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ON SUMS OF POWERS OF THE POSITIVE INTEGERS

BY

A. SCHINZEL (Warszawa)

Abstract. The pairs (k,m) are studied such that for every positive integer n we have
1k + 2k + · · ·+ nk | 1km + 2km + · · ·+ nkm.

W. Bednarek asked in a letter for a characterization of pairs 〈k,m〉 of
positive integers such that for every positive integer n,

(1) 1k + 2k + . . .+ nk | 1km + 2km + . . .+ nkm.

The following theorem contains a partial answer with the help of
Bernoulli numbers Bn. Recall that

B0 = 1, B1 = −1
2 , B2 =

1
6 , B4 = − 1

30 , B2l+1 = 0,

and the Bernoulli polynomial
∑n

l=0

(
n
l

)
Blx

n−l is denoted by Bn(x). We shall
prove

Theorem 1. If the divisibility (1) holds for every positive integer n, then
m is odd and

(2) Bkm/Bk ∈ Z for k even, mBkm−1/Bk−1 ∈ Z for k odd ≥ 3.

The condition is sufficient for k ≤ 3, but insufficient for k = 4 and infinitely
many m.

In fact we propose

Conjecture. For k > 3 the divisibility (1) holds for every positive
integer n only for m = 1.

To support this conjecture we shall prove

Theorem 2. For k = 4, n ≡ 58966743 (mod 56 · 112512) the divisibil-
ity (1) holds only for m = 1.

Theorem 3. For m = n = 3 the divisibility (1) holds only for k ≤ 3.

Lemma 1. For all positive integers k and n,

1k + · · ·+ (n− 1)k =: Sk(n) =
1

k + 1
(Bk+1(n)−Bk+1).
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Proof. See [1, Chapter V, §6, Theorem 3].

Lemma 2. If P,Q ∈ Q[x] and P (n)/Q(n) ∈ Z for all sufficiently large
integers n then r(x) = P (x)/Q(x) is an integer-valued polynomial.

Proof. We may assume that P,Q ∈ Z[x] and D(x) = (P (x), Q(x))Z,
P = DP1, Q = DQ1, P1, Q1 ∈ Z[x], (P1, Q1) = 1 and P1(n)/Q1(n) ∈ Z for
n > n1. Let R be the resultant of P1, Q1. We have R = AP1 + BQ1, where
A,B ∈ Z[x]. If degQ1 > 0, then |Q1(n)| > |R| for n > n2. Choosing n >
max{n1, n2} we infer that Q(n) |R, which is impossible. Thus degQ1 =0,
r ∈ Q[x]. Suppose that r(n0) ∈ Z and let Q(n0) = q, P (n0) = p 6≡ 0 (mod q).
For n > n1, n ≡ n0 (mod q), we have P (n) ≡ p (mod q), Q(n) ≡ 0 (mod q),
so that P1(n)/Q1(n) /∈ Z, a contradiction.

Lemma 3. If 3ν ‖ 2N , where N = n, n + 1 or n + 1/2 and ν ≥ 1, then
for every positive integer m,

(3) 3ν−1 |S2m(n+ 1).

Proof. Let 3µ ‖ m. We distinguish two cases: ν ≤ µ + 2 and ν > µ + 2.
In the former case, for every integer i,

i2m ≡
{
1 (mod 3µ+1) if i 6≡ 0 (mod 3),

0 (mod 3µ+1) if i ≡ 0 (mod 3).

Hence

S2m(n+ 1) ≡
⌈
2n

3

⌉
=

2N

3
(mod 3µ+1)

and (3) holds.
In the latter case, for every integer i 6≡ 0 (mod 3) there exists just one

integer j ≡ 1 (mod 3µ+1), 0 < j < 3ν , such that

(4) i2m ≡ j (mod 3ν).

