ψ = Γ ′/Γ .
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Lemma 1. Let x, y > 0. The function

∆(r) = ∆(r;x, y) = Γ

(
1

1 +Mr(x, y)

)
is increasing on R.

Proof. Let r ∈ R. We have

0 <
1

1 +Mr(x, y)
< 1.

Since r 7→Mr(x, y) is increasing on R (see [8]) and Γ is decreasing on (0, 1),
we conclude that ∆ is increasing on R.

Using the computational knowledge engine WolframAlpha [14] we obtain
the following result.

Lemma 2. Let

(2.1)
P (x) = 2x− 1 + x(x− 1)

ψ′(x)

ψ(x)
(x > 0),

P (0) = lim
x→0

P (x) = 0.

Then

max
0<x<1

P (x) = 1.0309 . . . at x = 0.9207 . . . .

Lemma 3. Let s > 0. The function

(2.2) φ(x) = φ(s;x) = logΓ

(
1

1 + x1/s

)
is concave on (0,∞) if and only if

(2.3) s ≥ max
0<x<1

P (x).

Here, P is defined in (2.1).

Proof. Differentiation yields

(2.4) − s2(1 + x1/s)2x2−1/s

ψ((1 + x1/s)−1)
φ′′(x) = P ((1 + x1/s)−1)− s.

If s ≥ max0<x<1 P (x), then

(2.5) s ≥ P ((1 + x1/s)−1) for x > 0.

Using (2.4) and (2.5) gives φ′′(x) ≤ 0.
Conversely, if φ′′ is nonpositive on (0,∞), then (2.4) implies that (2.5)

holds. It follows that

s ≥ P (x) for x ∈ (0, 1).

This leads to (2.3).
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3. Main results. We are now ready to determine all r ∈ R such that
(1.6) holds for all x, y, z > 0. Actually, we prove an n-dimensional analogue
of (1.6).

Theorem 1. Let 2 ≤ n ∈ N and r ∈ R. The inequality

(3.1)
n∏

j=1

Γ

(
1

1 +Mr(xj , xj+1)

)
≤

n∏
j=1

Γ

(
1

1 + xj

)
(xn+1 = x1)

holds for all positive real numbers x1, . . . , xn if and only if r ≤ 0.

Proof. We assume (for a contradiction) that there exists a parameter
r > 0 such that (3.1) is valid for all positive numbers x1, . . . , xn. Then we
set x1 = x > 0 and x2 = · · · = xn = y > 0. This yields

Γ

(
1

1 +Mr(x, y)

)2

≤ Γ
(

1

1 + x

)
Γ

(
1

1 + y

)
.

We let y tend to 0 and obtain

Γ

(
1

1 + δx

)2

≤ Γ
(

1

1 + x

)
with δ = 2−1/r.

Next, we multiply by (1 + δx)−2 and make use of the recurrence formula
tΓ (t) = Γ (1 + t). It follows that

Γ

(
1 +

1

1 + δx

)2

≤ 1 + x

(1 + δx)2
Γ

(
1 +

1

1 + x

)
.

We let x tend to ∞ and obtain 1 ≤ 0. This contradiction leads to r ≤ 0.

Next, we show that (3.1) is valid if r ≤ 0. Applying Lemma 1 reveals
that it suffices to prove (3.1) for r = 0. For x ∈ R we define

A1(x) = logΓ

(
1

1 + ex

)
.

Then we get

(3.2) A′′1(x) = y(1− y)A2(y)

with

A2(y) = (1− 2y)ψ(y) + y(1− y)ψ′(y) and y = (1 + ex)−1 ∈ (0, 1).

Since ψ′ > 0 on (0,∞) (see [1]), we conclude that A2(y) > 0 if 1/2 ≤ y < 1.
The representation

(3.3) A2(y) = (1− 2y)ψ(y + 1) + y(1− y)ψ′(y + 1) + 1

reveals that A2 is positive on (x0 − 1, 1/2), too. Here, ψ(x0) = 0. And, if
0 < y ≤ x0 − 1, then (3.3) gives

A2(y) ≥ ψ(1) + 1 = 0.42 . . . .
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Using (3.2) implies that A1 is strictly convex on R. Thus, for a, b ∈ R we
get

Γ

(
1

1 + e(a+b)/2

)
≤
[
Γ

(
1

1 + ea

)
Γ

(
1

1 + eb

)]1/2
.

