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Abstract. Let G be a finite connected graph on two or more vertices, and G[N,k] the
distance-k graph of the N -fold Cartesian power of G. For a fixed k ≥ 1, we obtain explicitly
the large N limit of the spectral distribution (the eigenvalue distribution of the adjacency
matrix) of G[N,k]. The limit distribution is described in terms of the Hermite polynomials.
The proof is based on asymptotic combinatorics along with quantum probability theory.

1. Introduction. Since Vershik [13] emphasized the importance of
asymptotic problems in combinatorics, various approaches have been de-
veloped from different branches of mathematics. The main question in this
context is to explore the limit behavior of a combinatorial object when it
grows. Asymptotic spectral analysis of a growing graph is a subject in this
line with wide applications to structural analysis of complex networks.

In this paper, we study a particular class of growing graphs naturally
induced from the Cartesian powers of a finite connected graph. In fact, we
will prove the following main result.

Theorem 1.1. Let G = (V,E) be a finite connected graph with |V | ≥ 2.
For N ≥ 1 and k ≥ 1 let G[N,k] be the distance-k graph of GN = G×· · ·×G
(N -fold Cartesian power) and A[N,k] its adjacency matrix. Then, for a fixed
k ≥ 1, the eigenvalue distribution of N−k/2A[N,k] converges in moments as
N →∞ to the probability distribution of

(1.1)

(
2|E|
|V |

)k/2 1

k!
H̃k(g),

where H̃k is the monic Hermite polynomial of degree k (see Section 2.4) and
g is a random variable obeying the standard normal distribution N(0, 1).

It is noteworthy that the limit distribution (1.1) is obtained explicitly
and is universal in the sense that it is independent of the details of a factor G.
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Namely, for large N , the spectral structure of the distance-k graph of GN

is dominated by the product structure. This shares a common nature with
the central limit theorem in probability theory. In fact, we will prove the
above result by applying quantum (non-commutative) probability theory
[9], where central limit theorems of various kinds have been studied from
algebraic and combinatorial viewpoints.

The study of asymptotic spectral distribution of G[N,k] for a large N
limit appeared first in [11] where the case of G = K2 (the complete graph
on two vertices) and k = 2 was studied by means of quantum decomposi-
tion. Later in [12] the spectrum of the distance-k graph of H(N, 2) = KN

2

was explicitly obtained in terms of the Krawtchouk polynomials for arbi-
trary 1 ≤ k ≤ N . Then, by using certain limit formulas for the Krawtchouk
polynomials, the asymptotic spectral distribution of the distance-k graph of
H(N, 2) was determined. The result is a special case of (1.1) with |V | = 2
and |E| = 1. In the recent paper [7] the above argument was extended to
cover the distance-k graph of the Hamming graph H(N, d) = KN

d . The re-
sult is again a special case of (1.1). The case of G being a star graph and
k = 2 was discussed in [10]. During these studies it has been conjectured
that the limit distribution does not depend on the detailed structure of G,
as the central limit distribution of the sum of independent, identically dis-
tributed random variables is the normal (Gaussian) law independently of
the distributions of the random variables. Our main result shows that this
conjecture is true.

This paper is organized as follows. In Section 2, recalling some notions
and notations in quantum probability, we prepare a useful result on the
convergence of algebraic random variables (Proposition 2.2) and reformulate
our main result (Theorem 2.6). In Section 3 we derive a combinatorial limit
formula (Theorem 3.3), which is viewed as an extension of the commutative
central limit theorem in quantum probability. In Section 4 we prove the main
result. Our discussion is based on asymptotic estimation of combinatorial
objects, along with the philosophy of Vershik [13].

Finally, we mention some relevant works. The distance-k graphs were
introduced originally in the study of distance-regular graphs (see e.g. [2, 6]).
The adjacency matrix of the distance-k graph of a finite graph G, say D[k] =
A[1,k], is nothing other than the k-distance matrix of G. Then the distance
matrix D of G is defined by

D =
∞∑
k=1

kD[k],

where the right-hand side is in fact a finite sum. The spectrum of the distance
matrix has been actively studied recently, in particular, in connection with
spectral graph theory (see e.g. [5] and references cited therein). Asymptotic
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spectral analysis of the distance matrix will be an interesting research topic
in this connection. Distance-k graphs are used to construct embeddings of
graphs into metric spaces for measuring graph similarity, which has wide
applications in statistical pattern recognition [4]. The asymptotic spectral
analysis, being related to graph embeddings, is expected to contribute some
applications in this line of research. It is also noteworthy that the probability
distribution (1.1) is derived by Hora [8] from the asymptotic behavior of the
Young graph (branching rule of representations of the symmetric groups).

