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ESTIMATION OF GREEN’S FUNCTION ON PIECEWISE
DINI-SMOOTH BOUNDED JORDAN DOMAINS

BY

MOHAMED AMINE BEN BOUBAKER (Nabeul) and MOHAMED SELMI (Tunis)

Abstract. We establish inequalities for Green functions on general bounded piece-
wise Dini-smooth Jordan domains in R2. This enables us to prove a new version of the
3G Theorem which generalizes its previous version given in [M. Selmi, Potential Anal. 13
(2000)]. Using these results, we give a comparison theorem for the Green kernel of A and
the Green kernel of A — p, where p is a nonnegative and exact Radon measure.

1. Introduction. A Jordan curve C is said to be Dini-smooth if it has a
parametrization w(t), 0 < ¢ < 27, such that '(t) is Dini continuous and # 0.
Let D be any simply connected domain in C with locally connected boundary.
Let ¢ be a conformal mapping from D onto the unit disk D of R%. We say
that 9D has a Dini-smooth corner of opening angle 7/a (1/2 < a < 00) at
a = ¢~ 1(e"%) if there are closed arcs AT, A= C C(0,1) ending at ¢ and lying
on opposite sides of ¢ that are mapped by ¢! onto Dini-smooth Jordan
domain arcs CT and C~, forming an angle of 7/a at a = ¢~ 1(¢?). That

means P
1, it ast — ¢,
arg(¢™ (") —a) = {B—Fw/a ast — 7.
By Gp, we denote the Green function for the Laplacian in a domain
D C R"™ (n > 2). For two positive functions f and g on a set D, we say that
f is comparable to g on D, and we write f ~ g, if there exists C' > 1 such
that for all z € D, (1/C)g(z) < f(z) < Cg(x). We write §(x) = d(z, D) for
the distance from x € D to the Euclidean boundary 9D of D. For a,b € R,
we denote a V b = max(a,b) and a A b = min(a, b).
Bogdan [2] and Hansen [6] proved, for a bounded Lipschitz domain D in
R™ (n > 3), that if we fix z9 € D and let g(z) = 1 A Gp(z, x0), then

1
(1.1)  Gp(z,y) ~ 9(=)9(y) Va,y € D and b € By(z,y),

g()? |z -y
where By(z,y) is, roughly speaking, the set of points b in D that lie between
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x and y and satisfy §(b) ~ max(d(z),0(y), |z — y|) (see [2, p. 328| for the
precise definition). Such estimates play important roles; e.g. the following
3G inequality can be deduced from : there exists a constant C' > 0 such
that, for all z,y,z € D,

Gp(z,y)Gp(y, 2) < 1 1 )
1.2 <C + .
(1:2) Gl 2) Ty T =2

Before the estimate , the 3G inequality was proved by Cranston, Fabes
and Zhao [5] to study the conditional gauge theory for the Schrédinger op-
erator. In [I], Aikawa and Lundh extended to bounded uniformly John
domains, and gave a counterexample to . In [4, Theorem 6.15, p. 175]
and [4, Theorem 6.23, p. 182|, Chung and Zhao established inequalities for
the Green function on bounded C? domains D in R?. More precisely, they
proved that

d(2)d(y)

Gp(zx,y zln(l—&—
(:9) |z —yl?

), Vr,y € D,

and that there exists a constant C' > 0 such that, for all x,y, z € D,

s <o((m(5) )+ (m(5=) 1))

In [I3], M. Selmi generalized the results of [4]. He established inequalities
for the Green function of a class of Dini-smooth Jordan domains in R2.
He proved that if D is a bounded multiply connected Dini-smooth Jordan
domain in R2, then

§(z)d(y)

Gp(x,y Nln<1+
&3) [z —yl?

), Vz,y € D,
and that there exists C' > 0 depending only on D such that, for all z,y, z € D,

- <c((m() 1)+ () )

The aim of the present paper is to give estimates for the Green function
in the case of a more general class of bounded domains in R?, called piecewise
Dini-smooth Jordan domains. Our work generalizes all estimates given by
K. Chung and Z. Zhao [4] and M. Selmi [13].

MAIN THEOREM 1. Let D be a bounded multiply connected piecewise
Dini-smooth Jordan domain with 0D = \Jj_ Ik, where Iy, (0 < k < m)
are disjoint closed piecewise Dini-smooth Jordan curves such that D C int I
and for all 0 < k < m, I} has ng Dini-smooth corners of opening angles
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m/ok, .. ow/af at af,. . ak (aF € ]1/2,00[\ {1}), for all 1 < i <

Nk

(0 <k <m). Then, for all z,y € D,
—aF TN
Gotra) =1+ ] (Ur=alhloaly™ omie))

k k — 2
1<i<ny, (lz = ai |V |y = ag]) lz -y
0<k<m

By using (|1.3]), we prove the 3G Theorem in the case of piecewise Dini-
smooth Jordan domains.

