VOL. 133

2013

NO. 1

GENERALIZED WEIGHTED QUASI-ARITHMETIC MEANS AND THE KOLMOGOROV–NAGUMO THEOREM

ΒY

JANUSZ MATKOWSKI (Zielona Góra)

Abstract. A generalization of the weighted quasi-arithmetic mean generated by continuous and increasing (decreasing) functions $f_1, \ldots, f_k : I \to \mathbb{R}, k \geq 2$, denoted by $A^{[f_1,\ldots,f_k]}$, is considered. Some properties of $A^{[f_1,\ldots,f_k]}$, including "associativity" assumed in the Kolmogorov–Nagumo theorem, are shown. Convex and affine functions involving this type of means are considered. Invariance of a quasi-arithmetic mean with respect to a special mean-type mapping built of generalized means is applied in solving a functional equation. For a sequence of continuous strictly increasing functions $f_j : I \to \mathbb{R}, j \in \mathbb{N}$, a mean $A^{[f_1,f_2,\ldots]} : \bigcup_{k=1}^{\infty} I^k \to I$ is introduced and it is observed that, except symmetry, it satisfies all conditions of the Kolmogorov–Nagumo theorem. A problem concerning a generalization of this result is formulated.

1. Introduction. Supposing that a function $f : I \to \mathbb{R}$ is continuous and strictly monotonic in a real interval I and $f_1, \ldots, f_k : I \to \mathbb{R}, k \ge 2$, are arbitrary functions, we show that a function $M : I^k \to \mathbb{R}$ defined by

$$M(x_1,\ldots,x_k) := f^{-1} \Big(\sum_{j=1}^k f_j(x_j) \Big)$$

is a mean if, and only if, $f = \sum_{j=1}^{k} f_j$ and, for each $i \in \{1, \ldots, k\}$, the function f_i is continuous, monotonic, and of the same type of monotonicity as f (Theorem 1, cf. also [7] where the case k = 2 is considered). The function $A^{[f_1,\ldots,f_k]} := M$ generalizes the weighted quasi-arithmetic mean (cf. for instance [1], [2], [4]). We show, in particular, that $A^{[f_1,\ldots,f_k]}$ is symmetric iff it is quasi-arithmetic, and, for each $i \in \{1,\ldots,k\}$ and all $x_1,\ldots,x_k \in I$, we have

$$A^{[f_1,...,f_k]}(x_1,...,x_k) = A^{[f_1,...,f_k]} \left(\underbrace{y,...,y}_{i \text{ times}}, x_{i+1},...,x_k \right),$$

²⁰¹⁰ Mathematics Subject Classification: Primary 26A24, 26E60, 39B22.

Key words and phrases: mean, generalized quasi-arithmetic mean, convex function, affine function, mean-type mapping, iteration, functional equation, "associativity" of a mean, Kolmogorov–Nagumo theorem.

where $y = A^{[f_1,...,f_i]}(x_1,...,x_i)$; so the mean $A^{[f_1,...,f_k]}$ inherits the characteristic "associativity" property of the classical quasi-arithmetic means (Theorem 2). In Section 3, the equality $A^{[g_1,...,g_k]} = A^{[f_1,...,f_k]}$ is examined. In Section 4 we consider functions which are convex, concave or affine with respect to the mean $A^{[f_1,...,f_k]}$. Using the functional equation $h(\beta(x) + \delta(y)) =$ $\gamma(x) + \eta(y)$ (Lemma 1), we find the form of affine functions with respect to $A^{[f_1,...,f_k]}$. In Section 5 we remark that the question of comparability of the means $A^{[f_1,...,f_k]}$ and $A^{[g_1,...,g_k]}$ leads to a convexity-type inequality. In Section 6 we observe that the quasi-arithmetic mean $A^{[f]}$,

$$A^{[f]}(x_1, \dots, x_k) = f^{-1}\left(\frac{1}{n}\sum_{i=1}^k f(x_i)\right), \quad x_1, \dots, x_k \in I,$$

with $f := f_1 + \cdots + f_k$, is invariant with respect to the mean-type mapping $\mathbf{M} : I^k \to I^k$ given by

$$\mathbf{M} = (A^{[f_1, \dots, f_k]}, A^{[f_2, f_3, \dots, f_k, f_1]}, \dots, A^{[f_k, f_1, \dots, f_{k-1}]}),$$

and we apply this fact in solving a functional equation.

In connection with the above mentioned "associativity" property, in the final Section 7, for a given sequence of continuous and strictly increasing functions $f_j : I \to \mathbb{R}, j \in \mathbb{N}$, we define a mean $A^{[f_1, f_2, ...]} : \bigcup_{k=1}^{\infty} I^k \to I$, and observe that, except symmetry, it satisfies all the assumptions of the celebrated theorem of Kolmogorov–Nagumo [3], [10] on a characterization of quasi-arithmetic means (Corollary 3). Based on this, we formulate a conjecture generalizing the Kolmogorov–Nagumo theorem.

2. Generalized quasi-arithmetic means, their properties, and some lemmas. Let $I \subset \mathbb{R}$ be an arbitrary interval and $k \in \mathbb{N}, k \geq 2$. A function $M: I^k \to \mathbb{R}$ is called a *k*-variable mean in I if

$$\min(x_1,\ldots,x_k) \le M(x_1,\ldots,x_k) \le \max(x_1,\ldots,x_k), \quad x_1,\ldots,x_k \in I;$$

if, moreover, each of these two inequalities becomes an equality only in the case when $x_1 = \cdots = x_k$, the mean M is called *strict*.