2. Preliminaries

2.1. Algebraic probability space. An algebraic probability space is a
pair (A, ϕ), where A is a ∗-algebra over the complex number field C with
multiplication identity 1 = 1A and ϕ a state on it, i.e., ϕ : A → C is a
C-linear function on A satisfying ϕ(1) = 1 and ϕ(a∗a) ≥ 0 for all a ∈ A.
We do not assume any topological conditions. An element a ∈ A is called
an (algebraic) random variable, and it is called real if a∗ = a. It is known
that

ϕ(a∗) = ϕ(a), a ∈ A,
and the Schwarz inequality holds:

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b), a, b ∈ A.
In particular, for real random variables a = a∗ and b = b∗ we have

|ϕ(ab)|2 ≤ ϕ(a2)ϕ(b2).

A state ϕ is called tracial if

ϕ(ab) = ϕ(ba), a, b ∈ A.

For a real random variable a ∈ A there exists a probability distribution
µ on the real line (−∞,+∞) such that

ϕ(am) =

+∞�

−∞
xm µ(dx), m = 0, 1, 2, . . . .

The above µ is called the spectral distribution of a in the state ϕ. The
existence of µ follows from the Hamburger theorem. However, uniqueness
does not hold in general due to the famous indeterminate moment problem;
for further details see [9, Chapter 1].

2.2. Convergence in moments. Let (An, ϕn), n = 1, 2, . . . , and (A, ϕ)
be algebraic probability spaces. We say that a sequence of real random vari-
ables an ∈ An converges to a real random variable a ∈ A in moments if

lim
n→∞

ϕn(amn ) = ϕ(am), m = 0, 1, 2, . . . .
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In this case we write
an

M−→ a

for simplicity.

Proposition 2.1. If an
M−→ a, then p(an)

M−→ p(a) for any polynomial
p(x).

The above assertion is obvious. However, generalization to multivariable
case is not trivial. For real random variables a, b, . . . , c ∈ A the quantities
of the form

ϕ(aα1bβ1 · · · cγ1 · · · aαibβi · · · cγi · · · ),
where αi, βi . . . , γi are non-negative integers, are called mth mixed moments
of a, b, . . . , c ∈ A with m =

∑
i(αi + βi + · · ·+ γi).

Proposition 2.2. Let (An, ϕn), n = 1, 2, . . . , and (A, ϕ) be algebraic
probability spaces. Let k≥ 1 be a fixed integer. Let an = a∗n, z1n = z∗1n, . . . , zkn
= z∗kn ∈ An, n = 1, 2, . . . , and a = a∗ ∈ A be real random variables, and
ζ1, . . . , ζk ∈ R. Assume the following conditions hold:

(i) an
M−→ a and zin

M−→ ζi1 for i = 1, . . . , k;
(ii) ϕn is a tracial state for n = 1, 2, . . . ;
(iii) {an, z1n , . . . , zkn} ⊂ An have uniformly bounded mixed moments in

the sense that

Cm = sup
n

max

{
|ϕ(aα1

n z
β1
1n · · · z

δ1
kn · · · a

αi
n z

βi
1n · · · z

δi
kn · · · )| ;

αi, βi, . . . , δi ≥ 0 integers,∑
i(αi + βi + · · ·+ δi) = m

}
<∞.

Then for any non-commutative polynomial p(x, y1, . . . , yk) we have

(2.1) p(an, z1n, . . . , zkn)
M−→ p(a, ζ11, . . . , ζk1).

Remark 2.3. Strictly speaking, (2.1) is an abuse of notation because
p(an, z1n, . . . , zkn) is not necessarily real. We tacitly understand (2.1) to be

lim
n→∞

ϕn(p(an, z1n, . . . , zkn)m) = ϕ(p(a, ζ11, . . . , ζk1)m), m = 1, 2, . . . .

Remark 2.4. Obviously, condition (ii) in Proposition 2.2 may be re-
placed with

(ii′) ϕn restricted to the ∗-subalgebra generated by {an, z1n , . . . , zkn} is
tracial.