MAIN THEOREM 2. Let D be as in Main Theorem 1. Then there exists
a constant C > 0 such that, for all x,y,z € D,

Gp(z,2)Gp(2y)

GD(x7y)
z—aF CYf_lé(z z —al O‘ic_l(S(z)
< C( : (x,2)+ C Gp z,y).
N I e | v B T
0<k<m 0<k<m

In addition, we exploit the preceding results to prove comparison theo-
rems for Green kernels associated with A and A— pu, where p is a nonnegative
and exact Radon measure on a piecewise Dini-smooth Jordan domain.

MAIN THEOREM 3. Let D be as in Main Theorem 1 and p be a nonneg-
ative exact Radon measure on D which does not charge the polar sets of D.
Then the following two conditions are equivalent:

(1) Gp and *Gp are comparable.

_ .k af—l
(2) x+— S H 4 az o) Gp(z,y)du(y) is bounded on D.
Di1<i<n, T T % o(z)
0<k<m

In order to establish our results, without loss of generality we suppose
throughout this paper that {2 is a bounded simply connected piecewise Dini-
smooth Jordan domain in R? having n Dini-smooth corners at ai,...,an,
of opening angles respectively m/aq,...,7/an, a; € ]1/2,00] \ {1}. For all
0 < i < n, we denote by [a;,a;+1] the arc beginning at a; and ending at
a;+1, with the convention ag = a,, and a,11 = a1. The distance from z € {2
to [ai,ai+1] will be denoted §;(z). Our principal idea is to use conformal
mappings. Note that, by the Riemann Theorem, there exists a conformal
mapping from {2 onto the unit disk D. Consequently, for all z,y € (2,

() 12)(1 — 2
Gol(z,y) = Gp((x), ¢(y)) :ln<1+ (1 ||<z;(($))| z(qlb(y)lg(y)l )>'

Thus, to give estimates for the Green function, it is sufficient to give estimates
for |¢(x) —p(y)| and 1—|¢p(z)|? on 2. The problem reduces to understanding
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the distortion introduced by ¢, which is measured by |¢'|. In Section 2, we
prove Theorem [1.1| below, which gives estimates for |¢(z) — ¢(y)| on £2.

THEOREM 1.1. Let ¢ be a conformal mapping from {2 onto D. Then, for
all x,y € §2,

‘ P(x) — d(y)
T—y

2

(1.5)

216y H< ai|\/‘y_ai‘>06i_l
—a;| Ay — a4
n
~ [0 — ail v Iy — a0,
i=1

In Section 3, we prove Lemma which gives estimates for 1 — |¢(z)|?
on 2.

LEMMA 1.1. Let ¢ be a conformal mapping from §2 onto D. Then, for
all z € (2,

8((@)) = 1 = |¢(@)]* = ¢ (@)[0(x) = [Tl — sl 3(a
=1

By using Theorem [1.1] Proposition [3.1] and Lemma we prove esti-
mates for the Green functlon on 2.

THEOREM 1.2. For all x,y € {2, we have

(1.6)  Gala,y) 1n(1+[[(’m—ak‘w—ak»“’“‘lé(@é(w),

|z —ax| V |y — ag |z —y|?

(1.7)
1 T —ag| Ay —ag N\ ok(2)d
:1n<1+ T <|$ ag| Ay ak|> k(2)0k(y) 2)‘
[z —yl? 2 \lz —ar V |y — axl (lz — ar| V Iy — axl)

In Section 4, by using again Proposition and Lemma we deduce
the generalized version of the 3G Theorem on (2. At the end of that section,
we derive comparison theorems for Green kernels associated with A and
A — p, where p is a nonnegative and exact Radon measure. In Section 5, we
establish further generalizations by considering the case of a bounded mul-
tiply connected piecewise Dini-smooth Jordan domain. Finally, in Section 6,

we study some interesting examples on which we verify the exactness of our
main theorem.

The following notations will be adopted. For z € C, we denote r = |z|
and = argz. For « > 1/2 and 0 < € < 1, we denote
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Dy={z€C:0<r<1,0<0<m/a},
Sa(D)={2€C:0<r<1,|0 <7n/(2a)},
Qoe={2€C:e<r<1,0 <n/a},
Acog={2€C:e<r<1,0=m/a},
Ac_q={2€C:e<r<l,=—-7/a},

Cea={2€C:r=c¢, 0| <m/a}.

The letter C' will denote a generic positive constant whose value is unim-
portant and may change from line to line.

2. Proof of Theorem [1.7]
LEMMA 2.1. Leta>1 and f€[(1 + «)/2,a]. Then, for all@€[0,7/(25)],
sin af ~ sin 6.
Proof. 1t suffices to see that
Pal0) = { g 0l
o if =0,

is continuous and does not vanish on [0,7/(25)]. =

In the same way, we deduce the following lemma:

LEMMA 2.2. Let a € ]1/2,1] and 5 € [(1 4 2a)/4,a]. Then, for all 6 €
[0,7/(28)];

sin af ~ sin 6.
LEMMA 2.3. Leta > 1and 8 € |(1 + a)/2,a[. Then, for all z € Sg/5(D),
1 — 2% ~|1 -2z
Proof. Let e < 1/4. The function
1—2¢
if 1
fa(z):{ T—, tz#1

« if z=1,

is holomorphic on {23 ., continuous and does not vanish on 23 .. Thus, by
the maximum and minimum principles, it is sufficient to control f, on 0f23..
We have to discuss three cases.
2 cooab N\ 2
_ (s,m 5 )
S1n bl