THEOREM 1. Let $I \subset \mathbb{R}$ be an interval, and $k \in \mathbb{N}$, $k \geq 2$. Suppose that a function $f: I \to \mathbb{R}$ is continuous and strictly monotonic, and $f_1, \ldots, f_k :$ $I \to \mathbb{R}$ are arbitrary functions. Then the function $M: I^k \to \mathbb{R}$,

(1)
$$M(x_1, \dots, x_k) := f^{-1} \Big(\sum_{j=1}^k f_j(x_j) \Big),$$

is a mean if, and only if,

(2)
$$f = \sum_{j=1}^{\kappa} f_j,$$

and, for each $i \in \{1, ..., k\}$, the function f_i is continuous, monotonic, and of the same type of monotonicity as f; moreover, for each $i \in \{1, ..., k\}$,

(3)
$$M(x_1, \dots, x_k) := f^{-1} \Big(\sum_{j=1, j \neq i}^k f_j(x_j) + f(x_i) - \sum_{j=1, j \neq i}^k f_j(x_i) \Big),$$
$$x_1, \dots, x_k \in I,$$

and

(4)
$$M(x_1, \dots, x_k) := \left(\sum_{j=1}^k f_j\right)^{-1} \left(\sum_{j=1}^k f_j(x_j)\right), \quad x_1, \dots, x_k \in I.$$

Proof. Since

$$(-f)^{-1}\left(\sum_{j=1}^{k} (-f_j)(x_j)\right) = f^{-1}\left(\sum_{j=1}^{k} f_j(x_j)\right), \quad x_1, \dots, x_k \in I,$$

we can assume, without any loss of generality, that f is strictly increasing. Assume that M defined by (1) is a mean in I.

From (1), taking $x_1 = \cdots = x_k = x$ in the definition of a mean, we get

$$f^{-1}\left(\sum_{j=1}^{k} f_j(x)\right) = x, \quad x \in I,$$

whence (2)-(4) hold true.

Fix $i \in \{1, ..., k\}$ and take arbitrary $x, y \in I$, x < y. Since M is a mean, setting $x_j = x$ for $j \neq i$ and $x_i = y$ in (3), we get

$$x \le f^{-1} \Big(\sum_{j=1, j \ne i}^{k} f_j(x) + f(y) - \sum_{j=1, j \ne i}^{k} f_j(y) \Big) \le y,$$

whence, as f is increasing,

(5)
$$f(x) \le \sum_{j=1, j \neq i}^{k} f_j(x) + f(y) - \sum_{j=1, j \neq i}^{k} f_j(y) \le f(y).$$

By (1), from the first of these inequalities, we get

$$\sum_{j=1}^{k} f_j(x) \le \sum_{j=1, j \ne i}^{k} f_j(x) + \sum_{j=1}^{k} f_j(y) - \sum_{j=1, j \ne i}^{k} f_j(y),$$

which reduces to the inequality

$$f_i(x) \le f_i(y).$$

This proves that, for each $i \in \{1, ..., k\}$, the function f_i is increasing. It follows that at any $t \in \text{int } I$, the one-sided limits $f_i(t+)$ and $f_i(t-)$ exist.

Letting y tend to x in (5), by the continuity of f, we obtain

$$f(x) = \sum_{j=1, j \neq i}^{k} f_j(x) + f(x) - \sum_{j=1, j \neq i}^{k} f_j(x+),$$

that is,

(6)
$$\sum_{j=1, j \neq i}^{k} f_j(x) = \sum_{j=1, j \neq i}^{k} f_j(x+),$$

and this equality holds true for all $x \in \text{int } I \cup \{\inf I\}$ if $\inf I \in I$.

Similarly, letting x tend to y in (5), we get

(7)
$$\sum_{j=1, j \neq i}^{k} f_j(y) = \sum_{j=1, j \neq i}^{k} f_j(y-)$$

for all $y \in \operatorname{int} I \cup {\sup I}$ if $\sup I \in I$.

By the continuity of f we have f(t-) = f(t) = f(t+) for all $t \in \operatorname{int} I$; f(t+) = f(t) if $t = \inf I \in I$, and f(t-) = f(t) if $t = \sup I \in I$. Hence, for $t \in \operatorname{int} I$, we get

$$\sum_{j=1, j \neq i}^{k} f_j(t-) + f_i(t-) = \sum_{j=1, j \neq i}^{k} f_j(t) + f_i(t) = \sum_{j=1, j \neq i}^{k} f_j(t+) + f_i(t+),$$

whence, by (6) and (7),

$$f_i(t-) = f_i(t) = f_i(t+).$$

If $t = \inf I \in I$ then from the equality f(t+) = f(t) and (6) we get $f_i(t+) = f_i(t)$. If $t = \sup I \in I$ then from the equality f(t-) = f(t) and (7) we get $f_i(t-) = f_i(t)$. This proves that, for each $i \in \{1, \ldots, k\}$, the function f_i is continuous in I.

To prove the converse implication, assume that $f_1, \ldots, f_k : I \to \mathbb{R}$ are continuous, increasing, $f : I \to \mathbb{R}$ is strictly increasing and such that (2) holds true. Hence, for arbitrary $x_1, \ldots, x_k \in I$, putting

$$x = \min(x_1, \dots, x_k), \quad y = \max(x_1, \dots, x_k),$$

we have

(8)
$$f(x) = \sum_{j=1}^{k} f_j(x) \le \sum_{j=1}^{k} f_j(x_j) \le \sum_{j=1}^{k} f_j(y) = f(y).$$

Since f is continuous, the number $\sum_{j=1}^{k} f_j(x_j)$ belongs to the range of f, and so the function M in (1) is correctly defined.