Then we note that if an, z1n, . . . , zkn are mutually commutative, conditions
(ii) and (iii) are redundant. In fact, as condition (ii′) is trivially satisfied,
(ii) is redundant. For condition (iii) we first observe that

(2.2) |ϕ(aα1
n z

β1
1n · · · z

δ1
kn · · · a

αi
n z

βi
1n · · · z

δi
kn · · · )| = |ϕ(aαnz

β
1n · · · z

δ
kn)|,
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where α =
∑

i αi, β =
∑

i βi, . . . , δ =
∑

i δi. Applying the Schwarz inequal-
ity repeatedly we have

|ϕ(aαnz
β
1nz

γ
2n · · · z

δ
kn)|2 ≤ ϕ(a2αn )ϕ(z2β1nz

2γ
2n · · · z

2δ
kn),

|ϕ(z2β1nz
2γ
2n · · · z

2δ
kn)|2 ≤ ϕ(z4β1n)ϕ(z4γ2n · · · z

4δ
kn), . . . .

Finally, (2.2) is bounded by a product of moments of an, z1n, . . . , zkn, which
remain finite as n → ∞ since they are convergent sequences by (i). Thus,
condition (iii) holds.

Proof of Proposition 2.2. Since p(an, z1n, . . . , zkn)m, m ≥ 1, is again a
non-commutative polynomial in an, z1n, . . . , zkn, it is sufficient to prove that

(2.3) lim
n→∞

ϕn(p(an, z1n, . . . , zkn)) = ϕ(p(a, ζ11, . . . , ζk1))

for all non-commutative polynomials p. Moreover, by the linearity of a state
we need only prove (2.3) for all non-commutative monomials of the form

(2.4) p(x, y1, . . . , yk) = xα1yβ11 · · · y
δ1
k · · ·x

αiyβi1 · · · y
δi
k · · · .

We will prove this by induction on the degree m of the monomial. Here the
degree of p in (2.4) is defined by

m =
∑
i

(αi + βi + · · ·+ δi).

For m = 1 we need to show that

lim
n→∞

ϕn(an) = ϕ(a), lim
n→∞

ϕn(zin) = ϕ(ζi1).

But these are obvious by assumption (i) of an
M−→ a and zin

M−→ ζi1. Let
m ≥ 1 and suppose that (2.3) is true for all non-commutative monomials
(2.4) of degree up to m. Now let p(x, y1, . . . , yk) be a non-commutative
monomial of degree m+ 1. We need to prove (2.3) for this monomial.

Case 1: p(x, y1, . . . , yk) = xm+1. In this case (2.3) holds obviously by

the assumption of an
M−→ a.

Case 2: p(x, y1, . . . , yk) = xαyiq with α ≥ 0 and q = q(x, y1, . . . , yk)
a non-commutative monomial of degree m− α. For simplicity we set

p(an, z1n, . . . , zkn) = aαnzinwn , p(a, ζ11, . . . , ζk1) = aαζiw.

Then we have

(2.5) |ϕn(aαnzinwn)− ϕ(aαζiw)|
≤ |ϕn(aαnzinwn)− ϕn(aαnζiwn)|+ |ϕn(aαnζiwn)− ϕ(aαζiw)|
= |ϕn(aαn(zin − ζi1)wn)|+ |ζi| |ϕn(aαnwn)− ϕ(aαw)|
= |ϕn((zin − ζi1)wna

α
n)|+ |ζi| |ϕn(aαnwn)− ϕ(aαw)|,
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where the last identity is due to assumption (ii). The second term of (2.5)
tends to 0 as n→∞ by the assumption of induction. For the first term we
apply the Schwarz inequality to obtain

(2.6) |ϕn((zin − ζi1)wna
α
n)|2 ≤ ϕn((zin − ζi1)2)ϕ((wna

α
n)∗(wna

α
n)).

Since (wna
α
n)∗(wna

α
n) is a monomial of degree 2m, we have ϕ((wna

α
n)∗(wna

α
n))

≤ C2m by the uniform boundedness assumption (iii). Then (2.6) becomes

|ϕn((zin − ζi1)wna
α
n)|2 ≤ C2m{ϕn(z2in)− 2ζiϕn(zin) + ζ2i } → 0 as n→∞.

Hence (2.5) tends to 0 as n→∞. Consequently,

lim
n→∞

ϕn(aαnzinwn) = ϕ(aαζiw).

Thus, (2.3) holds for our monomial p(x, y1, . . . , yk) = xαyiq.

Finally, we see from Cases 1 and 2 that (2.3) is also true for all non-
commutative monomials p(x, y1, . . . , yk) of degree m+ 1.

2.3. Adjacency matrix as algebraic random variable. Let G =
(V,E) be a finite graph and A the adjacency matrix. Let A(G) be the
adjacency algebra, i.e., the commutative ∗-algebra generated by A. Define
the normalized trace by

(2.7) ϕtr(a) =
1

|V |
Tr a, a ∈ A(G).

