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Abstract. The pairs (k, m) are studied such that for every positive integer n we have

W. Bednarek asked in a letter for a characterization of pairs (k,m) of
positive integers such that for every positive integer n,
(1) 1P ok pnkahm ok phm

The following theorem contains a partial answer with the help of

Bernoulli numbers B,,. Recall that

BOZ]-u Bl :_%7 BZZ %7
and the Bernoulli polynomial _;' (/) Biz™ " is denoted by B, (). We shall
prove

1
By = —35, Bat1 =0,

THEOREM 1. If the divisibility holds for every positive integer n, then
m 1s odd and

(2) Bim /By, € Z for k even, mByy—1/Bx—1 € Z for k odd > 3.

The condition is sufficient for k < 3, but insufficient for k = 4 and infinitely
many m.

In fact we propose

CONJECTURE. For k > 3 the divisibility holds for every positive
integer n only for m = 1.

To support this conjecture we shall prove

THEOREM 2. For k = 4, n = 58966743 (mod 5° - 112512) the divisibil-
ity holds only for m = 1.

THEOREM 3. For m =n = 3 the divisibility holds only for k < 3.

LEMMA 1. For all positive integers k and n,

Pt (n=1)F = S(n) = m(BkH(n) — Byt1)-
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Proof. See [1, Chapter V, §6, Theorem 3|. m

LEMMA 2. If P,Q € Q[z] and P(n)/Q(n) € Z for all sufficiently large
integers n then r(z) = P(z)/Q(x) is an integer-valued polynomiall.

Proof. We may assume that P,Q € Z[z] and D(z) = (P(x),Q(x))z,
P=DP,Q=DQ, P,Q1 € Z[$], (Plle) =1 and Pl(n)/Ql(n) € Z for
n > ny. Let R be the resultant of P, Q1. We have R = AP, + BQ1, where
A,B € Z[z]. If deg@q > 0, then |Q1(n)| > |R| for n > ny. Choosing n >
max{ni,ns} we infer that Q(n)|R, which is impossible. Thus deg @Q; =0,
r € Q[z]. Suppose that r(ng) € Z and let Q(ng) = ¢, P(ng) = p # 0 (mod q).
For n > ni, n = ng (mod ¢q), we have P(n) = p (mod q), @(n) = 0 (mod q),
so that Py(n)/Q1(n) ¢ Z, a contradiction. =

LEMMA 3. If 3" || 2N, where N =n,n+1 orn+1/2 and v > 1, then
for every positive integer m,

(3) 37| Sypn(n + 1).

Proof. Let 3* || m. We distinguish two cases: v < p+ 2 and v > p + 2.
In the former case, for every integer 1,
am _ { 1 (mod 3#*1) if i # 0 (mod 3),
0 (mod 3#*1) if i =0 (mod 3).
Hence
2 2N
Som(n+1) = [:-‘ =3 (mod 3#T1)

and holds.

In the latter case, for every integer i Z 0 (mod 3) there exists just one
integer j = 1 (mod 3#™1), 0 < j < 3%, such that

(4) 2™ = j (mod 3").

To every j = 1 (mod 3#*1), 0 < j < 3¥, there correspond 2-3#~V N values
of i 0 (mod3), 1 <4 < n, satisfying (). Hence

Zi: P#m=2-3"YN > j(mod3).

. j=1(mod 3#+1
z;éO m d3) (§<j<31/ )

However,

viou—pu—1 __ 1
Z j=3vrty FET 1) ) = 3""*"! (mod 3"),

2
j=1 (mod 3#+1)
0<j<3?
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thus
n N n
Z iPm =2 3 (mod 3"), Z i*™ =0 (mod 3”71)
i;—éoiztdi?)) izofzgd 3)
Similarly for k <v —pu — 2,
[n/3%] [N/3%] N
> M= 30 im =200y (modd ),
iZ0 Z(E%)d 3) iZ0 l(r:n%)d 3)
thus
[n/3%]
gm N 2m =0 (mod 3"
iiO%E})d 3)
and
(5) > 2™ =0 (mod 3v71).

i=1
i20 (mod 3V ~H~2)
However, if i = 0 (mod 3 #~2) and v — . — 2 > 0, then since
2m(v—p—2)>2-3*(v—p—-2)>v—1,
we have i?™ = 0 (mod 3"~1) and implies (3)). m
LEMMA 4. If2Y|| N, where N =n orn+1 and v > 1, then for every
positive integer r > 2,
(6) 2v7 1| Sy (n +1).

REMARK. The lemma is also true for r < 2, but this will not be needed
in what follows.
Proof. Let 27 || . We distinguish two cases: v < p+4 and v > p + 4.
In the former case, for every integer 1,
o { 1 (mod 2°*3) if i =1 (mod?2),
0 (mod2ft3) ifi =0 (mod?2)
(here we use r > 1). Hence
N
Sor(n+1) = Pﬂ =5 (mod 2°13)

and @ follows.
In the latter case, for every integer i« = 1 (mod 2) there exists just one
integer 7 = 1 (mod 2°+3), 0 < j < 2V, such that

i*" = j (mod 2").
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To every j =1 (mod 2°+3), 0 < j < 2%, there correspond 2°+2¥ N values of
i =1 (mod2), 1 <i<mn.Hence
n
Y=o N Y (mod2Y).