To every j ≡ 1 (mod 3µ+1), 0 < j < 3ν , there correspond 2·3µ−νN values
of i 6≡ 0 (mod 3), 1 ≤ i ≤ n, satisfying (4). Hence

n∑
i=1

i 6≡0 (mod 3)

i2m ≡ 2 · 3µ−νN
∑

j≡1 (mod 3µ+1)
0<j<3ν

j (mod 3ν).

However, ∑
j≡1 (mod 3µ+1)

0<j<3ν

j = 3ν−µ−1 +
3ν(3ν−µ−1 − 1)

2
≡ 3ν−µ−1 (mod 3ν),
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thus
n∑
i=1

i 6≡0 (mod 3)

i2m ≡ 2
N

3
(mod 3ν),

n∑
i=1

i 6≡0 (mod 3)

i2m ≡ 0 (mod 3ν−1).

Similarly for k < ν − µ− 2,
bn/3kc∑
i=1

i 6≡0 (mod 3)

i2m =

bN/3kc∑
i=1

i 6≡0 (mod 3)

i2m ≡ 2
N

3k+1
(mod 3ν−k),

thus

32km
bn/3kc∑
i=1

i 6≡0 (mod 3)

i2m ≡ 0 (mod 3ν−1)

and

(5)
n∑
i=1

i 6≡0 (mod 3ν−µ−2)

i2m ≡ 0 (mod 3ν−1).

However, if i ≡ 0 (mod 3ν−µ−2) and ν − µ− 2 > 0, then since

2m(ν − µ− 2) ≥ 2 · 3µ(ν − µ− 2) ≥ ν − 1,

we have i2m ≡ 0 (mod 3ν−1) and (5) implies (3).

Lemma 4. If 2ν ‖N , where N = n or n + 1 and ν ≥ 1, then for every
positive integer r > 2,

(6) 2ν−1 |S2r(n+ 1).

Remark. The lemma is also true for r ≤ 2, but this will not be needed
in what follows.

Proof. Let 2ρ ‖ r. We distinguish two cases: ν ≤ ρ+ 4 and ν > ρ+ 4.
In the former case, for every integer i,

i2r ≡
{
1 (mod 2ρ+3) if i ≡ 1 (mod 2),

0 (mod 2ρ+3) if i ≡ 0 (mod 2)

(here we use r > 1). Hence

S2r(n+ 1) ≡
⌈
n

2

⌉
=
N

2
(mod 2ρ+3)

and (6) follows.
In the latter case, for every integer i ≡ 1 (mod 2) there exists just one

integer j ≡ 1 (mod 2ρ+3), 0 < j < 2ν , such that

i2r ≡ j (mod 2ν).
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To every j ≡ 1 (mod 2ρ+3), 0 < j < 2ν , there correspond 2ρ+2−νN values of
i ≡ 1 (mod 2), 1 ≤ i ≤ n. Hence

n∑
i=1

i≡1 (mod 2)

i2r ≡ 2ρ+2−νN
∑

j≡1 (mod 2ρ+3)
0<j<2ν

j (mod 2ν).

However, ∑
j≡1 (mod 2ρ+3)

0<j<2ν

j = 2ν−ρ−3 +
2ν(2ν−ρ−3 − 1)

2
≡ 2ν−ρ−3 (mod 2ν−1),

thus
n∑
i=1

i≡1 (mod 2)

i2ν ≡ N

2
≡ 0 (mod 2ν−1).

Similarly, for k < ν − ρ− 4,
bn/2kc∑
i=1

i≡1 (mod 2)

i2r =

N/2k∑
i=1

i≡1 (mod 2)

i2r ≡ 0 (mod 2ν−1−k),

thus

22kr
bn/2kc∑
i=1

i2r ≡ 0 (mod 2ν−1)

and

(7)
n∑
i=1

i 6≡0 (mod 2ν−ρ−4)

i2r ≡ 0 (mod 2ν−1).