Then ϕtr becomes a state on A(G) and the adjacency matrix A is regarded
as a real random variable of the algebraic probability space (A(G), ϕtr).

Proposition 2.5. The spectral distribution of the adjacency matrix A
in the state ϕtr coincides with the eigenvalue distribution of the graph G. In
other words,

ϕtr(A
m) =

+∞�

−∞
xm µ(dx), m = 0, 1, 2, . . . ,

where µ is the eigenvalue distribution of G.

The proof is obvious; however, the above relation is a clue to studying
the eigenvalue distribution of a graph by means of quantum probabilistic
techniques.

2.4. Main result. Let G = (V,E) be a graph. For an integer k ≥ 1 the
distance-k graph of G is the graph G[k] = (V,E[k]) with

E[k] = {{x, y}; x, y ∈ V, ∂G(x, y) = k},
where ∂G(x, y) is the graph distance of G. The distance-1 graph of G coin-
cides with G itself.
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Now we rephrase the main result. Let G = (V,E) be a finite connected
graph with |V | ≥ 2. For k ≥ 1 and N ≥ 1 let G[N,k] be the distance-k graph
of GN = G × · · · × G (N -fold Cartesian power). In general, G[N,k] is not
necessarily connected. The adjacency matrix A[N,k] of G[N,k] is considered
as a real random variable on the algebraic probability space (A(G[N,k]), ϕtr),
where ϕtr is the normalized trace (see Section 2.3). The main result, Theo-
rem 1.1, is equivalent to the following statement.

Theorem 2.6. Notations and assumptions being as above, we have

A[N,k]

Nk/2

M−→
(

2|E|
|V |

)k/2 1

k!
H̃k(g),

where H̃k is the monic Hermite polynomial (see below) and g is a random
variable obeying the standard normal distribution N(0, 1).

Following the standard terminology (e.g., [1, 3]) the Hermite polynomials
{Hn(x)} are defined by the three-term recurrence relation

H0(x) = 1, H1(x) = 2x, 2xHn(x) = Hn+1(x) + 2nHn−1(x).

The monic Hermite polynomials appearing in Theorem 2.6 are defined by
simple normalization:

H̃n(x) = 2−n/2Hn(x/
√

2), n = 0, 1, 2, . . . .

Then we have

(2.8) H̃0(x) = 1, H̃1(x) = x, xH̃n(x) = H̃n+1(x) + nH̃n−1(x).

It is known that H̃n(x) become orthogonal polynomials with respect to
the standard normal distribution N(0, 1). We remark that they are not
normalized:

1√
2π

+∞�

−∞
H̃n(x)2e−x

2/2 dx = n!, n = 0, 1, 2, . . . .

3. Convergence of tensor powers of algebraic random variables.
Let (A, ϕ) be an arbitrary algebraic probability space. ForN ≥ 1 we consider
the N -fold tensor power (A⊗N , ϕ⊗N ). From now on we write ϕ for ϕ⊗N . For
a real random variable b = b∗ ∈ A and i ∈ {1, . . . , N} we define bN (i) ∈
A⊗N by

bN (i) =

N factors︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗ b⊗ 1⊗ · · · ⊗ 1,

where b appears at the ith position. Let BN denote the ∗-algebra generated
by bN (1), . . . , bN (N). Obviously, BN becomes a commutative ∗-subalgebra of
A⊗N and we have BN = B⊗N1 . For mutually distinct i1, . . . , in ∈ {1, . . . , N}
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we define bN (i1, . . . , in) ∈ BN by

bN (i1, . . . , in) = bN (i1) · · · bN (in)

= 1⊗ · · · ⊗ 1⊗ b⊗ 1⊗ · · · ⊗ 1⊗ b⊗ 1⊗ · · · ⊗ 1,

where b appears at the i1th, . . . , inth positions. Finally, for 1 ≤ n ≤ N we
set

(3.1) b(N,n) =
∑

1≤i1<···<in≤N
bN (i1, . . . , in) =

1

n!

∑
i1,...,in
6=

bN (i1, . . . , in)

and for convenience

b(N,0) = 1⊗ · · · ⊗ 1.

We are interested in the asymptotic spectral distribution of b(N,n) as
N →∞. For n = 1 the result is well known (see e.g. [9, Chapter 8]).

