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GENERALIZED WEIGHTED QUASI-ARITHMETIC MEANS AND
THE KOLMOGOROV–NAGUMO THEOREM

BY

JANUSZ MATKOWSKI (Zielona Góra)

Abstract. A generalization of the weighted quasi-arithmetic mean generated by con-
tinuous and increasing (decreasing) functions f1, . . . , fk : I → R, k ≥ 2, denoted by
A[f1,...,fk], is considered. Some properties of A[f1,...,fk], including “associativity” assumed
in the Kolmogorov–Nagumo theorem, are shown. Convex and affine functions involving
this type of means are considered. Invariance of a quasi-arithmetic mean with respect to
a special mean-type mapping built of generalized means is applied in solving a functional
equation. For a sequence of continuous strictly increasing functions fj : I → R, j ∈ N, a
mean A[f1,f2,...] :

⋃∞
k=1 I

k → I is introduced and it is observed that, except symmetry,
it satisfies all conditions of the Kolmogorov–Nagumo theorem. A problem concerning a
generalization of this result is formulated.

1. Introduction. Supposing that a function f : I → R is continuous
and strictly monotonic in a real interval I and f1, . . . , fk : I → R, k ≥ 2, are
arbitrary functions, we show that a function M : Ik → R defined by

M(x1, . . . , xk) := f−1
( k∑
j=1

fj(xj)
)

is a mean if, and only if, f =
∑k

j=1 fj and, for each i ∈ {1, . . . , k}, the
function fi is continuous, monotonic, and of the same type of monotonicity
as f (Theorem 1, cf. also [7] where the case k = 2 is considered). The
function A[f1,...,fk] := M generalizes the weighted quasi-arithmetic mean (cf.
for instance [1], [2], [4]). We show, in particular, that A[f1,...,fk] is symmetric
iff it is quasi-arithmetic, and, for each i ∈ {1, . . . , k} and all x1, . . . , xk ∈ I,
we have

A[f1,...,fk](x1, . . . , xk) = A[f1,...,fk]
(
y, . . . , y︸ ︷︷ ︸
i times

, xi+1, . . . , xk

)
,
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where y = A[f1,...,fi](x1, . . . , xi); so the mean A[f1,...,fk] inherits the character-
istic “associativity” property of the classical quasi-arithmetic means (Theo-
rem 2). In Section 3, the equality A[g1,...,gk] = A[f1,...,fk] is examined. In
Section 4 we consider functions which are convex, concave or affine with re-
spect to the mean A[f1,...,fk]. Using the functional equation h(β(x) + δ(y)) =
γ(x) + η(y) (Lemma 1), we find the form of affine functions with respect
to A[f1,...,fk]. In Section 5 we remark that the question of comparability of
the means A[f1,...,fk] and A[g1,...,gk] leads to a convexity-type inequality. In
Section 6 we observe that the quasi-arithmetic mean A[f ],

A[f ](x1, . . . , xk) = f−1
(

1

n

k∑
i=1

f(xi)

)
, x1, . . . , xk ∈ I,

with f := f1 + · · ·+ fk, is invariant with respect to the mean-type mapping
M : Ik → Ik given by

M = (A[f1,...,fk], A[f2,f3,...,fk,f1], . . . , A[fk,f1,...,fk−1]),

and we apply this fact in solving a functional equation.
In connection with the above mentioned “associativity” property, in the

final Section 7, for a given sequence of continuous and strictly increasing
functions fj : I → R, j ∈ N, we define a mean A[f1,f2,...] :

⋃∞
k=1 I

k → I,
and observe that, except symmetry, it satisfies all the assumptions of the
celebrated theorem of Kolmogorov–Nagumo [3], [10] on a characterization of
quasi-arithmetic means (Corollary 3). Based on this, we formulate a conjec-
ture generalizing the Kolmogorov–Nagumo theorem.

2. Generalized quasi-arithmetic means, their properties, and
some lemmas. Let I ⊂ R be an arbitrary interval and k ∈ N, k ≥ 2.
A function M : Ik → R is called a k-variable mean in I if

min(x1, . . . , xk) ≤M(x1, . . . , xk) ≤ max(x1, . . . , xk), x1, . . . , xk ∈ I;

if, moreover, each of these two inequalities becomes an equality only in the
case when x1 = · · · = xk, the mean M is called strict.