However, if i ≡ 0 (mod 2ν−ρ−4) and ν − ρ− 4 > 0, then since r > 2,

2r(ν − ρ− 4) ≥ max{2ρ+1, 6}(ν − ρ− 4) ≥ ν − 1,

we have i2r ≡ 0 (mod 2ν−1) and (7) implies (6).

Lemma 5. If a prime p satisfies p − 1 - k, then p does not divide the
denominator of Bk. If p − 1 |k, then p occurs in the denominator of Bk in
the first power only.

Proof. This is the von Staudt theorem, see [1, Chapter V, §6, Theo-
rem 4].

Proof of Theorem 1. Necessity. Since (1) holds for n = 2 we obtainm ≡ 1
(mod 2). Consider now k even. By Lemma 1 we have

Sk(n) =
1

k + 1
Bk+1(n), Sk+1(n) =

1

km+ 1
Bkm+1(n),
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hence, for all integers n > 1, Bk+1(n) > 0 and

k + 1

km+ 1

Bkm+1(n)

Bk+1(n)
∈ Z.

By Lemma 2,

r(x) =
k + 1

km+ 1

Bkm+1(x)

Bk+1(x)

is an integer-valued polynomial and, since r(0) = Bkm/Bk, (2) follows.
Consider next k ≥ 3 odd. By Lemma 1 we have

Sk(n) =
1

k + 1
(Bk+1(n)−Bk+1), Skm(n) =

1

km+ 1
(Bkm+1(n)−Bkm+1),

hence, for all integers n > 1, Bk+1(n) > Bk+1 and

k + 1

km+ 1

Bkm+1(n)−Bkm+1

Bk+1(n)−Bk+1
∈ Z.

By Lemma 2,

r(x) =
k + 1

km+ 1

Bkm+1(x)−Bkm+1

Bk+1(x)−Bk+1

is an integer-valued polynomial and, since r(0) = mBkm−1/Bk−1, (2) follows.
Sufficiency. We consider separately k = 1, 2, 3.
k = 1. If m ≡ 1 (mod 2), then for n > 0,

im + (n− i)m ≡ 0 (modn),

hence

2Sm(n) ≡ 0 (modn) and also 2Sm(n+ 1) ≡ 0 (modn).

Thus

(8)
n

(n, 2)

∣∣ Sm(n+ 1).

Similarly

im + (n+ 1− i)m ≡ 0 (modn+ 1) (1 ≤ i ≤ n),

thus
2Sm(n+ 1) ≡ 0 (modn+ 1)

and

(9)
n+ 1

(n+ 1, 2)

∣∣ Sm(n+ 1).

It follows from (8) and (9) that

S1(n+ 1) =
n(n+ 1)

2
=

n

(n, 2)
· n+ 1

(n+ 1, 2)

∣∣ Sm(n+ 1).
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k = 2. Let ε = 0 or 1 or 1
2 . Then

2(n+ ε) = 2αε
∏
p>2

pepε ,

where p > 2 is a prime. Put

(10) gε ≡
{
5 (mod 8)

gp (mod p) if p > 2 and epε > 0,

where gp is a primitive root mod p.
For every positive i < n+ ε we have

gei ≡ ±j (mod 2(n+ ε)),

where 0 < j < n+ ε; here j and the sign are uniquely determined. It follows
that

g2mε i2m ≡ j2m (mod 4(n+ ε))

and, since to different i correspond different j,

g2mε S2m(dn+ εe) ≡ S2m(dn+ εe) (mod 4(n+ ε)),

4(n+ ε) | (g2mε − 1)S2m(dn+ εe).

However, by (2) and Lemma 5, and since B2 =
1
6 , for every prime p we have

either p− 1 - 2m or p ≤ 3. Therefore, by (10),

(g2mε − 1, 4(n+ ε)) = 2(2n+ 2ε, 4)3βε , βε ≤ e3ε,

thus for ε = 0, 1,
n+ ε

(n+ ε, 2)3βε

∣∣ S2m(n+ε),

while for ε = 1
2 ,

2n+ 1

3βε

∣∣ S2m(n+ 1).