From (8) we obtain

$$x = f^{-1}\left(\sum_{j=1}^{k} f_j(x)\right) \le f^{-1}\left(\sum_{j=1}^{k} f_j(x_j)\right) \le f^{-1}\left(\sum_{j=1}^{k} f_j(y)\right) \le y,$$

that is, $\min(x_1, \ldots, x_k) \leq M(x_1, \ldots, x_k) \leq \max(x_1, \ldots, x_k)$. Thus M is a mean. This completes the proof. \blacksquare

According to Theorem 1, given continuous strictly monotonic functions $f_1, \ldots, f_k : I \to \mathbb{R}$ of the same kind of monotonicity, the function $A^{[f_1, \ldots, f_k]} : I^k \to I$,

(9)
$$A^{[f_1,\dots,f_k]}(x_1,\dots,x_k) := \left(\sum_{j=1}^k f_j\right)^{-1} \left(\sum_{j=1}^k f_j(x_j)\right), \quad x_1,\dots,x_k \in I,$$

is a mean, and will be referred to as a (generalized) weighted quasi-arithmetic mean with generators f_1, \ldots, f_k (cf. [7], also [9] and [8]).

REMARK 1. Let $\varphi : I \to \mathbb{R}$ be a continuous and strictly monotonic, and fix $w_1, \ldots, w_k \in (0, 1)$ with $w_1 + \cdots + w_k = 1$. Taking $f_j = w_j \varphi$ for $j = 1, \ldots, k$, we get

$$A^{[f_1,\ldots,f_k]}(x_1,\ldots,x_k) = \varphi^{-1} \Big(\sum_{j=1}^k w_j \varphi(x_j) \Big),$$

that is, $A^{[f_1,\ldots,f_k]}$ becomes a weighted quasi-arithmetic mean with generator φ and weights w_1,\ldots,w_k . This justifies why $A^{[f_1,\ldots,f_k]}$ is called a generalized weighted quasi-arithmetic mean [7].

Let us note some properties of the mean $A^{[f_1,\ldots,f_k]}$.

THEOREM 2. Let $I \subset \mathbb{R}$ be an interval and $k \in \mathbb{N}$, $k \geq 2$. Assume that $f_1, \ldots, f_k : I \to \mathbb{R}$ are continuous, monotonic of the same type, and $f_1 + \cdots + f_k$ is strictly monotonic. Then

- (i) $A^{[-f_1,...,-f_k]} = A^{[f_1,...,f_k]};$
- (ii) the mean $A^{[f_1,\ldots,f_k]}$ is increasing with respect to each variable;
- (iii) for all $x_1, \ldots, x_k \in I$, if $\min(x_1, \ldots, x_k) < \max(x_1, \ldots, x_k)$ then either

$$\min(x_1, \ldots, x_k) < A^{[f_1, \ldots, f_k]}(x_1, \ldots, x_k)$$

or

$$A^{[f_1,...,f_k]}(x_1,...,x_k) < \max(x_1,...,x_k)$$

- (iv) $A^{[f_1,\ldots,f_k]}$ is strictly increasing with respect to each variable if, and only if, f_1,\ldots,f_k are strictly monotonic;
- (v) $A^{[f_1,...,f_k]}$ is a strict mean iff it is strictly increasing with respect to each variable;

(vi) $A^{[f_1,\ldots,f_k]}$ is symmetric if, and only if, there is a function $g: I \to \mathbb{R}$ and $c_j \in \mathbb{R}$ such that $f_j = g + c_j$ for $j = 1, \ldots, k$; in particular

$$A^{[f_1,\dots,f_k]}(x_1,\dots,x_k) = g^{-1}\left(\frac{1}{k}\sum_{j=1}^k g(x_j)\right), \quad x_1,\dots,x_k \in I,$$

i.e. $A^{[f_1,...,f_k]}$ coincides with the quasi-arithmetic mean $A^{[g]}$ generated by g;

(vii)
$$A^{[f_1,\ldots,f_k]}$$
 has the following associativity-type property: for each $i \in \{1,\ldots,k\}$, if the functions $f_1 + \cdots + f_i, f_2 + \cdots + f_{i+1}, \ldots, f_{k-i+1} + \cdots + f_k$ are strictly monotonic, then for all $x_1,\ldots,x_k \in I$,

$$\begin{aligned} A^{[f_1,\dots,f_k]}(x_1,\dots,x_k) \\ &= A^{[f_1,\dots,f_k]} \Big(\underbrace{A^{[f_1,\dots,f_i]}(x_1,\dots,x_i),\dots,A^{[f_1,\dots,f_i]}(x_1,\dots,x_i)}_{i \ times}, x_{i+1},\dots,x_k \Big) \\ &= A^{[f_1,\dots,f_k]} \Big(x_1, \underbrace{A^{[f_2,\dots,f_{i+1}]}(x_2,\dots,x_{i+1}),\dots,A^{[f_2,\dots,f_{i+1}]}(x_2,\dots,x_{i+1})}_{i \ times}, x_{i+2},\dots,x_k \Big) \\ &= \dots - \end{aligned}$$

$$A^{[f_1,...,f_k]}(x_1,...,x_{k-i},\underbrace{A^{[f_{k-i+1},...,f_k]}(x_{k-i+1},...,x_k),\ldots,A^{[f_{k-i+1},...,f_k]}(x_{k-i+1},...,x_k)}_{i \ times}).$$

Proof. Properties (i)–(iv) are easy to verify.

To prove (v) suppose that $A^{[f_1,\ldots,f_k]}$ is strict. We may assume that f_1,\ldots,f_k are increasing. Choose arbitrarily $i \in \{1,\ldots,k\}, x, y \in I, x < y$, and put

$$x_j = x$$
 for $j \in \{1, \dots, k\} \setminus \{i\}$, and $x_i = y$.

Since $A^{[f_1,\ldots,f_k]}$ is strict, we have

$$x = \min(x_1, \dots, x_k) < A^{[f_1, \dots, f_k]}(x_1, \dots, x_k).$$

Hence, making use of (9) and the strict monotonicity of $\sum_{i=1}^{k} f_i$, we get

$$\left(\sum_{j=1}^{k} f_j\right)(x) < \sum_{j=1}^{k} f_j(x_j),$$

that is, $f_i(x) < f_i(y)$. Thus we have shown that, for every $i \in \{1, \ldots, k\}$, the function f_i is strictly increasing. Conversely, if f_1, \ldots, f_k are strictly monotonic then, by (iv), the mean $A^{[f_1,\ldots,f_k]}$ is strict.