The result follows from Lemma 2.1]

Cask 1. If z € Cy g, then

‘1—2‘“

1—2z
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Cask 2. If z € C, g, then
8

< -

—3

3 1— 22
— <<
8 | 1—=z2

Case 3. If z € A, sUA, _g, then
1 po|? 1—1—1"20‘—27“"‘(3050“%r
’ 1—2z z -

14172 —2rcos 5
It follows that
sin? i 1— 2o
<
4 - ‘ 1—2z

Since the constants are independent of ¢, we obtain, for all z € Sg/5(D),

2
4
= o
smﬂ

1—2%~1—2. =
LEMMA 24. Let a € |1/2,1] and B € |(1+2«a)/4,a[. Then, for all

FAS Dﬁ,
1 — 2% ~|1—z|
Proof. The proof is similar to that of Lemma Let ¢ < 1/4. The

_;an
e "28 . i
— if z#£€ 28,
Jolz) = z— e '28
_Z»'/r(a—l) . .
oe 28 if z=¢ 28,

is holomorphic on {253 ., continuous and does not vanish on 25 .. By the
maximum and minimum principles, it is sufficient to control g, on 0f2y3.

function
z

We have to discuss four cases.

Casg 1. If z € (1 28, then
1= cos(v(f + %)) _ (sinav 2
=)\ sinv

2
190(2)I" = 1 —cos(0 + 35)
€ [0,7/(25)]. The result follows from Lemma .

0+2 40
where v = 22‘3 = 252
Cask 2. If z € C; 23, then
1 1-—-&® 14+e* 8
- < < < < —.
15 Te Slebls7—<3
Cask 3. If z € A, 93, then
s 02 am 2c _ a am
smﬂ< s T +1 2rcosﬁ< 4
<1ga(2)|" = —5 — < ——.
r +1—2rcos§ sin® 5

4
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Case 4. If z € A _ap, then

1 -1
L—re  § ot*ldt
<loa()l =5 =5

N

As the constants are independent of e, we obtain, for all z € Sg(D),
|zo‘ - e_i%‘ ~ |z — e_i%‘.
Now let z € Dg; then e '3, € Sg(D). By using the previous relation,
we get, for all z € Dg,

2% =1 ~|z—1]. =
By using the conjugate expression in the last lemma, we obtain

LEMMA 2.5. Let o € ]1/2,1[ and § € |(1 + 2a)/4,a[. Then, for all z €
D\ Dgy(26-1),
1 — 2% ~|1 -2z

LEMMA 2.6. Let « > 1 and § € |(1+ «)/2,a]. Then, for all z,y € Sg,
| =y = o — yl(jz| vy )"
Proof. Assume that |z| > |y| and put z = y/x. Then |z| < 1 and |arg z| <
7/B. Since

« « «

% —y 1-=2
r—y 1

the result follows by Lemma .

LEMMA 2.7. Let a € |1/2,1] and B € |(1+4 2a)/4,a[. Then, for all
x,y € 93,

= 27|

i

—Z

| =y = |z — yl(jz| vy )"
Proof. Assume that |z| > |y| and put z = y/x. Then |z| < 1 and argz €
[0,7/8), or arg z € |75 27]. Since

B/(26-1)°
xa_ya :|33‘a_1’ l_za,
-y 1—-2

the result follows by Lemmas and .

LEMMA 2.8. If0f2 has a Dini-smooth corner of opening angle w/a, 1/2 <
a < 00, at a and ¢ is a conformal mapping from {2 onto D, then there exists
r > 0 such that for all z,y € 2N D(a,r),

[¢(z) — o(y)| ~ [(x — a)® — (y — a)?].
Proof. Using [10, Theorem 3.9]|, we get
o 8) = 0(a)

zZ—a (z — a)o‘

=b (beC*) and lim&

L P =d (deC).
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Then

= lim ———~—— =d.

lim | lim =)

i (2t
This implies the existence of r > 0 and ¢ > 1 such that, for all z,y €
2N D(a,r),

¢(z) — ¢(y) ) . ¢'(x)

1 P(z) — 9(y)
C7l@—-a)*—(y—a)
REMARK 2.1. Let ¢ be a conformal mapping from {2 onto D. Then, for
all z € £2,

<

<C.nu

19/ ()] = [ ] 1z = @)
i=1

This follows from [10, Theorem 3.9].

Proof of Theorem . It is clear that (1.5)) follows immediately from
Remark 211 We have to discuss four cases.

Let » > 0 be sufficiently small so that the conclusion of Lemma is
true and put, for all 1 <i <n,
R
ro=% min jo— q
i—1#j
Casg 1. If z,y € 2N D(ag, 1), then Lemma implies that

d(x) — o) > | (x— ap)™ — (y — ap)™ |?