Theorem 3.1 (Commutative law of large numbers). For a real random
variable b = b∗ ∈ A we have

(3.2) b(N,1)/N
M−→ ϕ(b) as N →∞.

Theorem 3.2 (Commutative central limit theorem). For a real random
variable b = b∗ ∈ A with ϕ(b) = 0 and ϕ(b2) = 1 we have

(3.3) b(N,1)/
√
N

M−→ g as N →∞,
where g is a Gaussian random variable obeying the standard normal law
N(0, 1).

The commutative independence of bN (1), . . . , bN (N) is essential in the
above statements. We recall that (3.3) means

lim
N→∞

ϕ

((
b(N,1)√
N

)m)
= mth moment of N(0, 1)

=

{
0, m odd,
(2k)!

2kk!
, m = 2k even,

m = 0, 1, 2, . . . .

We are now in a position to state a generalization of Theorem 3.2.

Theorem 3.3. Notations and assumptions being as in Theorem 3.2, we
have

b(N,n)

Nn/2

M−→ 1

n!
H̃n(g) as N →∞

for all n = 1, 2, . . . , where H̃n is the monic Hermite polynomial of degree n
defined in Section 2.4.

Before going into the proof, we consider the case of n = 2 in detail to
grasp the situation. We keep in mind that b = b∗ ∈ A with ϕ(b) = 0 and
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ϕ(b2) = 1. Starting with the simple identities

b(N,1)b(N,1) =
( ∑

1≤i≤N
bN (i)

)( ∑
1≤i≤N

bN (i)
)

=
∑
i1,i2
6=

bN (i1, i2) +
∑

1≤i≤N
b2N (i)

= 2b(N,2) +N +
∑

1≤i≤N
(b2 − 1)N (i),

we obtain

(3.4) 2
b(N,2)

N
=
b(N,1)√
N

b(N,1)√
N
− 1− 1

N

∑
1≤i≤N

(b2 − 1)N (i).

For simplicity we set

(3.5) aN =
b(N,1)√
N

, zN1 =
1

N

∑
1≤i≤N

(b2 − 1)N (i).

Then (3.4) becomes

(3.6) 2
b(N,2)

N
= a2N − 1− zN1.

Moreover, aN and zN1 are commutative, and

aN
M−→ g, zN1

M−→ 0,

which follows from Theorem 3.2 and Theorem 3.1, respectively. Noting that
(3.6) is a polynomial in aN and zN1, we apply Proposition 2.2 to obtain

2
b(N,2)

N

M−→ g2 − 1 = H̃2(g),

which proves Theorem 3.3 for n = 2.

Proof of Theorem 3.3. We need some notation. For 1 ≤ n ≤ N and
y ∈ A we define F (N,n)(y) ∈ A⊗N by

(3.7) F (N,n)(y) =
∑ N factors︷ ︸︸ ︷

1⊗ · · · ⊗ b⊗ · · · ⊗ y ⊗ · · · ⊗ b⊗ · · · ⊗ 1,

where b appears n− 1 times and y just once, and the sum is taken over all
possible arrangements. Then after a simple calculation we obtain

(3.8) b(N,1)b(N,n) = (n+ 1)b(N,n+1) + (N − n+ 1)b(N,n−1) +F (N,n)(b2 − 1),

where 1 ≤ n < N .

For simplicity we set

(3.9) BNn = n!
b(N,n)

Nn/2
, zNn =

F (N,n)(b2 − 1)

N (n+1)/2
, 1 ≤ n ≤ N.
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Obviously, these are members of BN . For n = 1 we have BN1 = aN (see also
(3.5)). With these notations, (3.8) becomes

(3.10) BN,n+1 = aNBNn − nBN,n−1 +
n(n− 1)

N
BN,n−1 − n!zNn.

We are going to show that for each n = 1, 2, . . . there exists a polynomial
pn(x, y1, . . . , yn−1) (independent of N) such that

(3.11) BNn − pn(aN , zN1, zN2, . . . , zN,n−1) = YNn

is a real random variable in BN and YNn
M−→ 0 as N →∞. The assertion for

n = 1 is trivial with

(3.12) p1(x) = x, YN1 = 0.

For n = 2 we see from (3.6) that

(3.13) p2(x, y1) = x2 − 1− y1, YN2 = 0.

Suppose that the assertion holds up to n ≥ 2. Then (3.10) becomes

BN,n+1 = aN (pn + YNn)− n(pn−1 + YN,n−1)(3.14)

+
n(n− 1)

N
(pn−1 + YN,n−1)− n!zNn

= aNpn − npn−1 − n!zNn

+ aNYNn −
{
n− n(n− 1)

N

}
YN,n−1 +

n(n− 1)

N
pn−1.