To prove (vi), assume that $A^{[f_1,\ldots,f_k]}$ is symmetric. Hence, for $i, j \in \{1,\ldots,k\}, i < j$, we have

$$A^{[f_1,\ldots,f_k]}(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_k) = A^{[f_1,\ldots,f_k]}(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_k),$$

whence, taking $x_i = x, x_i = y$, from the definition of $A^{[f_1,\ldots,f_k]}$, we obtain

$$f_i(x) - f_j(x) = f_i(y) - f_j(y), \quad x, y \in I,$$

which implies that $f_i - f_j$ is a constant function. Taking here j = 1 and putting $g := f_1, c_1 := 0$, we get

$$f_i(x) = g(x) + c_i, \quad x \in I, \ i = 1, \dots, k,$$

for some $c_2, \ldots, c_k \in \mathbb{R}$. Now from (9), setting $c := \sum_{j=1}^k c_j$, we have

$$A^{[f_1,\dots,f_k]}(x_1,\dots,x_k) = \left(\sum_{j=1}^k f_j\right)^{-1} \left(\sum_{j=1}^k f_j(x_j)\right)$$
$$= (kg+c)^{-1} \left(\sum_{j=1}^k g(x_j) + c\right) = g^{-1} \left(\frac{1}{k} \sum_{j=1}^k g(x_j)\right)$$

for all $x_1, \ldots, x_k \in I$. The converse implication is easy to verify.

To show (vii), take $i \in \{1, \ldots, k\}$ and note that, by (4),

$$\begin{aligned} A^{[f_1,\dots,f_k]}(x_1,\dots,x_k) &= \left(\sum_{j=1}^k f_j\right)^{-1} \left(\sum_{j=1}^k f_j(x_j)\right) \\ &= \left(\sum_{j=1}^k f_j\right)^{-1} \left(\left(\sum_{j=1}^i f_j\right) \circ \left[\left(\sum_{j=1}^i f_j\right)^{-1} \left(\sum_{j=1}^i f_j(x_j)\right)\right] + \sum_{j=i+1}^k f_j(x_j)\right) \\ &= \left(\sum_{j=1}^k f_j\right)^{-1} \left(\sum_{j=1}^i f_j \circ \left[\left(\sum_{j=1}^i f_j\right)^{-1} \left(\sum_{j=1}^i f_j(x_j)\right)\right] + \sum_{j=i+1}^k f_j(x_j)\right) \\ &= A^{[f_1,\dots,f_k]} \left(\underline{A^{[f_1,\dots,f_i]}(x_1,\dots,x_i),\dots,A^{[f_1,\dots,f_i]}(x_1,\dots,x_i)}_{i \text{ times}}, x_{i+1},\dots,x_k\right), \end{aligned}$$

and similarly we get the remaining equalities. \blacksquare

In view of (i), we may assume from now on that f_1, \ldots, f_k are increasing.

LEMMA 1. Let $I, J \subset \mathbb{R}$ be intervals, $\beta, \gamma : I \to \mathbb{R}$ nonconstant continuous functions, and $\delta, \eta : J \to \mathbb{R}$ arbitrary functions. If $h : \beta(I) + \delta(J) \to \mathbb{R}$ satisfies the functional equation

(10) $h(\beta(x) + \delta(y)) = \gamma(x) + \eta(y), \quad x \in I, \ y \in J,$

then there is a unique additive function $\alpha : \mathbb{R} \to \mathbb{R}$ and a unique $c \in \mathbb{R}$ such that

$$h(u) = \alpha(u) + c, \quad u \in (\beta(I) + \delta(J)).$$

Moreover there is $b \in \mathbb{R}$ such that

$$\gamma(x) = \alpha(\beta(x)) - b, \quad x \in I; \quad \eta(y) = \alpha(\delta(y)) + b + c, \quad y \in J.$$

Here $\beta(I) + \delta(J) := \{u + v : u \in \beta(I), v \in \delta(J)\}.$

Proof. Without any loss of generality we can assume that there are $x_0 \in$ int I and $y_0 \in$ int J such that $\beta(x_0) = 0$ and $\delta(y_0) = 0$. Indeed, in the

opposite case we could fix any $x_0 \in \operatorname{int} I$ and $y_0 \in \operatorname{int} J$, define $\overline{\beta} : I \to \mathbb{R}$ by $\overline{\beta}(x) := \beta(x) - \beta(x_0), \ \overline{\gamma} : J \to \mathbb{R}$ by $\overline{\gamma} : J(y) := \delta(y) - \delta(y_0), \ \overline{h} : (\overline{\beta}(I) + \overline{\delta}(J)) + \beta(x_0) + \delta(y_0) \to \mathbb{R}$ and consider the functional equation

$$h(\beta(x) + \delta(y)) = \gamma(x) + \eta(y), \quad x \in I, \ y \in J,$$

that is equivalent to (10).

Setting $y = y_0$ and then $x = x_0$ in (10) we get

 $h(\beta(x)) = \gamma(x) + \eta(y_0), \quad x \in I; \quad h(\delta(y)) = \gamma(x_0) + \eta(y), \quad y \in J.$ whence, from (10),

$$h(\beta(x) + \delta(y)) = h(\beta(x)) + h(\delta(y)) - c, \quad x \in I, \ y \in J,$$

where $c := \eta(y_0) + \gamma(x_0)$. Setting H := h - c, we get

$$H(\beta(x) + \delta(y)) = H(\beta(x)) + H(\delta(y)), \quad x \in I, \ y \in J,$$

whence

$$H(u+v) = H(u) + H(v), \quad u \in \beta(I), v \in \delta(J),$$

so H is additive in a nontrivial interval containing 0. Clearly there exists a unique additive function $\alpha : \mathbb{R} \to \mathbb{R}$ that is an extension of H. From the definition of H we get $h = \alpha + c$. Setting $h = \alpha + c$ in (10) and making use of the additivity of α , we obtain

$$\alpha(\beta(x)) - \gamma(x) = \eta(y) - \alpha(\delta(y)) - c, \quad x \in I, y \in J,$$

whence there is $b \in \mathbb{R}$ such that $\alpha(\beta(x)) - \gamma(x) = b$ for all $x \in I$, and $\eta(y) - \alpha(\delta(y)) - c = b$ for all $y \in J$. This completes the proof.