Theorem 1. Let I ⊂ R be an interval, and k ∈ N, k ≥ 2. Suppose that
a function f : I → R is continuous and strictly monotonic, and f1, . . . , fk :
I → R are arbitrary functions. Then the function M : Ik → R,

(1) M(x1, . . . , xk) := f−1
( k∑
j=1

fj(xj)
)
,

is a mean if, and only if,

(2) f =
k∑
j=1

fj ,
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and, for each i ∈ {1, . . . , k}, the function fi is continuous, monotonic, and
of the same type of monotonicity as f ; moreover, for each i ∈ {1, . . . , k},

(3) M(x1, . . . , xk) := f−1
( k∑
j=1, j 6=i

fj(xj) + f(xi)−
k∑

j=1,j 6=i
fj(xi)

)
,

x1, . . . , xk ∈ I,
and

(4) M(x1, . . . , xk) :=
( k∑
j=1

fj

)−1( k∑
j=1

fj(xj)
)
, x1, . . . , xk ∈ I.

Proof. Since

(−f)−1
( k∑
j=1

(−fj)(xj)
)

= f−1
( k∑
j=1

fj(xj)
)
, x1, . . . , xk ∈ I,

we can assume, without any loss of generality, that f is strictly increasing.
Assume that M defined by (1) is a mean in I.
From (1), taking x1 = · · · = xk = x in the definition of a mean, we get

f−1
( k∑
j=1

fj(x)
)

= x, x ∈ I,

whence (2)–(4) hold true.
Fix i ∈ {1, . . . , k} and take arbitrary x, y ∈ I, x < y. Since M is a mean,

setting xj = x for j 6= i and xi = y in (3), we get

x ≤ f−1
( k∑
j=1, j 6=i

fj(x) + f(y)−
k∑

j=1, j 6=i
fj(y)

)
≤ y,

whence, as f is increasing,

(5) f(x) ≤
k∑

j=1, j 6=i
fj(x) + f(y)−

k∑
j=1, j 6=i

fj(y) ≤ f(y).

By (1), from the first of these inequalities, we get
k∑
j=1

fj(x) ≤
k∑

j=1, j 6=i
fj(x) +

k∑
j=1

fj(y)−
k∑

j=1, j 6=i
fj(y),

which reduces to the inequality

fi(x) ≤ fi(y).

This proves that, for each i ∈ {1, . . . , k}, the function fi is increasing. It
follows that at any t ∈ int I, the one-sided limits fi(t+) and fi(t−) exist.
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Letting y tend to x in (5), by the continuity of f , we obtain

f(x) =

k∑
j=1, j 6=i

fj(x) + f(x)−
k∑

j=1, j 6=i
fj(x+),

that is,

(6)
k∑

j=1, j 6=i
fj(x) =

k∑
j=1, j 6=i

fj(x+),

and this equality holds true for all x ∈ int I ∪ {inf I} if inf I ∈ I.
Similarly, letting x tend to y in (5), we get

(7)
k∑

j=1, j 6=i
fj(y) =

k∑
j=1, j 6=i

fj(y−)

for all y ∈ int I ∪ {sup I} if sup I ∈ I.
By the continuity of f we have f(t−) = f(t) = f(t+) for all t ∈ int I;

f(t+) = f(t) if t = inf I ∈ I, and f(t−) = f(t) if t = sup I ∈ I. Hence, for
t ∈ int I, we get

k∑
j=1, j 6=i

fj(t−) + fi(t−) =
k∑

j=1, j 6=i
fj(t) + fi(t) =

k∑
j=1, j 6=i

fj(t+) + fi(t+),

whence, by (6) and (7),

fi(t−) = fi(t) = fi(t+).

If t = inf I ∈ I then from the equality f(t+) = f(t) and (6) we get fi(t+) =
fi(t). If t = sup I ∈ I then from the equality f(t−) = f(t) and (7) we get
fi(t−) = fi(t). This proves that, for each i ∈ {1, . . . , k}, the function fi is
continuous in I.

To prove the converse implication, assume that f1, . . . , fk : I → R are
continuous, increasing, f : I → R is strictly increasing and such that (2)
holds true. Hence, for arbitrary x1, . . . , xk ∈ I, putting

x = min(x1, . . . , xk), y = max(x1, . . . , xk),

we have

(8) f(x) =

k∑
j=1

fj(x) ≤
k∑
j=1

fj(xj) ≤
k∑
j=1

fj(y) = f(y).