If e3ε > 0, by Lemma 3 we have

3e3ε−1 |S2m(n+ 1),

thus for ε = 0, 1,
n+ ε

(n+ ε, 6)

∣∣ S2m(n+ 1),

while for ε = 1
2 ,

2n+ 1

(2n+ 1, 3)

∣∣ S2m(n+ 1).
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It follows that

(11)

n

(n, 6)

∣∣ S2m(n+ 1),
n+ 1

(n+ 1, 6)

∣∣ S2m(n+ 1),

2n+ 1

(2n+ 1, 3)

∣∣ S2m(n+ 1),

hence

S2(n+ 1) =
n(n+ 1)(2n+ 1)

6
=

n

(n, 6)

n+ 1

(n+ 1, 6)

2n+ 1

(2n+ 1, 3)

∣∣ S2m(n+ 1).

k = 3. For m = 1 the condition (2) is clearly sufficient. Thus we assume
m ≥ 3, 3m− 1 = 2r, r ≥ 4. Let ε = 0 or 1, and

n+ ε = 2α2+ε
∏
p>2

pep,2+ε ,

where p > 2 is a prime. Put

(12) hε ≡
{
5 (mod 8)

gpr (mod pr) if p > 2 and ep,2+ε > 0,

where gpr is a primitive root mod pr.
For every positive i < n+ ε we have

hεi ≡ j (modn+ ε),

where 0 < j < n+ ε. It follows that

h2rε i
2r ≡ j2r (modn+ ε),

and, since to different i correspond different j,

h2rε S2r(n+ ε) ≡ S2r(n+ ε) (modn+ ε),

n+ ε | (h2rε − 1)S2r(n+ ε).

However, by (2) and Lemma 5, and since B2 =
1
6 , for every prime p we have

either p− 1 - 2r or p | 6m. By (12),

(n+ ε, h2rε − 1) = 2β2+ε
∏
p|3m
p−1|2r

pmin{ep,2+ε,1} =: 2β2+εΠε,

thus
n+ ε

2β2+ε(n+ ε,Πε)

∣∣ S2r(n+ ε), β2+ε ≤ α2+ε.

If α2+ε > 0, by Lemma 4 we have

2α2+ε−1 |S2r(n+ 1),

thus in any case

(13)
n+ ε

(n+ ε, 2Πε)

∣∣ S2r(n+ 1).
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Now, for every integer i,
i3m + (n+ ε− i)3m ≡ 3m(n+ ε)i2r (mod (n+ ε)2),

hence for every positive integer n,
2S3m(n+ ε) ≡ 3m(n+ ε)S2r(n+ ε) (mod (n+ ε)2),

and by (13),

(14)
(n+ ε)2(
(n+ ε)2, 4

) ∣∣ S3m(n+ 1).

It follows that
n2

(n2, 4)

∣∣ S3m(n+ 1) and
(n+ 1)2(
(n+ 1)2, 4

) ∣∣ S3m(n+ 1),

hence

S3(n+ 1) =
n2(n+ 1)2

4

∣∣ S3m(n+ 1).

Insufficiency. Take m to be a prime ≡ 17 (mod 30). The condition (2)
is fulfilled, since B4m/B4 = −30B4m ∈ Z. Indeed, by Lemma 5, B4m has
in the denominator only the first powers of primes p such that p − 1 | 4m.
The divisibility gives p = 2, 3, 5, 2m + 1 or 4m + 1. Now, 2 · 3 · 5 = 30,
2m + 1 is divisible by 5 and 4m + 1 by 3. It follows from Theorem 2 that
S4(n+ 1) - S4m(n+ 1) for a positive integer n.

Lemma 6. If p is a prime, k′ ≡ k 6≡ 0 (mod p− 1) and n′ ≡ n (mod p),
then

Sk′(n
′) ≡ Sk(n) (mod p).