The following result is a reformulation of Theorem 2 in [7].

LEMMA 2. Let $I \subset \mathbb{R}$ be an interval and let $f, g, F, G : I \to \mathbb{R}$ be continuous, increasing and such that f + F and g + G are strictly increasing. Then $A^{[g,G]} = A^{[f,F]}$ if, and only if, there exist $a, b, c \in \mathbb{R}$, $a \neq 0$, such that

(11)
$$g(x) = af(x) + b, \quad G(x) = aF(x) + c, \quad x \in I.$$

3. Equality of generalized weighted quasi-arithmetic means

THEOREM 3. Let $I \subset \mathbb{R}$ be an interval, $k \in \mathbb{N}$, $k \geq 2$, and let f_1, \ldots, f_k , $g_1, \ldots, g_k : I \to \mathbb{R}$ be continuous, increasing such that $f_1 + \cdots + f_k$ and $g_1 + \cdots + g_k$ are strictly increasing. Then

(12)
$$A^{[g_1,\dots,g_k]} = A^{[f_1,\dots,f_k]}$$

if, and only if, there exist $a, b_1, \ldots, b_k \in \mathbb{R}$, $a \neq 0$, such that

(13)
$$g_j(x) = af_j(x) + b_j, \quad x \in I, \ j = 1, \dots, k.$$

Proof. Assume that (12) holds true for k = 2. Setting $f := f_1$, $F := f_2$, $g := g_1$, $G := g_2$, we hence get $A^{[g,G]} = A^{[f,F]}$ and, in view of Lemma 2, there are $a, b, c \in \mathbb{R}$, $a \neq 0$, such that (11) holds true. Setting $b_1 := b$, and

 $b_2 := c$ we obtain (13) for k = 2. Thus, in the case k = 2, equality (12) implies (13).

Assume that (12) holds true for $k \in \mathbb{N}$, k > 2. Choosing arbitrarily $i \in \{1, \ldots, k\}$, we can write (12) in the following form: for all $x_1, \ldots, x_k \in I$,

$$\left(g_i + \sum_{j=1, j \neq i}^k g_j\right)^{-1} \left(g_i(x_i) + \sum_{j=1, j \neq i}^k g_j(x_j)\right)$$

= $\left(f_i + \sum_{j=1, j \neq i}^k f_j\right)^{-1} \left(f_i(x_i) + \sum_{j=1, j \neq i}^k f_j(x_j)\right).$

Taking $x_i = x, x_j = y$ for all $j \in \{1, ..., k\} \setminus \{i\}$, for $x, y \in I$, and setting

$$F_i := \sum_{j=1, j \neq i}^k f_j, \quad G_i := \sum_{j=1, j \neq i}^k g_j$$

we hence get

$$(g_i + G_i)^{-1}(g_i(x) + G_i(y)) = (f_i + F_i)^{-1}(f_i(x) + F_i(y)), \quad x, y \in I,$$

that is, $A^{[g_i,G_i]} = A^{[f_i,F_i]}$. Applying Lemma 2 we conclude that for each $i \in \{1, \ldots, k\}$ there are $a_i, b_i, c_i \in \mathbb{R}$, $a_i \neq 0, i \in \{1, \ldots, k\}$, such that

$$g_i(x) = a_i f_i(x) + b_i, \quad \sum_{j=1, j \neq i}^k g_j(x) = a_i \left(\sum_{j=1, j \neq i}^k f_j(x)\right) + c_i, \quad x \in I.$$

Adding these equalities we get

$$\sum_{j=1}^{k} g_j(x) = a_i \left(\sum_{j=1}^{k} f_j(x) \right) + b_i + c_i, \quad x \in I.$$

It follows that a_i does not depend on $i \in \{1, \ldots, k\}$. Thus, setting $a := a_1$, we obtain

$$g_i(x) = af_i(x) + b_i, \quad x \in I, \ i = 1, \dots, k.$$

Since the converse implication is easy to verify, the proof is complete.

4. Convexity and affinity with respect to generalized weighted quasi-arithmetic means

DEFINITION 1. Let $f_1, \ldots, f_k : I \to \mathbb{R}, k \geq 2$, be continuous, of the same type of monotonicity and such that $\sum_{j=1}^k f_j$ is strictly monotonic in the interval *I*. Let *J* be a subinterval of *I*. We say that a function $\varphi : J \to I$ is $A^{[f_1,\ldots,f_k]}$ -convex if

$$\varphi\left(A^{[f_1,\ldots,f_k]}(x_1,\ldots,x_k)\right) \le A^{[f_1,\ldots,f_k]}(\varphi(x_1),\ldots,\varphi(x_k)), \quad x_1,\ldots,x_k \in J;$$

 $A^{[f_1,...,f_k]}$ -concave if the converse inequality is satisfied; and $A^{[f_1,...,f_k]}$ -affine if the equality is fulfilled.

For k = 2, setting here $f = f_1$, $g = f_2$, and making use of (9), we see that the $A^{[f,g]}$ -convexity of φ reduces to the inequality

(14) $\varphi((f+g)^{-1}(f(x)+g(y))) \leq (f+g)^{-1}(f(\varphi(x))+g(\varphi(y))), \quad x, y \in J,$ (the $A^{[f,g]}$ -concavity, to the converse inequality, and $A^{[f,g]}$ -affinity to equality).