T —y - T —y
Let S(ax) be the sector of vertex aj and opening angle 7/ that contains
2ND(ag, k), where i €](ax + 1) /2, a[ if ax >1 and B € (1 + 2a) /4, o[
if o € ]1/2,1[. Then, by Lemmas and we deduce that, for all z,y €
2N D(ak, T‘k),

(& — ar)™ — (y — ag)** |°

r—y

2ak—2

~ (|z —ag| V |y — ax)

Moreover,
r<l|r—a|V]y—al <9, Vi#k.
This implies that, for all z,y € 2N D(ag, k),

n

[0z = ail v Iy — ai)®* ™2 ~ (lz — a| V |y — ax])** 2.
=1

CaAsE 2. If z € 2N D(ag, k), y € 2N D(ay, ), 1 <k #1<n, then the

function
P(x) — 9(y)

}—)
(z,9) pra—"
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is continuous and does not vanish on {2 N D(ak, ) x 2N D(ay, ). Hence, for
all (z,y) € 2N D(ag,rr) x 2N D(ay,m),

0(x) = d(y)| ~ |z —yl.
Asr <|y—ag| <dand r < |z —q <9, we have

|z —ai| V |y —a)| ~ |z —ag|V |y —ag| ~ 1.
Moreover,
r<l|z—a|V|y—a| <o, Vid&g/{k,Il}.

This implies that

n

H(|:13 —ai| V |y —a])** % ~ 1.

=1
Case 3. If v € 2N D(ag,1:/2), y € 2 ={z€ 2:|z—a| >r, 1<
i < n}, then |z —y| > |y — agx] — |* — ag| > r/2, and so the function

(z,y) — %f(y) is continuous and does not vanish on 2 N D(ay,r/2) x ;.
Hence,
ECEECI
r—y
Moreover,
r<ly—a <94, 1<i<n.
Consequently,

n
H(]aﬁ —ai| V|y —a;)** % ~ 1.
i=1
CASE 4. If z,y € §2., we consider a Dini-smooth Jordan domain 2’
without corners such that {2, C 2" C £2. By [10, Theorem 3.5], the functions
¢, ¢’ can be extended to 2. As a result, there exists a constant C' > 1 such
that
1_ o)~ oly)
c~ T —y

In particular, for all z,y, z € {2, we obtain the result. m

‘gC (z,y € ) and %g]qﬁ'(z)\gC (z € ).

3. Estimates for the Green function of a bounded simply con-
nected piecewise Dini-smooth Jordan domain. Set S, = {z € C :
0] < 55} and

Alz{ZGC:TZO, 9:”}, Aoz{ze(C:TZO, 0:—”}.

2a 2a
For z € S,, we denote by do(z) = d(z,Ag) (respectively di(z) = d(z,Aq))
the distance from z to Ay (respectively from z to Aj).
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LEMMA 3.1. Let o € |]1/2,00] \ {1}. Then, for all z € S,,
|z|cosavarg z >~ §(z) and do(z) Vdi(z) ~ |z|.
Proof. First, let us remark that

r if 5= — 0> 3,
di(z) = rsin<27; —9> if 55 —0 <7,
r if 55 +60> 3,
do(2) = rsin<27;+9> if 240 <1

We have to discuss two cases:

Case 1. If a > 1, put
Slz{ze(C:O§9§7r}, 52:{ze@:—”§0§0}.
20 2c

If z € S1, then 0(z) = d1(2) = rsin(g; — 0). Moreover, since 5= —0 € [0, 5=,
it follows, by Lemma that

. ™ . ™ .
rcosa@-rsm(a(m —0)) _rsm<2a —0) =0(z2).

On the other hand, since § € [0, 5], we have sin 5= < sin(f + 5-) < sin 7.
This gives dy(z) ~ r.

If z € o, then 6(2) = do(z) = rsin(f + g). Moreover, since 6 + 5 €
[0, 5], Lemma [2.1] yields

. T ) T
rcosa@-rsm<a<9—|—2a>> rsm<9+2a> =d(z2).

On the other hand, since 6 € [—g, 0], we have sin 5 < sin(5- —6) <sin 2.
This gives di(z) ~ r.

CAsE 2. If 1/2 < a < 1, put

s v s
Sy = c: L~ _Tep<c ™
3 {26 2 2" =2
v v T
= - << —— —
S, {zEC s SO< 2a+2},
v v v
55—{260‘2Q+Q— —2‘2}

If z € S3, then do(2) = r and 6(2) = di(z) = rsin(g; — ¢). Moreover, since
7= — 0 € [0, 5] Lemma 2.1 implies that

. s . ™
rcosa@-rsm(a(m —9>> _rsm<2a —9) =6(z2).
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If z € Sy, then di(2) = r and §(2) = do(2) = rsin(f + 5 ). Moreover, since
0 + 55 € [0, 5], Lemma [2.1] yields

. ™ . s
rcosaf = rsm(a<9+ 2a>) o~ rsm<0+ 2a> =4(2).

If z € S5, then 0(z) = do(z) = di(z) = r. Moreover, we have
cos((l - a);T) <cosah <1, VzeSs.
Hence,
reosaf ~r~0(z) ~dy(z) ~di(z). =
From the last lemma, we deduce
LEMMA 3.2.
do(z) Vdi(z) ~|z| (z€C).

PROPOSITION 3.1. For all z € {2, we have
(3.1)  0i(2)Vii1(2) 2 |z—ai] (1<i<mn,n>3).
(3.2) 01(2) Va(2) ~ |z —ai| AN |z —ag| ~ |z — a1l |z —a2] (n=2).