Hence, setting

pn+1(x, y1, . . . , yn) = xpn(x, y1, . . . , yn−1)(3.15)

− npn−1(x, y1, . . . , yn−2)− n! yn

and

YN,n+1 = aNYNn −
{
n− n(n− 1)

N

}
YN,n−1(3.16)

+
n(n− 1)

N
pn−1(aN , zN1, zN2, . . . , zN,n−2),

we have

(3.17) BN,n+1 = pn+1(aN , zN1, zN2, . . . , zNn) + YN,n+1.

It is clear that pn+1(x, y1, y2, . . . , yn) is a polynomial and that YN,n+1 is a
real random variable in BN . In (3.16) we have

pn−1(aN , zN1, zN2, . . . , zN,n−2)
M−→ pn−1(g, 0, 0, . . . , 0),

which follows by Proposition 2.2 and the fact that zNn
M−→ 0 as N → ∞

(Lemma 3.4 below). Hence, applying the induction assumption, we see that

YN,n+1
M−→ 0. This completes the induction.
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Finally, applying Proposition 2.2 to (3.11), we obtain

(3.18) BNn
M−→ pn(g, 0, . . . , 0), n = 1, 2, . . . .

On the other hand, we know from (3.12) and (3.13) that

p1(x) = x, p2(x, 0) = x2 − 1.

Moreover, from (3.15) we have

pn+1(x, 0, . . . , 0) = xpn(x, 0, . . . , 0)− npn−1(x, 0, . . . , 0).

Comparing this with the recurrence relation (2.8) satisfied by the monic
Hermite polynomials, we see that

pn(x, 0, . . . , 0) = H̃n(x).

Consequently, it follows from (3.18) that

BNn
M−→ H̃n(g), n = 1, 2, . . . .

Lemma 3.4. For n = 1, 2, . . . we have

zNn =
F (N,n)(b2 − 1)

N (n+1)/2

M−→ 0.

Proof. We need to show that ϕ(zmNn) → 0 as N → ∞ for fixed m,n =
1, 2, . . . . For m = 1 the assertion is obvious so we assume that m ≥ 2. For
simplicity we set z = b2 − 1. By definition we have

F (N,n)(z) =
∑

1⊗ · · · ⊗ b⊗ · · · ⊗ z ⊗ · · · ⊗ b⊗ · · · ⊗ 1,

where b appears n− 1 times and z just once, and the sum is taken over all
possible arrangements. Then ϕ[(F (N,n)(z))m] is the sum of all terms of the
form

(3.19) ϕ(1⊗ · · · ⊗ (∗)⊗ · · · ⊗ (∗)⊗ · · · ⊗ (∗)⊗ · · · ⊗ 1),

where (∗) is of the form bszt with 1 ≤ s+t ≤ m. If one of the (∗)’s is occupied
by b or z (i.e., s+ t = 1), the value of (3.19) is zero since ϕ(b) = ϕ(z) = 0.
Hence ϕ[(F (N,n)(z))m] is the sum of the terms (3.19) such that (∗) is of the
form bszt with 2 ≤ s+ t ≤ m. We set

K = Km = max{1, |ϕ(bszt)|; 2 ≤ s+ t ≤ m}.
Suppose that nm is even. Let S be the sum of terms (3.19) with (∗)

being of order 2, that is, b2, bz or z2, and write

ϕ[(F (N,n)(z))m] = S +R.

First each term constituting S is estimated as

|ϕ(1⊗ · · · ⊗ (∗)⊗ · · · ⊗ (∗)⊗ · · · ⊗ (∗)⊗ · · · ⊗ 1)| ≤ Knm/2.

We need to count the number of such terms. The number of choices of places
where (∗) appears is given by

(
N

nm/2

)
. Then the arrangements of b2, bz, z2 at
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a set of chosen places (∗) is bounded by 3nm/2. Hence

S ≤ Knm/2

(
N

nm/2

)
3nm/2 ≤ C1(m,n)Nnm/2

for some constant C1(m,n). If nm is odd, letting S be the sum of terms
(3.19) with (∗) being of order 2 except one (∗) of order 3, we have

S ≤ K(nm−1)/2
(

N

(nm− 1)/2

)
7(nm−1)/2 ≤ C2(m,n)N (nm−1)/2

In any case we have

S = O(N [nm/2]).

By a similar argument we see easily that the rest term R has a smaller
order:

R = o(N [nm/2]).