REMARK 2. Let $I = \mathbb{R}$, $J \subset \mathbb{R}$, and $t \in (0, 1)$. Taking f(x) = tx, g(x) = (1-t)x for $x \in \mathbb{R}$, in (14) we get

$$\varphi(tx + (1-t)y) \le t\varphi(x) + (1-t)\varphi(y), \quad x, y \in J,$$

so $A^{[f,g]}$ -convexity generalizes the classical *t*-convexity of $\varphi : J \to \mathbb{R}$. In particular, for t = 1/2 we get Jensen convexity.

Taking $J \subset (0, \infty)$, $f(x) = t \log x$, $g(x) = (1 - t) \log x$ for x > 0 in (14) we get

$$\varphi(x^t y^{1-t}) \le [\varphi(x)]^t [\varphi(y)]^{1-t}, \quad x, y \in J,$$

so $A^{[f,g]}$ -convexity generalizes the geometrical *t*-convexity of $\varphi : J \to (0, \infty)$. For t = 1/2 we get Jensen geometrical convexity:

$$\varphi(\sqrt{xy}) \le \sqrt{\varphi(x)\varphi(y)}, \quad x, y \in J.$$

THEOREM 4. Let I and $J \subset I$ be intervals. Suppose that $f, g: I \to \mathbb{R}$ are increasing and such that f + g is continuous and strictly increasing. A function $\varphi: J \to I$ is $A^{[f,g]}$ -affine, that is,

(15)
$$\varphi((f+g)^{-1}(f(x)+g(y))) = (f+g)^{-1}(f(\varphi(x))+g(\varphi(y))), \quad x, y \in J,$$

if, and only if, there is an additive function $\alpha : \mathbb{R} \to \mathbb{R}$ and $b, c \in \mathbb{R}$ such that
$$\varphi = (f+g)^{-1} \circ [\alpha \circ (f+g) + c]$$

and

 $f\circ\varphi=\alpha\circ f-b, \quad g\circ\varphi=\alpha\circ g+b+c.$

Proof. Assume that $\varphi: J \to I$ is $A^{[f,g]}$ -affine. From (15) we get

$$(f+g) \circ \varphi \big((f+g)^{-1} (f(x) + g(y)) \big) = f(\varphi(x)) + g(\varphi(y)), \quad x, y \in J,$$

Applying Lemma 1 with $h := (f+g) \circ \varphi \circ (f+g)^{-1}$, $\beta := f$, $\delta := g$, $\gamma := f \circ \varphi$ and $\eta := g \circ \varphi$, we obtain $(f+g) \circ \varphi \circ (f+g)^{-1} = \alpha + c$ for some additive function $\alpha : \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$, whence

$$\varphi = (f+g)^{-1} \circ [\alpha \circ (f+g) + c].$$

From the "moreover" part of Lemma 1 we get

$$f \circ \varphi = \alpha \circ f - b, \quad g \circ \varphi = \alpha \circ g + b + c$$

for some $b \in \mathbb{R}$. The converse implication is easy to verify.

Hence, by induction, we obtain

THEOREM 5. Let I and $J \subset I$ be intervals. Suppose that f_1, \ldots, f_k : $I \to \mathbb{R}, k \geq 2$, are increasing and $f_1 + \cdots + f_k$ is continuous and strictly increasing. A function $\varphi: J \to I$ is $A^{[f_1,\ldots,f_k]}$ -affine if, and only if, there is an additive function $\alpha: \mathbb{R} \to \mathbb{R}$ and $b_1, \ldots, b_k, c \in \mathbb{R}$ such that

$$\varphi = \left(\sum_{j=1}^{k} f_{j}\right)^{-1} \circ \left[\alpha \circ \left(\sum_{j=1}^{k} f_{j}\right)^{-1} + c\right],$$

$$f_{j} \circ \varphi = \alpha \circ f_{j} + b_{j}, \quad j = 1, \dots, k,$$

$$\sum_{j=1}^{k} b_{j} = c.$$

5. Comparability of generalized weighted quasi-arithmetic means

REMARK 3. Let $I \subset \mathbb{R}$ be an interval and $k \in \mathbb{N}$, $k \geq 2$. Assume that $f_j, g_j : I \to \mathbb{R}$, $j = 1, \ldots, k$, are continuous, increasing and such that the functions $f := f_1 + \cdots + f_k$ and $g := g_1 + \cdots + g_k$ are strictly increasing. If moreover f_1, \ldots, f_k are strictly increasing, then

$$A^{[f_1,...,f_k]} \le A^{[g_1,...,g_k]}$$

if, and only if,

(16)
$$g \circ f^{-1}\left(\sum_{j=1}^{k} u_j\right) \le \sum_{j=1}^{k} g_j \circ f_j^{-1}(u_j), \quad u_j \in f_j(I), \ j = 1, \dots, k$$

EXAMPLE 1. Let $\varphi, \psi : I \to \mathbb{R}$ be continuous and strictly increasing. Taking in this remark $f_j = \varphi$, $g_j = \psi$ for $j = 1, \ldots, k$, we find that $A^{[\varphi]} \leq A^{[\psi]}$, that is,

$$\varphi^{-1}\left(\frac{\varphi(x_1) + \dots + \varphi(x_k)}{n}\right) \le \psi^{-1}\left(\frac{\psi(x_1) + \dots + \psi(x_k)}{n}\right), \quad x_1, \dots, x_k \in I,$$

if, and only if,

$$\psi \circ \varphi^{-1}\left(\frac{u_1 + \dots + u_k}{k}\right) \le \frac{\psi \circ \varphi^{-1}(u_1) + \dots + \psi \circ \varphi^{-1}(u_k)}{k},$$
$$u_1, \dots, u_k \in \varphi(I).$$

Similarly, taking $f_j = t_j \varphi$, $g_j = t_j \psi$, $t_j > 0$ for $j = 1, ..., k, t_1 + \cdots + t_k = 1$, we infer that

$$\varphi^{-1}\left(\sum_{j=1}^{k} t_j \varphi(x_j)\right) \le \psi^{-1}\left(\sum_{j=1}^{k} t_j \psi(x_j)\right), \quad x_1, \dots, x_k \in I,$$

if, and only if, for all $u_1, \ldots, u_k \in \varphi(I)$,

$$\psi \circ \varphi^{-1}(t_1 u_1 + \dots + t_k u_k) \le t_1 \psi \circ \varphi^{-1}(u_1) + \dots + t_k \psi \circ \varphi^{-1}(u_k)$$

Thus inequality (16) is related to convexity.