Since f is continuous, the number
∑k

j=1 fj(xj) belongs to the range of f ,
and so the function M in (1) is correctly defined.
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From (8) we obtain

x = f−1
( k∑
j=1

fj(x)
)
≤ f−1

( k∑
j=1

fj(xj)
)
≤ f−1

( k∑
j=1

fj(y)
)
≤ y,

that is, min(x1, . . . , xk) ≤ M(x1, . . . , xk) ≤ max(x1, . . . , xk). Thus M is a
mean. This completes the proof.

According to Theorem 1, given continuous strictly monotonic functions
f1, . . . , fk : I → R of the same kind of monotonicity, the function A[f1,...,fk] :
Ik → I,

(9) A[f1,...,fk](x1, . . . , xk) :=
( k∑
j=1

fj

)−1( k∑
j=1

fj(xj)
)
, x1, . . . , xk ∈ I,

is a mean, and will be referred to as a (generalized) weighted quasi-arithmetic
mean with generators f1, . . . , fk (cf. [7], also [9] and [8]).

Remark 1. Let ϕ : I → R be a continuous and strictly monotonic,
and fix w1, . . . , wk ∈ (0, 1) with w1 + · · · + wk = 1. Taking fj = wjϕ for
j = 1, . . . , k, we get

A[f1,...,fk](x1, . . . , xk) = ϕ−1
( k∑
j=1

wjϕ(xj)
)
,

that is, A[f1,...,fk] becomes a weighted quasi-arithmetic mean with generator
ϕ and weights w1, . . . , wk. This justifies why A[f1,...,fk] is called a generalized
weighted quasi-arithmetic mean [7].

Let us note some properties of the mean A[f1,...,fk].

Theorem 2. Let I ⊂ R be an interval and k ∈ N, k ≥ 2. Assume
that f1, . . . , fk : I → R are continuous, monotonic of the same type, and
f1 + · · ·+ fk is strictly monotonic. Then

(i) A[−f1,...,−fk] = A[f1,...,fk];
(ii) the mean A[f1,...,fk] is increasing with respect to each variable;
(iii) for all x1, . . . , xk ∈ I, if min(x1, . . . , xk) < max(x1, . . . , xk) then

either
min(x1, . . . , xk) < A[f1,...,fk](x1, . . . , xk)

or
A[f1,...,fk](x1, . . . , xk) < max(x1, . . . , xk);

(iv) A[f1,...,fk] is strictly increasing with respect to each variable if, and
only if, f1, . . . , fk are strictly monotonic;

(v) A[f1,...,fk] is a strict mean iff it is strictly increasing with respect to
each variable;
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(vi) A[f1,...,fk] is symmetric if, and only if, there is a function g : I → R
and cj ∈ R such that fj = g + cj for j = 1, . . . , k; in particular

A[f1,...,fk](x1, . . . , xk) = g−1
(

1

k

k∑
j=1

g(xj)

)
, x1, . . . , xk ∈ I,

i.e. A[f1,...,fk] coincides with the quasi-arithmetic mean A[g] gener-
ated by g;

(vii) A[f1,...,fk] has the following associativity-type property: for each i ∈
{1, . . . , k}, if the functions f1 + · · ·+fi, f2 + · · ·+fi+1, . . . , fk−i+1 +
· · ·+ fk are strictly monotonic, then for all x1, . . . , xk ∈ I,

A[f1,...,fk](x1, . . . , xk)

= A[f1,...,fk]
(
A[f1,...,fi](x1, . . . , xi), . . . , A

[f1,...,fi](x1, . . . , xi)︸ ︷︷ ︸
i times

, xi+1, . . . , xk

)
= A[f1,...,fk]

(
x1, A

[f2,...,fi+1](x2, . . . , xi+1), . . . , A
[f2,...,fi+1](x2, . . . , xi+1)︸ ︷︷ ︸

i times

, xi+2, . . . , xk

)
= · · · =

A[f1,...,fk]
(
x1, . . . , xk−i, A

[fk−i+1,...,fk](xk−i+1, . . . , xk), . . . , A
[fk−i+1,...,fk](xk−i+1, . . . , xk)︸ ︷︷ ︸

i times

)
.