Consequently,

ϕ(zmNn) = ϕ

((
F (N,n)(z)

N (n+1)/2

)m)
≤ S +R

N (n+1)m/2
= O(N−m/2),

which tends to zero as N →∞.

4. Proof of Theorem 2.6. Associated with the finite graph G =
(V,E), we consider the full matrix algebra M(V ), that is, the ∗-algebra of
matrices with index set V ×V . The adjacency algebraA(G) is a commutative
∗-subalgebra of M(V ). The normalized trace ϕtr on A(G) defined in (2.7)
is naturally extended to M(V ) and is denoted by the same symbol. As
A(G[N,k]) is a ∗-subalgebra of M(V )⊗N , the normalized trace on A(G[N,k])
coincides with the restriction of the product state ϕ⊗Ntr onM(V )⊗N , which
is denoted by ϕ for simplicity hereafter.

Let A and A[N,k] be the adjacency matrices of G and G[N,k], respectively.
Following the notation in (3.1) we set

A(N,n) =
∑

1≤i1<···<in≤N
AN (i1, . . . , in) =

1

n!

∑
i1,...,in
6=

AN (i1, . . . , in)

and define a real random variable C(N, k) by

(4.1) A[N,k] = A(N,k) + C(N, k).

We will first show that

(4.2)
C(N, k)

Nk/2

M−→ 0 as N →∞.
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Remark 4.1. As is easily seen, the adjacency matrix of GN is given by

A(N,1) =

N∑
i=1

AN (i) =

N∑
i=1

N factors︷ ︸︸ ︷
1⊗ · · · ⊗A⊗ · · · ⊗ 1,

where A sits at the ith position. Therefore, we have

A[N,1] = A(N,1).

However, for k ≥ 2, A[N,k] = A(N,k) does not hold in general while it is
easily seen to hold when G is a complete graph and 1 ≤ k ≤ N . The N -fold
Cartesian power of the complete graph Kd (where d stands for the number
of vertices) is called a Hamming graph and is denoted by H(N, d). The
eigenvalue distribution of the distance-k graph of H(N, d) is obtained by
means of the Krawtchouk polynomials (see [12] for d = 2 and [7] for an
arbitrary d).

Lemma 4.2. Let G = (V,E) be a finite connected graph and let the
distance between two vertices ξ, η ∈ V be denoted by ∂G(ξ, η). Then for the
N -fold Cartesian power GN we have

∂GN (x, y) =

N∑
i=1

∂G(ξi, ηi),

where x = (ξ1, . . . , ξN ), y = (η1, . . . , ηN ) ∈ V N .

Proof. Straightforward.

It is convenient to introduce the distance matrix of G. For k = 1, 2, . . .
let D[k] be the k-distance matrix of G, which is a matrix indexed by V × V
and defined by

(D[k])xy =

{
1, ∂G(x, y) = k,

0, otherwise.

In other words, D[k] is the adjacency matrix of the distance-k graph of G.
By definition A = D[1] and A[1,k] = D[k].

We need a concise expression for C(N, k). For illustration we consider
the case of k = 2. For two vertices x = (ξ1, . . . , ξN ), y = (η1, . . . , ηN ) ∈ V N ,

∂GN (x, y) =

N∑
i=1

∂G(ξi, ηi) = 2

if and only if one of the following two cases occurs:

(i) there exist 1 < i1 < i2 ≤ N such that ∂G(ξi1 , ηi1) = ∂G(ξi2 , ηi2) = 1
and ∂G(ξj , ηj) = 0 for all j 6= i1, i2;

(ii) there exists 1 ≤ i ≤ N such that ∂G(ξi, ηi) = 2 and ∂G(ξj , ηj) = 0
for all j 6= i.
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We then have

A[N,2] =
∑

1≤i1<i2≤N
D[1](i1, i2) +

∑
1≤i≤N

D[2](i) = A(N,2) + C(N, 2).

The above argument is applied to A[N,k] for a general k. For k ≥ 1 we
set

Λ(k) =
{
λ = (j1, j2, . . . ); jh ≥ 0 are integers such that

∞∑
h=1

hjh = k
}
.

An element of Λ(k) is called a partition of k. For λ = (j1, j2, . . . ) ∈ Λ(k) we
define

C(λ) =
∑

1⊗ · · · ⊗ (∗)⊗ · · · ⊗ (∗)⊗ · · · ⊗ 1,

where (∗) is occupied by D[h] precisely jh times (h = 1, 2, . . . ) and the sum
is taken over all possible arrangements. For λ0 = (k, 0, 0, . . . ), we have

C(λ0) =
∑

1≤i1<···<ik≤N
D[1](i1, . . . , ik) = A(N,k).