6. Invariance of means and application in solving a functional equation

REMARK 4. Let $f_1, \ldots, f_k : I \to \mathbb{R}$ be continuous, increasing with $f := f_1 + \cdots + f_k$ strictly increasing. The quasi-arithmetic mean $A^{[f]}$,

$$A^{[f]}(x_1, \dots, x_k) = f^{-1}\left(\frac{1}{n}\sum_{i=1}^k f(x_i)\right), \quad x_1, \dots, x_k \in I,$$

is invariant with respect to the mean-type mapping $\mathbf{M} : I^k \to I^k$ defined by (17) $\mathbf{M} = (A^{[f_1, \dots, f_k]}, A^{[f_2, f_3, \dots, f_k, f_1]}, \dots, A^{[f_k, f_1, \dots, f_{k-1}]}),$

that is, $A^{[f]} \circ \mathbf{M} = A^{[f]}$.

Indeed, for all $x_1, \ldots, x_k \in I$, we have

$$nf(A^{[f]} \circ \mathbf{M}^{[f]}(x_1, \dots, x_k)) = \sum_{i=1}^k f(A^{[f_i, f_{i+1}, \dots, f_k, f_1, \dots, f_{k-i-1}]}(x_1, \dots, x_k))$$
$$= \sum_{i=1}^k (f_i(x_1) + f_{i+1}(x_2) + \dots + f_k(x_{i-1}) + f_1(x_i) + \dots + f_{k-i-1}(x_k))$$
$$= \sum_{i=1}^k \sum_{j=1}^k f_j(x_i) = \sum_{j=1}^k \sum_{i=1}^k f_j(x_i) = \sum_{j=1}^k (f_j(x_j) - f_j(x_j))$$

whence the invariance follows.

Theorem 2(iii) implies that if $\min(x_1, \ldots, x_k) < \max(x_1, \ldots, x_k)$, then $\max \mathbf{M}(x_1, \ldots, x_k) - \min \mathbf{M}(x_1, \ldots, x_k) < \max(x_1, \ldots, x_k) - \min(x_1, \ldots, x_k)$, for all $x_1, \ldots, x_k \in I$. Hence, applying [6, Theorem 1] (cf. also [5]) we obtain

COROLLARY 1. The sequence $(\mathbf{M}^n)_{n\in\mathbb{N}}$ of iterates of the mean-type mapping $\mathbf{M}: I^k \to I^k$ given by (17) converges uniformly on compact subsets of I^k to the mean-type mapping $\mathbf{K} = (K_1, \ldots, K_k)$ such that $K_1 = \cdots = K_k$ $= A^{[f]}$.

EXAMPLE 2. The functions $f_1, f_2 : (0, \infty) \to (0, \infty)$ given by $f_1(x) = e^x - x$, $f_2(x) = x$, are increasing, $f_1 + f_2 = \exp$ is strictly increasing, and we have

$$A^{[f_1,f_2]}(x,y) = \log(e^x - x + y), \qquad A^{[f_2,f_1]}(x,y) = \log(x + e^y - y), \qquad x, y > 0.$$

According to Remark 4, the quasi-arithmetic mean

$$A^{[f_1+f_2]}(x,y) = \log\left(\frac{e^x + e^y}{2}\right), \quad x, y > 0,$$

is invariant with respect to the mapping $(A^{[f_1,f_2]}, A^{[f_2,f_1]})$ and, in view of Corollary 1,

$$\lim_{n \to \infty} (A^{[f_1, f_2]}, A^{[f_2, f_1]})^n = (A^{[f_1 + f_2]}, A^{[f_1 + f_2]}) \quad \text{in } (0, \infty)^2.$$

Corollary 1 allows us to solve a functional equation. Namely, we have the following

THEOREM 6. Let $I \subset \mathbb{R}$ be an interval and $f_1, \ldots, f_k : I \to \mathbb{R}$ be continuous, increasing with $f := f_1 + \cdots + f_k$ strictly increasing. Assume that $F : I^k \to \mathbb{R}$ is continuous on the diagonal $\{(x_1, \ldots, x_k) : x_1 = \cdots = x_k \in I\}$. Then F satisfies the functional equation

(18)
$$F \circ (A^{[f_1, \dots, f_k]}, A^{[f_2, f_3, \dots, f_k, f_1]}, \dots, A^{[f_k, f_1, \dots, f_{k-1}]}) = F$$

if, and only if, $F = \varphi \circ A^{[f]}$ where $\varphi : I \to \mathbb{R}$ is an arbitrary continuous function.