(3.3) 5(z) =[] 51'_(’2"
i=1 v

il

(n>2).

Proof. We choose r; sufficiently small such that
1.
i < gj%i 65 (ai),
and set r = minj<;<, ;. Then, for all z € 2N D(a;, ), we have
0i(2) Véi—1(z) <7y < min §;(2).
4
For (3.1), it is sufficient to study the situation on 2N D(a;, 7). Let 8 > 0,

so that the sector Sg(a;, A;, Aj—1) of opening angle w/f at the vertex a; and
boundaries A;, A;_1 is included in 2N D(a;, 7). It is clear that

(3.4) 0i(2) Voi—1(2) < |z —ail, Vze 2N D(a;r).
Conversely, we remark that
0i(2) Vi—1(z) > d(z, ;) Vd(z,Ai—1), Vz€ 2N D(as,r).
This implies, by using Lemma and , that
(3.5) 0i(2) Vdi—1(z) ~ |z — ail, Vze€ 2N D(a;,r).
Now, since 8;(z) + 8;_1(z) and |z — a;| do not vanish on 2\ D(a;,r), by
compactness and continuity arguments, the result follows.

We now prove (3.2). If £2 is a bounded simply connected piecewise Dini-
smooth Jordan domain having two Dini-smooth corners of vertices aq, as,
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then d1(z) + 02(2) vanishes at a; and ag. Let r = |a; — az|/2. Then it follows
from (3.5)) that for all z € 2N (D(a1,r) U D(ag,r)),

01(2) V2(2) ~ |z — a1| A |z — agl.

On the other hand, the function z — |z — a;1| + |z — az2] is continuous and
does not vanish on (2. Hence, for all z € 2N (D(ay1,r) U D(az,r)),

01(2) V2(2) ~ |z —a1| A |z — as] ~ |z — a1] |z — agl.

Now, for z € 2\ (D(a1,r) U D(az,r)), the result is obtained by compactness
and continuity arguments.
Finally, we prove (3.3). If n = 2, then

5(2) = 61(2) A 6a(2) = 66(<)>v65<(>)

and the result follows from .

Ifn>3put 2, ={z€2:]z—a;) >r 1<i<n} and assume that
8(2) = 0,(2) = minj<i<y, 8;(2). The function z +— [[7] 6;(2) is continuous
and does not vanish on §2.. Moreover, for all z € (2,

r" SH\z—ail <"
i=1
It follows that, for all z € §2,.,

n
di(2)
0(z) ~ .
@=1170
Now, for all z € £2\ (2, it is sufficient the study 2N D(a;,r). It is clear that
0(z) = 0i(2) N d;—1(z). Moreover, we can see that if j # i and j # ¢ — 1, then
r<dj(z)<|z—a;| <5 and r<|z—aj] <6

Thus, the result follows from (3.5)). m

Proof of Lemma . The function 1) = ¢! is a conformal mapping from
D onto (2. By [10, Corollary 1.4], for all y € D we have

d(9(y),092) =~ (1 = y[*)|¢' (y)].
If we replace y by ¢(z), we obtain, for all z € 2,

d(z,00) = (1= |¢(2)]))[¥'(¢(2))].

Thus, for all z € £2,

5(x) ~ (1 - |¢<z>|2>|¢,(12)|,

and so, for all z € {2,
|0/(2)[8(2) = 1 — |o(=) .
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On the other hand, for all z € {2,
d(¢(2),0D) =1 —[¢(2)| <1 —[8(2)|* < 2(1 = |p(2)]). =

REMARK 3.1. Let us remark that if {2 is a Dini-smooth Jordan domain

then, by [10, Theorem 3.5|, the function ¢ is bounded. So, we obtain the
classical result: 1 — |¢(2)|> = §(2) (see [13]).

Proof of Theorem [1.3. Let ¢ be a conformal mapping from (2 onto D.
Then

1 (1 —[op(x)*)(1 - \¢(y)\2)>
Gol(z,y :1n<1+ ,  Vax,y € .
) =5 6(z) — o)
Thus (1.6) follows from Lemma and Theorem Moreover, by using

and , we deduce . n

4. Comparison theorem for Green kernels and 3G inequalities

THEOREM 4.1 (3G Theorem). Let ¢ be a conformal mapping from {2
onto D. Then there exists a constant C' > 0 such that, for all x,y,z € {2,

Gl )Co(zy) _ (3D WE, 8@,
Gz, > <O( S+ 5 o)
< C( H 2 —ap | 1G_Q([13 o4 5(2) ﬁ Z — ay, Oék—lGQ(z y))
N g 1L T Gk ’ o(y) oY Tk 7
( z—a | _2 - 5k(z 2 —ap |2
< L 50) | (x,2 +H L 5e0) |y = o GQ(Z,y)).