=1 i=1 d2r+3
i=1 (mod 2) J 0(?;22” )

However,

2v(2v—P3 — 1
Z j=2vr3 4 rEr 1) =2""P73 (mod 2" 1),

2
j=1 (mod 2°+3)
0<y<2¥

thus

zzll(:%)d 2)

Similarly, for k <v —p—4,

|n/2%] N/2k

Yo=Y =0 (mod27H),

i=1 ﬁéd 2) i=1 %Eﬁd 2)
thus
ln/2%]
2% 3" i* =0 (mod 2”7 )
i=1

and
(7) Z i*" =0 (mod 2”7 1).

10 (med 24
However, if i = 0 (mod 2V ~"~%) and v — p — 4 > 0, then since r > 2,
2r(v—p—4) > max{2"T 6} (v —p—4) >v -1,
we have 72" = 0 (mod 2v~!) and implies (G).
LEMMA 5. If a prime p satisfies p — 1 1 k, then p does not divide the

denominator of By. If p — 1|k, then p occurs in the denominator of By in
the first power only.

Proof. This is the von Staudt theorem, see [I, Chapter V, §6, Theo-
rem 4|. m

Proof of Theorem . Necessity. Since (1)) holds for n = 2 we obtain m = 1
(mod 2). Consider now k even. By Lemma [I{ we have

1 1
Sk(n) = ——=DBry1(n),  Skr1(n) = e

Brmy1(n),
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hence, for all integers n > 1, Bi11(n) > 0 and

k+1 Bgmii1(n)

€.
km+1 Bgii(n)

By Lemma [2]

1 B
km +1 Bgyi(z)
is an integer-valued polynomial and, since 7(0) = By, /By, follows.
Consider next k > 3 odd. By Lemma [I] we have
1 1
S, =——(B —-B S =—
hence, for all integers n > 1, Br11(n) > Byy1 and
k+1 Bkm+1(n) — Bkm—i—l
km +1 Bk+1(n) — Bk+1

(Bim+1(n) — Bim+1)s

e Z.

By Lemma [2]
7”(1’) _ k+1 Bkm+1($) — Bim+1
km+1 Bk+1(x) — Bry1
is an integer-valued polynomial and, since r(0) = mByy,—1/Bk—1, follows.
Sufficiency. We consider separately k = 1,2, 3.
k=1. If m=1 (mod2), then for n > 0,

i+ (n—14)" =0 (modn),

hence
25, (n) =0 (modn) and also 2S,,(n+1) =0 (modn).
Thus
(8) n | Sm(n+1).
(n,2)
Similarly
i+ (n+1—-9)"=0(modn+1) (1<i<n),
thus
2S5n(n+1)=0 (modn +1)
and
9) (;:112) | Son(n+1).
It follows from and @ that
Sin+1) = n(n;— D _ (7:2) : (nn_:_l’lQ) | S(n+1).
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k=2 Lete=0or1lor % Then
2(n+¢) 2°‘€Hpepf
p>2

where p > 2 is a prime. Put

5 (mod 8)
(10) ge = .
gp (modp) if p> 2 and ey > 0,

where g, is a primitive root mod p.
For every positive i < n 4 ¢ we have

get = 7 (mod 2(n + €)),

where 0 < j < n+¢; here j and the sign are uniquely determined. It follows
that

g2 = 2™ (mod 4(n + ¢€))
and, since to different ¢ correspond different j,

92" Sam([n +€1) = Sam([n +€1) (mod 4(n +¢)),
4(n+e)] (92" — 1)Szm([n +<]).

However, by and Lemma [5, and since By = %, for every prime p we have
either p — 11 2m or p < 3. Therefore, by ,

(™ —1,4(n +£)) = 2(2n + 2¢,4)3%, B, < es.,
thus for e =0, 1,

n+e
(it e,2)3 | aminte)
while for € = %,
2n —|— 1
| ng n + 1)

If e3. > 0, by Lemma [3] we have
31| Sy (n + 1),

thus for e =0, 1,

n-+e
while for € = %,

2n+1

m | Som(n +1).
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It follows that

n n+1
— | Som 1), —————|5m 1),
6 | S0 GG | St )
(11) 2n+1
m‘SQm(n‘i‘l),
hence
n(n+1)(2n+1) n n+1 2n+1
S 1) = = Som 1).
2 +1) 6 (.6) (1.6 @n 19 | S

k =3. For m =1 the condition is clearly sufficient. Thus we assume
m>3,3m—1=2r,r>4. Lete=0o0r 1, and

n 4 e = 202+ Hpep,2+s,
p>2
where p > 2 is a prime. Put
5 (mod 8
(12) he = { ( )

gpr (modp”) if p> 2 and ep24c >0,
where g, is a primitive root mod p".