Proof. Suppose that $F: I^k \to \mathbb{R}$ is continuous on the diagonal of I^k and satisfies (18), that is, $F \circ \mathbf{M} = F$, where \mathbf{M} is given by (17). By induction we get

$$F = F \circ \mathbf{M}^n, \quad n \in \mathbb{N}.$$

Letting $n \to \infty$, and making use of Corollary 1 and the continuity of F on the diagonal of I^k , we get

$$F(x_1, \dots, x_k) = F(A^{[f]}(x_1, \dots, x_k), A^{[f]}(x_1, \dots, x_k), \dots, A^{[f]}(x_1, \dots, x_k))$$

for all $(x_1, \ldots, x_k) \in I^k$. Hence, setting $\varphi(x) := F(x, \ldots, x)$ for $x \in I$, we obtain

$$F(x_1,\ldots,x_k) = \varphi(A^{[f]}(x_1,\ldots,x_k)), \quad x_1,\ldots,x_k \in I.$$

Since it is easy to verify that any function of this form satisfies (18), the proof is complete. \blacksquare

From Example 2, applying Theorem 6, we obtain

COROLLARY 2. A function $F : (0, \infty)^2 \to (0, \infty)$ that is continuous on the set $\{(x, x) : x > 0\}$ satisfies the functional equation

$$F(\log(e^x - x + y), \log(x + e^y - y)) = F(x, y), \quad x, y > 0,$$

if, and only if, $F(x,y) = \varphi(e^x + e^y)$ where $\varphi : (0,\infty) \to \mathbb{R}$ is an arbitrary continuous function.

7. A conjecture generalizing the Kolmogorov–Nagumo theorem. From Theorem 2(vii) & (vi) we obtain the following

COROLLARY 3. Let $I \subset \mathbb{R}$ be an interval and $f_j : I \to \mathbb{R}, j \in \mathbb{N}$, be a sequence of continuous and strictly increasing functions. Then $A^{[f_1, f_2, \dots]} : \bigcup_{k=1}^{\infty} I^k \to I$ given by

 $A^{[f_1, f_2, \dots]}(x_1, \dots, x_k) := A^{[f_1, \dots, f_k]}(x_1, \dots, x_k), \quad (x_1, \dots, x_k) \in I^k, \ k \in \mathbb{N},$ is an "associative" mean in $\bigcup_{k=1}^{\infty} I^k$, that is, for all $n, r, k_1, \dots, k_r \in \mathbb{N},$ $k_1 < \dots < k_r = n, \ and \ x_1, \dots, x_n \in I, \ we \ have$

(19)
$$M(x_1, \dots, x_n) = M\left(\underbrace{M_1, \dots, M_1}_{k_1 \text{ times}}, \underbrace{M_2, \dots, M_2}_{k_2-k_1 \text{ times}}, \dots, \underbrace{M_r, \dots, M_r}_{n-k_r-1 \text{ times}}\right)$$

where $M := A^{[f_1, f_2, \ldots]}$ and

$$M_i := A^{[f_{k_{i-1}+1},\dots,f_{k_i}]}(x_{k_{i-1}+1},\dots,x_{k_i}), \quad i = 1,\dots,r \quad (k_0 := 0)$$

Moreover, the mean $A^{[f_1,f_2,\ldots]}$ is symmetric if, and only if, there is a continuous and strictly increasing function $f: I \to \mathbb{R}$ such that $A^{[f_1,f_2,\ldots]}$ is the quasi-arithmetic mean $A^{[f,f,\ldots]}$ given by

$$A^{[f,f,...]}(x_1,...,x_k) := f^{-1}\left(\frac{f(x_1) + \dots + f(x_k)}{n}\right),$$

(x_1,...,x_k) \in I^k, k \in \mathbb{N}.

Recall that according to the celebrated result, obtained independently by Kolmogorov [3] and Nagumo [10], the quasi-arithmetic mean $A^{[f,...]}$: $\bigcup_{k=1}^{\infty} I^k \to I$ is the only continuous, strictly increasing, symmetric and "associative" mean.

This corollary shows that there are a lot of associative quasi-arithmetic means which are not symmetric.

Assume that $I \subset \mathbb{R}$ is an interval and $M : \bigcup_{k=1}^{\infty} I^k \to I$ is a mean that is continuous, strictly increasing (with respect to each variable) and such that for all $n, r, k_1, \ldots, k_r \in \mathbb{N}$, $k_1 < \cdots < k_r = n$, and $x_1, \ldots, x_n \in I$, equality (19) holds true. We conjecture that then there exists a sequence of continuous and strictly increasing functions $f_j : I \to \mathbb{R}$, $j \in \mathbb{N}$, such that $M = A^{[f_1, f_2, \ldots]}$.

Acknowledgments. I would like to thank the anonymous referee for constructive suggestions.

REFERENCES

 J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl. 31, Cambridge Univ. Press, Cambridge, 1989.

- [2] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, *Means and Their Inequalities*, Math. Appl. 31, Reidel, Dordrecht, 1988.
- [3] A. N. Kolmogorov, Sur la notion de la moyenne, Atti Accad. Naz. Lincei Rend. 12 (1930), 388–391.
- [4] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equations and Jensen Inequality, Uniwersytet Śląski–PWN, Warszawa– Kraków–Katowice, 1985.
- [5] J. Matkowski, Iterations of mean-type mappings and invariant means, Ann. Math. Siles. 13 (1999), 211–226.
- [6] J. Matkowski, Iterations of the mean-type mappings, in: ECIT' 08, A. N. Sharkovsky and I. M. Susko (eds.), Grazer Math. Ber. 354 (2009), 158–179.
- [7] J. Matkowski, Generalized weighted quasi-arithmetic means, Aequationes Math. 79 (2010), 203–212.
- [8] J. Matkowski, Generalized weighted arithmetic means, Chapter 36 in: Th. M. Rassias and J. Brzdęk (eds.), Functional Equations in Mathematical Analysis, Springer, New York, 2012, 563–582.
- J. Matkowski and P. Volkmann, A functional equation with two unknown functions, http://www.mathematik.uni-karlsruhe.de/~semlv, Seminar LV, No 30 (2008).
- [10] M. Nagumo, Uber eine Klasse von Mittelwerten, Japan. J. Math. 7 (1930), 71–79.

Janusz Matkowski

Faculty of Mathematics, Computer Sciences and Econometrics University of Zielona Góra Szafrana 4a 65-516 Zielona Góra, Poland E-mail: J.Matkowski@wmie.uz.zgora.pl

> Received 11 March 2013; revised 26 July 2013

(5898)