Proof. Slnce ¢ is a conformal mapping from {2 onto D, we have

GQ(ZCay) = GD(¢($),¢(y)), V.’E,y € (2.
On the other hand, the 3G Theorem on D (see [12]) states that, for all
'y, 7 €D,
/ / / / /12 /12
Cole 2D < o(12 6o ) + 1= Gl ) ).
Thus, the result follows by Lemmau Remark u and .
For a nonnegative Radon measure g which does not charge the polar

sets of £2 (see [7]-[9]), we denote by #G, the Green function associated with
A — pon £2. We have, for all z € §2,

| Go(w,y) fy)dy = \"Gaf(y)dy

9 9

+§ Gale,y) (§ "Galz,y) f(y) dy) du(2),
(9} (9}
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for any nonnegative measurable function f on (2. The function #Gy, is called
the perturbation of G by p. It is clear that *Go < Gg. We recall the
following theorem (see [9]):

THEOREM 4.2. G and *Gg are comparable on §2 if, and only if, there
exists a constant k > 0 such that, for all x,y in 2,

| Go(,2)Galz,y) du(z) < kGo(x,y).
2,

We denote by K the set of nonnegative exact Radon measures p such
that G ~ #Gg on 2. It is a convex cone in the space of Radon measures
on 2 (see [§]).

THEOREM 4.3. Let pu be a nonnegative exact Radon measure on {2 which
does not charge the polar sets of §2, and ¢ a conformal mapping from {2
onto D. Then the following three conditions are equivalent:

(1) Gq and *Ggq are comparable.

(2) z+— S (W) Gao(z,y)du(y) is bounded on 2.

)15
n a;—1
(3) z— S H i:gz ggz; Gao(z,y)du(y) is bounded on {2.
Qi=1 ‘

Proof. (1)=(2). From [§], [9] and [11], if G and *Gy, are comparable,
then there exists a constant C' > 0 such that, for all superharmonic and
nonnegative functions s on {2, we have

|29 o ant) < 0. vae .
)@
In particular, s(z) = 1 — |¢(z)|* is superharmonic on 2. This implies the
result since, by Proposition 1—[o(2)]? ~ |4'(2)]6(2).
(2)=(3). We use the fact that |¢/(2)[0(2) ~ [T}_; |z — ar|**15(2).
(3)=(1). Using the fact that K is a cone, the 3G Theorem and the
estimates

| 2

1= 6(2)P = |¢/(2)|6(2) = [ ] |2 — a|™*~8(2),
k=1

we obtain the result. m

REMARK 4.1. If G and #G are comparable, then p(z) = {, G(z, z) du(x)
is bounded but the converse is not true (see [13, Remark 5]).

5. Generalization

Proof of Main Theorem [1 By the Riemann Theorem, int I can be
mapped conformally onto the unit disk D by a conformal mapping ¢. Using



ESTIMATION OF GREEN’S FUNCTION 15

this mapping, D is transformed into a new domain where the images of
I,...,I, and C = {z € C : |z] = 1} constitute its boundary, such that
¢(D) € D. From [10], this mapping has a continuous extension derivative
from int I onto its image. Moreover, as Iy has ng Dini-smooth corners at

al,ad,...,a of opening angles 7/a? (af € ]1/2,00[\ 1), for all z € D we
have
1o
0_
(5.1) 9/ = | [Tz = a®)!|
i=1

In addition, for all z,y € D,

'</>($) - ¢(y)

2

0_1
||¢ ’H< _a?v’y_a?‘)>al
— al| Ay —a])
ng

0_
~ [Tz = af| v |y — a0,

=1

Let zp € int ¢(I7) and p > 0 be such that int ¢(I1) C B(zo, p), B(zo,p) N
int ¢(I; ) = ( for all i € {2,...,n} and 9B(z0,p) N C = (. Let ¥(z) =
20 + (D). Then ¢g = ¥ o ¢ is a conformal mapping from D
onto gbo( ), with ¢o(D) C int ¢o(L71). Moreover, the set ¢o(Ip) is a closed
analytic curve. By using and , we deduce that, for all z € D,

(5.3) CACIESE | (CRT R
i=1
and
00@) = 00W)|* _ o oy T (12 = a8V Iy — D\
o0 [P < s T (o)
= 0w = afl vy = a? 200 @,y € D).
=1

Now, consider int ¢o(I). In the same way, there exists a conformal map-
ping ¢1 such that ¢1(int ¢o(171)) C int ¢10¢o(12) and ¢10¢0(10), p1odo(L1)
are closed analytic curves. By [10], since int ¢o(I7) has n; Dini-smooth cor-
ners of opening angles /o4, ..., /o), at ¢oal),...,do(a},) respectively,
for all z € D we have

|91 (¢0(2))] ~ H |po(2 ab)|”i L,

This implies by using (5.4) that for all z € D,
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(Grogo) () = [ Iz—ab=.

1<i<ng
0<k<1
In addition, for all z,y € D,
¢1 0 ¢o(x) — P10 Po(y)
T —y
, : (J= = ak| V |y — b\ !
~ |(¢1 0 ¢0) (@)l [(¢1 0 00) (W) ] : ; :
1<i<nyg (|':U_a7,|/\|y_al|)
0<k<1

The process can be repeated until we end up with a domain D which is
bounded by analytic curves that are conformally equivalent to D and @ =
®m © m—1 0 --- 0 ¢Pg is a conformal mapping from D onto D satisfying, for
all z € D,

k_
53) )= [ 1G-det
1<i<ny
0<k<m
and
P(x) — P
rT—Y
) |8 (2 — k| v |y — ak)\ "
~ /@) |18 )] ] . : (Va,y € D).
1<i<ny (’x_ai‘/\’y_a”)
0<k<m

So, the Green functions Gp and G5 are related, for all z,y € D, by
5(@(96))5(@(3/)))
|D(x) — D(y)|?
!¢'($)!5($)@'(y)\5(y))
~In(1+ .
< |2(z) — 2(y)|?