Equality holds if and only if a = b.
Next, we set a = log xj , b = log xj+1 (j = 1, . . . , n) and multiply. This

leads to
n∏

j=1

Γ

(
1

1 +M0(xj , xj+1)

)
≤

n∏
j=1

[
Γ

(
1

1 + xj

)
Γ

(
1

1 + xj+1

)]1/2
=

n∏
j=1

Γ

(
1

1 + xj

)
(xn+1 = x1),

with equality if and only if x1 = · · · = xn.

Remark 1. Since A1 is positive and convex on R, we conclude from
Wright’s inequality (1.2) that

1 < Γ

(
1

1 + ex

)(x−y)(x−z)
Γ

(
1

1 + ey

)(y−x)(y−z)
Γ

(
1

1 + ez

)(z−x)(z−y)

is valid for all real numbers x, y, z except x = y = z.

Remark 2. A theorem of M. Petrović [10] states that if a function f is
strictly convex on [0,∞), then for x, y > 0 we have

f(x) + f(y) < f(0) + f(x+ y).

Since A1 and exp(A1) are strictly convex on R with A1(0) = log
√
π, we

obtain, for x, y ∈ (0, 1) or x, y ∈ (1,∞),

Γ

(
1

1 + x

)
Γ

(
1

1 + y

)
<
√
π Γ

(
1

1 + xy

)
,

Γ

(
1

1 + x

)
+ Γ

(
1

1 + y

)
<
√
π + Γ

(
1

1 + xy

)
.

In both cases, the constant
√
π is the best possible.

Our second theorem provides a counterpart of inequality (3.1).

Theorem 2. Let 2 ≤ n ∈ N and s ∈ R. The inequality

(3.4)
n∏

j=1

Γ

(
1

1 + xj

)
≤

n∏
j=1

Γ

(
1

1 +Ms(xj , xj+1)

)
(xn+1 = x1)

holds for all positive real numbers x1, . . . , xn if and only if

(3.5) s ≥ max
0<x<1

P (x) = 1.0309 . . . .

Here, P is the function defined in (2.1).
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Proof. First, we suppose that (3.4) is valid for all positive numbers
x1, . . . , xn. From Theorem 1 we conclude that s > 0. Setting x1 = x and
x2 = · · · = xn = y gives

Γ

(
1

1 + x

)
Γ

(
1

1 + y

)
≤ Γ

(
1

1 +Ms(x, y)

)2

.

Putting x = a1/s and y = b1/s leads to

(3.6)
φ(s; a) + φ(s; b)

2
≤ φ

(
s;
a+ b

2

)
,

where φ is defined in (2.2). This implies that x 7→ φ(s;x) is concave on
(0,∞). Applying Lemmas 2 and 3 yields

s ≥ max
0<x<1

P (x) = 1.0309 . . . .

Next, we assume that (3.5) holds. Then x 7→ φ(s;x) is concave on (0,∞),
so that (3.6) is valid for a, b > 0. Setting a = xsj and b = xsj+1 gives[

Γ

(
1

1 + xj

)
Γ

(
1

1 + xj+1

)]1/2
≤ Γ

(
1

1 +Ms(xj , xj+1)

)
.

This leads to
n∏

j=1

Γ

(
1

1 + xj

)
=

n∏
j=1

[
Γ

(
1

1 + xj

)
Γ

(
1

1 + xj+1

)]1/2
≤

n∏
j=1

Γ

(
1

1 +Ms(xj , xj+1)

)
(xn+1 = x1).

The proof of Theorem 2 is complete.

Remark 3. Recently, numerous papers appeared providing various in-
equalities for the gamma function and its relatives, like, for example, the
incomplete gamma function, the polygamma functions, and the beta func-
tion. We refer to Sándor’s detailed bibliography [11]. The main properties of
the Γ -function are collected, for instance, in [1] and [3]. Interesting historical
comments on this subject are given in [5], [7], and [13].

Acknowledgements. I thank the referee for helpful comments.
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