For every positive ¢ < n 4+ ¢ we have
hei = j (modn + ¢),

where 0 < j < n +¢. It follows that

h27i%" = j2" (modn + ¢),
and, since to different ¢ correspond different 7,

h2" So.(n +¢€) = Sor(n +¢) (modn +¢),

n+e|(h? —1)Sa(n +€).
However, by and Lemma , and since By = %, for every prime p we have
either p — 11 2r or p|6m. By ,

b 1) =20 [ priiessiets <oy,

p|3m
p—1|2r

thus
n—+e

28242 (n + g, I,
If a4 > 0, by Lemma [4] we have
9a2+e—1 ’ SQT(TL + 1),

| Sar(nte) Boe < s

thus in any case

(13) nre | S +1).

(n+e,2II,
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Now, for every integer 1,
PB4 (n+e—19)% = 3m(n +¢€)i® (mod (n + ¢)?),
hence for every positive integer n,
2S5 (n + €) = 3m(n + €)Sa-(n + ¢) (mod (n + €)?),
and by ,
(n+¢)?

(14) m ‘ Sam(n+1).
It follows that
n? (n+1)2
—— | S3n(n+1) and ———-——— | Sgn(n+1),
hence n2(n N 1)2
Sz(n+1) = ———— ’ Sam(n +1).

4

Insufficiency. Take m to be a prime = 17 (mod 30). The condition
is fulfilled, since By, /By = —30By4y, € Z. Indeed, by Lemma [5, By, has
in the denominator only the first powers of primes p such that p — 1|4m.
The divisibility gives p = 2,3,5,2m + 1 or 4m + 1. Now, 2-3 -5 = 30,
2m + 1 is divisible by 5 and 4m + 1 by 3. It follows from Theorem [2| that
Sa(n+ 1)1 Sam(n + 1) for a positive integer n. m

LEMMA 6. Ifp is a prime, k' =k £ 0 (modp — 1) and n’ = n (mod p),
then

Sw(n') = Sk(n) (modp).
Proof. This follows from the well-known congruence
¥+ .+ (p—1F=0 (modp)

provided k£ # 0 (modp — 1) (see |2, p. 95]), and from the Fermat theorem. m

LEMMA 7. Ifp>2isaprime,k>a>1,k >a, k%0 (modp(p—1)),
kK =k (modp®~1(p—1)) and n’ = n (mod p®*!), then
(15) S (n') = Sk(n) (mod p®).

Proof. Let g be a primitive root modulo p®*1. The transformation i — g¢i
(mod p®*1) maps the set of residues modulo p®*! onto itself. Hence

9" (Sk(n') = Sk(n)) = Sg(n') — S(n) (modp**),
thus
(9" = 1)(Sk(n') = Sk(n)) = 0 (mod p**?)
and, since by the assumption on k, (¢* — 1,p?) = p, we obtain
Si(n') = S(n) (mod p®).

The congruence ((15) now follows by Euler’s theorem. m
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LEMMA 8. If n = 58966743 (mod 112512), then
Sam(n+1) =0 (mod 11251)
only if m =1 (mod 5625).
Proof. The number p = 11251 is a prime and

n =252 (mod p), {”J = 5241 (mod p).
p
If 4m =0 (modp — 1), then
Sim(n+1)=n— {HJ = —4989 # 0 (mod p).
p

If 4m # 0 (modp — 1), it suffices by Lemma |§| to verify the congruence
Sum(252) = 0 (mod p) for m in the interval [1,11249]. The verification has
been performed by J. Browkin. =

LEMMA 9. If n = 58966743 (mod 5°%), then
Sim(n +1) =0 (mod 5°)
only if m =1 or m = 501 (mod 625).
Proof. We have 58966743 = 13618 (mod 5°). If m = 0 (mod 5), then
Sim(n+1)=n— [gJ — 13618 — 2723 = 10895 % 0 (mod 25).

If m # 0 (mod5), it suffices by Lemma m to verify the congruence
S4m(13619) = 0 (mod 5°) for m in the interval [1,626]. The verification has
been performed by J. Browkin. =

Proof of Theorem @ Since for n = 58966743 (mod 5° - 112512) we have
Si(n+1) =0 (mod5” - 11251)
the theorem follows from Lemmas[8 and [0 =
LEMMA 10. For every positive integer k,
(16) (28,14 2% + 3F) < 4,
(17) (3811 4 28 1 3%) < 3k,

Proof. We have 3 =1 (mod4) for k even and 3* = 3 (mod 8) for k odd,
which implies . Further

0 for k even,

da(1+2%) =
ordy( ) {OI’dgk‘ +1 for k odd,
which implies . "

Proof of Theorem[3 We have
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thus if holds, then
(18) 14 2% 4 3k ok . ghtl,
By and (I7), (2% - 351 1 + 2% + 3k) < 12k, thus by (T3),
1+ 2F +3F < 12k,
which implies £ < 3. »
Acknowledgments. Thanks are due to Prof. J. Browkin, for the com-

putation on which Lemmas 8| and [0 are based, and for pointing out a mistake
in the former formulation of Lemma [7l
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