By using (5.5)) and (5.6]), we obtain, for all z,y € D,
—ak CdP DN L S(0)s
Gp(x,y):ln<1+ H <E|x ai| Ay azD) (z) (?/)) .

k k 12
1<i<ny, [z — a7 |V |y — a7) |z — |
0<k<m

Gpoawzzeﬁ«ﬂx»¢@n>zln<l+

Proof of Main Theorem [4 Let @ be the conformal mapping from D
onto D, defined in the last proof. By 1} there exists C' > 0 such that, for
all z,y,z € D,

Colw Np(59) _ (52, ),
Gp(2,1) < 0§y @ote ) + 5y Gt )
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Hence, for all z,y, z € D,
Gp(z,2)Gp(2,y) < 0(5(@(2))Gp(x7z) n 5(¢(2))GD(27y)>

Gp(z,y) (P (x)) o(2(y))
k ak—1
z—af " 4(2)
< C( H ’ Gp(x, z)
(i, 17— ak 0(x)
0<k<m
kak—1
z—a [T (2
+ 1] ; GD(Zay)>' n
\izn, YAl 0Y)
0<k<m

Similarly to the proof of Theorem [4.3], we can deduce Main Theorem

6. Examples and applications
6.1. Estimates for the Green function on S,
THEOREM 6.1. Let o € ]1/2,00[\ {1}. Then, for all x,y € Sa,

i 2| Ayl \ 2 du(@)d (y)da (@) da(y)
Csalz,y) =1 (H(\mIV\y!) [z o2 (Jz] v [y))? )

=n( (BH5) " 28)

We present two proofs:

First proof. If a = 1, then for all x,y € 51,

:;1n<1+4%(f”m€(y))_

|z — yl?

G, (x,y) = In |27

As, for o # 1, the function z — z¢ is a conformal mapping from S, onto S,
we have

1 |z|¥ cos(a arg x)|y|* cos(aarg y)
Gg,(z,y) = 21n(1 + o — o] , Vx,y €S,

Thus, the result follows from Lemmas [2.6] and .

_ 24—

Second proof. For a # 1 and the conformal mapping ¢, (z) = zaﬁ from
S onto D, 0 is the only singular point of order a«—1 and ¢4 (2) ~ ¢4 (0)+22%
in a neighborhood of 0. Moreover, for z,y € S,

Gso(7,y) = Gp(Pa(z), daly))

(s (L 8@~ 6w
‘1<” 160(z) — Ga)P >
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We observe that

4|ma _ ya|2

2

x p— p—

|¢a( ) ¢a(y)| |(:L‘a + 1)(ya + 1)|2

2 (Jz] v Jy|)2o—2
|z 4 112y + 1|2

~dlr—y

and for all z € S,

o 4]z]*7tz| cos(avarg z)

1= [gal2)l? = T T = S,

Consequently,

(] v Jy[)*—2
e Hylemt

|ba(2) = da(y)]® = 4|z — y?|6,(2)] 160 (v)]

This implies that for all x,y € S,,

G (2.1) l,m(l L S@)() (wl A Iy!)a_1>_ i

jz —y|* \|z[ V [yl

6.2. Estimates for the Green function on S, (D)
PROPOSITION 6.1. Let a > 1/2. Then, for all x,y € So(D),
14 2%%] = (|Jz — e | V |y — €3]} (jz — e '3 | V |y — e "3 ]).

Proof. We equip C x C with the norm |(z,y)| = v/|z|?> + |y|?, (z,y) €
C x C. We have

[ V [yl < |z, y)| < V2(|2] V [y).
Let a > 1/2. The function
fo: (C\]=00,0))> = C, (x,y)— 2%,
is continuous, differentiable at the two points (ei%, e"%), (e_i% ) e_i%) and
o Malny) — fale'E )

et odn) |(zy) = (5, %))

(zy)— (e Ta e ida)  |(@,y) — (€720, e "2a))|

It follows that

. 1+ 2%y
lim

() B o) [(2,) — (€55, €755 )|
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Hence, the function

|1+ x%y”|
[(2,y) = (¢'3, e'20)| |(2,y) — (e72e, e7"20)]
defined on S, (D) x So(D) is continuous, with

ga(x,y) =

x a . x @
30 e'2a) = 36 e '2a) = 0
(e 5, ') = gale ™ o) = g
Moreover, the numerator and the denominator of g, do not vanish on the set
Sa(D) x S4(D) \ (e'2a,e'2a), (e "2a, e "2a). In fact, 1 + 2%y* = 0 implies
xy® = —1, s0 |z| = |y| = 1 and a(argz + argy) = +mr. Consequently,
argr = argy = T o argr = argy = -
2c 2c
For the denominator the argument is clear. Finally, g, is continuous on the
compact subset S, (D) x So(D) and does not vanish. Consequently, g, =~ 1
on So(D) X S4(D). m
THEOREM 6.2. Let o € ]1/2,00[\ {1}. Then, for all x,y € So(D),