Lemma 4.3. For k ≥ 1, we have

(4.3) A[N,k] = A(N,k) +
∑

λ∈Λ(k)\{λ0}

C(λ).

Proof. For x= (ξ1, . . . , ξN ) and y= (η1, . . . , ηN )∈ V N , we have (A[N,k])xy
= 1, that is, ∂GN (x, y) = k if and only if

N∑
i=1

∂G(ξi, ηi) = k.

Then by counting the number of pairs (ξi, ηi) having the same distance h,
we come to (4.3) with no difficulty.

Lemma 4.4. For λ ∈ Λ(k) \ {λ0} we have

C(λ)/Nk/2 M−→ 0.

Proof. Let λ = (j1, j2, . . . ) and J =
∑
jh. Let M(m) be the maximum

of the absolute values of the mixed moments of D[1], D[2], . . . of degree ≤ m.
By explicit expansion

C(λ)m =
∑

1⊗ · · · ⊗ (∗)⊗ · · · ⊗ (∗)⊗ · · · ⊗ 1,

where (∗) is a non-commutative monomial in D[1], D[2], . . . of degree at
most m. When computing the value ϕ(C(λ)m), the terms having a monomial
D[h] of degree 1 do not contribute since ϕ(D[h]) = 0. Hence we need to
consider only the terms where every (∗) is a monomial of degree at least 2.
We write

ϕ(C(λ)m) = S +R,
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with

S =
∑

ϕ(1⊗ · · · ⊗ (∗)⊗ · · · ⊗ (∗)⊗ · · · ⊗ 1),

where all (∗)’s are monomials of degree 2 or all (∗)’s are monomials of degree
2 except one which is of degree 3 according to the parity of mJ . For S we see
that the number of choices of places where (∗) appears is given by

(
N

[mJ/2]

)
.

Then the arrangements of D[1], D[2], . . . at the chosen places are in a finite
number c(m,J) depending on m and J although the explicit expression is
not simple. Hence

|S| ≤M(m)[mJ/2]
(

N

[mJ/2]

)
c(m, k) ≤ C1(m, k)N [mJ/2]

for some constant C1(m, k). Similarly, the number R of choices of places
where (∗) appears is ≤

(
N

[mJ/2]−1
)

so that

|R| = o(N [mJ/2]).

We note that for λ ∈ Λ(k)\{λ0},

J =
∑
h

jh <
∑
h

hjh = k.

Hence J − k ≤ −1 and [
mJ

2

]
− km

2
≤ −m

2
.

Consequently,

ϕ

((
C(λ)

Nk/2

)m)
≤ C1(m, k)N [mJ/2] + o(N [mJ/2])

Nkm/2
= O(N−m/2)→ 0.

Proof of Theorem 2.6. By Lemma 4.3 we have

A[N,k] = A(N,k) + C(N, k),(4.4)

C(N, k) =
∑

λ∈Λ(k)\{λ0}

C(λ).(4.5)

Upon applying Theorem 3.3 to A(N,k) we take normalization into account.
Note first that

ϕ(A) = 0, ϕ(A2) =
2|E|
|V |

.

In fact, ϕ(A2) is the mean degree of G. Noting that A/
√
ϕ(A2) is a normal-

ized real random variable, we apply Theorem 3.3 to obtain

A(N,k)

Nk/2ϕ(A2)k/2
M−→ 1

k!
H̃k(g).
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Therefore,

(4.6)
A(N,k)

Nk/2

M−→
(

2|E|
|V |

)k/2 1

k!
H̃k(g).

On the other hand, for C(N, k) in (4.4) we have

(4.7)
C(N, k)

Nk/2

M−→ 0

by Lemma 4.4 and Proposition 2.2. Finally, the assertion follows from (4.6)
and (4.7) with the help of Proposition 2.2 again.

Remark 4.5. During the above argument we needed to restrict our-
selves to the tracial states, although the combinatorial limit formula in The-
orem 3.3 holds for a general state. This restriction is reasonable to obtain
the eigenvalue distribution of a graph since the normalized trace on the ad-
jacency algebra is related to the eigenvalue distribution of the graph (see
Section 2.3). However, it is plausible that our argument can be modified to
cover a general case, for example, a vector state (sometimes called a vacuum
state) on the adjacency algebra. The work is now in progress.
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