Proof. This follows from the well-known congruence
1k + · · ·+ (p− 1)k ≡ 0 (mod p)

provided k 6≡ 0 (mod p− 1) (see [2, p. 95]), and from the Fermat theorem.
Lemma 7. If p > 2 is a prime, k ≥ α > 1, k′ ≥ α, k 6≡ 0 (mod p(p−1)),

k′ ≡ k (mod pα−1(p− 1)) and n′ ≡ n (mod pα+1), then

(15) Sk′(n
′) ≡ Sk(n) (mod pα).

Proof. Let g be a primitive root modulo pα+1. The transformation i 7→ gi
(mod pα+1) maps the set of residues modulo pα+1 onto itself. Hence

gk(Sk(n
′)− Sk(n)) ≡ Sk(n′)− Sk(n) (mod pα+1),

thus
(gk − 1)(Sk(n

′)− Sk(n)) ≡ 0 (mod pα+1)

and, since by the assumption on k, (gk − 1, p2) = p, we obtain
Sk(n

′) ≡ Sk(n) (mod pα).

The congruence (15) now follows by Euler’s theorem.
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Lemma 8. If n ≡ 58966743 (mod 112512), then

S4m(n+ 1) ≡ 0 (mod 11251)

only if m ≡ 1 (mod 5625).

Proof. The number p = 11251 is a prime and

n ≡ 252 (mod p),

⌊
n

p

⌋
≡ 5241 (mod p).

If 4m ≡ 0 (mod p− 1), then

S4m(n+ 1) ≡ n−
⌊
n

p

⌋
≡ −4989 6≡ 0 (mod p).

If 4m 6≡ 0 (mod p − 1), it suffices by Lemma 6 to verify the congruence
S4m(252) ≡ 0 (mod p) for m in the interval [1, 11249]. The verification has
been performed by J. Browkin.

Lemma 9. If n ≡ 58966743 (mod 56), then

S4m(n+ 1) ≡ 0 (mod 55)

only if m = 1 or m ≡ 501 (mod 625).

Proof. We have 58966743 ≡ 13618 (mod 56). If m ≡ 0 (mod 5), then

S4m(n+ 1) ≡ n−
⌊n
5

⌋
≡ 13618− 2723 = 10895 6≡ 0 (mod 25).

If m 6≡ 0 (mod 5), it suffices by Lemma 7 to verify the congruence
S4m(13619) ≡ 0 (mod 55) for m in the interval [1, 626]. The verification has
been performed by J. Browkin.

Proof of Theorem 2. Since for n ≡ 58966743 (mod 56 · 112512) we have

S4(n+ 1) ≡ 0 (mod 55 · 11251)
the theorem follows from Lemmas 8 and 9.

Lemma 10. For every positive integer k,

(2k, 1 + 2k + 3k) ≤ 4,(16)

(3k+1, 1 + 2k + 3k) ≤ 3k,(17)

Proof. We have 3k ≡ 1 (mod 4) for k even and 3k ≡ 3 (mod 8) for k odd,
which implies (16). Further

ord3(1 + 2k) =

{
0 for k even,
ord3k + 1 for k odd,

which implies (17).

Proof of Theorem 3. We have

1 + 23k + 33k − 2k · 3k+1 = (1 + 2k + 3k)(1 + 22k + 32k − 2k − 3k − 6k),
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thus if (1) holds, then
(18) 1 + 2k + 3k | 2k · 3k+1.

By (16) and (17), (2k · 3k+1, 1 + 2k + 3k) ≤ 12k, thus by (18),
1 + 2k + 3k ≤ 12k,

which implies k ≤ 3.

Acknowledgments. Thanks are due to Prof. J. Browkin, for the com-
putation on which Lemmas 8 and 9 are based, and for pointing out a mistake
in the former formulation of Lemma 7.
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