GSQ(D) ~
1n<1+(\fv—ei%| Ay = ei%l) (Ix—e_iﬁl A Iy—e_’%l> ( || A Jyl )a_15(w)5(y)).
z —e'3a |V ]y —e'sa| ) \|o —e 2| V|y —e 2| ) \(lz] V [y] |z —yf?
First proof. Note that S, (D) is a simply connected piecewise Dini-smooth
Jordan domain having three Dini-smooth corners at a; = 0, ag = e~/ (29)
az = €™/ (2%) of respective opening angles 7 /cv, 7/2, /2. The Green function
Gp of D is given, for all z,y € D, by

_ ;m(l L 0= faP) - |y|2>)‘

11—y

GD(iU,y) =1In _

|z — yl?

Hence, the Green function of S;(D) is

|1 —ay Lt+ay| . |[(1—a2y)(z+7)
Gy (p)(2,y) =In T—y —lhn T+y | (x—y)(1+xy)'

L1 () e (= ) )

=5 (” (@ — ) 2I(1 + zy) 2 >

Since z — 2z is a conformal mapping from S, (D) onto Si(D), we have
Gs.(p)(z,y) = Gs, (D) (z,y")

ay e} _ 2a _ 2a
_ 1ln(1+ ARe(z®) - Re(y®) (1 — [2[**)(1 — |y| ))
2 |z — y 2|1 + xoye|?

t20¢

for all z,y € So(D). On the other hand, if ¢ € [0,1], then 1 < ll_it
It follows that

1— |22 ~1—|z| = da(2), Vz€ Sa(D).

< 2.
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By Lemma[3.] for all z € S,(D),
Re(2Y) = |2]* cos(aarg z) ~ |2|*7261(2)d3(2).

Therefore, the result follows from (3.3)), Lemma Proposition and
Lemma 2.7 w

Second proof. The function

2
z¢+2z—-1 4z
s == = 14 _—- S1(D
2 91(2) 22—-2z-1 Jr272—2,7:—1 (z € 51(D))
is a conformal mapping from Si(D) onto D. Consequently, for all x,y €

Sl(D)a

Gs,(p) = Gp(d1(x), ¢1(y)) = ;ln<1 +

(1 — g1 (2)[*)(1 — ‘¢1<y)’2)>.
[¢1(z) — d1(y)[?
As ¢i(z) = 4(225227‘21)2 has two simple singularities ¢ and —i, it follows
that, for all x,y € S1(D),

_ (y — 2)(1 + ay)|?
|¢1(-’E) - ¢1(y)|2 - |(.7)2 — 2y — 1)(y2 _ 2y _ 1)|2

e —yPla =il Vly — i)+l V Iy + il)?

= 2% = 20— 1PJy? — 2y — 12

=P =il Iy = D2 iV L+ i) )] |64 ()
FZESTIEST

~ Ja— y2(le — | vy — i)2(Je + 6] V |y + )%

We also have
8|z| cos(arg 2)(1 — |2|?)
1- =
By using (3.3), we get
1-— ](bl(z)]Q ~ §(2)|z —i||z + 1]
=~ |¢)(2)]6(2), Vz € Si(D).

~|z| cos(arg 2)(1—|z|?), Vz € Si(D).

Thus,

Gaior <1 (LAl (o iRl ) 150)
[z =il V]y—il ) \|z+ilVIy+il ) [z -yl
for all z,y € S1(D).
Now, if o € ]1/2,00[\{1}, the function z — ¢2(2) = ¢1(2%) (z € Sa(D))
is a conformal mapping from S, (D) onto D. Then, for all z,y € S, (D),

(1 —[ga(x)*)(1 — \¢2(y)|2)>
|p2(x) — d2(y)[? ‘

Gs, o) = G(6aa).62(1) = 5 1n 1+
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Let us remark that the function #h(2) = az*1¢)(2) has three singularities:
0 of order & — 1 and €'2a, e "2 which are snnple singularities. Moreover,

7'2(1

\xa—i|:|xa—(ei27;) ‘N{x—e ‘(\:E|\/1)°‘1 lz—e

Consequently, for all z,y € S, (D),

|pa(x) — pa(y)|?

o (] VD> (lz—e'2a | V [y —e'2a |)*(jx—e~"2x | V [y —e "% |)?|¢h (2) |65 (y)]
(lzlly[)o=tfa2e + 1y + 1]

=~ [z —y*(J2| V |y))** (o — '35 | V |y — "2 ) (Jo — e 712 v [y — e s )2,

~ |z —

Moreover, for all z € S, (D),
1—[¢a(2)|* = 1 — |1 (2%)> = 6(2*)|2* — i| |2* + ]

~ |z|* cos(a arg z z—ei% z—e
g

o aja—1 oy “Ua |
~ 2z —e [z —e | = |¢h(2)|6(2).

i
a‘

This implies the result. =
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