Proof. Properties (i)–(iv) are easy to verify.
To prove (v) suppose that A[f1,...,fk] is strict. We may assume that

f1, . . . , fk are increasing. Choose arbitrarily i ∈ {1, . . . , k}, x, y ∈ I, x < y,
and put

xj = x for j ∈ {1, . . . , k} \ {i}, and xi = y.

Since A[f1,...,fk] is strict, we have

x = min(x1, . . . , xk) < A[f1,...,fk](x1, . . . , xk).

Hence, making use of (9) and the strict monotonicity of
∑k

j=1 fj , we get( k∑
j=1

fj

)
(x) <

k∑
j=1

fj(xj),

that is, fi(x) < fi(y). Thus we have shown that, for every i ∈ {1, . . . , k},
the function fi is strictly increasing. Conversely, if f1, . . . , fk are strictly
monotonic then, by (iv), the mean A[f1,...,fk] is strict.

To prove (vi), assume that A[f1,...,fk] is symmetric. Hence, for i, j ∈
{1, . . . , k}, i < j, we have

A[f1,...,fk](x1, . . . , xi, . . . , xj , . . . , xk) = A[f1,...,fk](x1, . . . , xj , . . . , xi, . . . , xk),

whence, taking xi = x, xj = y, from the definition of A[f1,...,fk], we obtain

fi(x)− fj(x) = fi(y)− fj(y), x, y ∈ I,
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which implies that fi − fj is a constant function. Taking here j = 1 and
putting g := f1, c1 := 0, we get

fi(x) = g(x) + ci, x ∈ I, i = 1, . . . , k,

for some c2, . . . , ck ∈ R. Now from (9), setting c :=
∑k

j=1 cj , we have

A[f1,...,fk](x1, . . . , xk) =
( k∑
j=1

fj

)−1( k∑
j=1

fj(xj)
)

= (kg + c)−1
( k∑
j=1

g(xj) + c
)

= g−1
(

1

k

k∑
j=1

g(xj)

)
for all x1, . . . , xk ∈ I. The converse implication is easy to verify.

To show (vii), take i ∈ {1, . . . , k} and note that, by (4),

A[f1,...,fk](x1, . . . , xk) =
( k∑
j=1

fj

)−1( k∑
j=1

fj(xj)
)

=
( k∑
j=1

fj

)−1(( i∑
j=1

fj

)
◦
[( i∑

j=1

fj

)−1( i∑
j=1

fj(xj)
)]

+
k∑

j=i+1

fj(xj)
)

=
( k∑
j=1

fj

)−1( i∑
j=1

fj ◦
[( i∑

j=1

fj

)−1( i∑
j=1

fj(xj)
)]

+
k∑

j=i+1

fj(xj)
)

= A[f1,...,fk]
(
A[f1,...,fi](x1, . . . , xi), . . . , A

[f1,...,fi](x1, . . . , xi)︸ ︷︷ ︸
i times

, xi+1, . . . , xk

)
,

and similarly we get the remaining equalities.

In view of (i), we may assume from now on that f1, . . . , fk are increasing.

Lemma 1. Let I, J ⊂ R be intervals, β, γ : I → R nonconstant continu-
ous functions, and δ, η : J → R arbitrary functions. If h : β(I) + δ(J) → R
satisfies the functional equation

(10) h(β(x) + δ(y)) = γ(x) + η(y), x ∈ I, y ∈ J,
then there is a unique additive function α : R→ R and a unique c ∈ R such
that

h(u) = α(u) + c, u ∈ (β(I) + δ(J)).

Moreover there is b ∈ R such that

γ(x) = α(β(x))− b, x ∈ I; η(y) = α(δ(y)) + b+ c, y ∈ J.
Here β(I) + δ(J) := {u+ v : u ∈ β(I), v ∈ δ(J)}.

Proof. Without any loss of generality we can assume that there are x0 ∈
int I and y0 ∈ int J such that β(x0) = 0 and δ(y0) = 0. Indeed, in the
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opposite case we could fix any x0 ∈ int I and y0 ∈ int J, define β̄ : I → R
by β̄(x) := β(x) − β(x0), γ̄ : J → R by γ̄ : J(y) := δ(y) − δ(y0), h̄ :
(β̄(I) + δ̄(J)) + β(x0) + δ(y0)→ R and consider the functional equation

h̄(β̄(x) + δ̄(y)) = γ(x) + η(y), x ∈ I, y ∈ J,
that is equivalent to (10).

Setting y = y0 and then x = x0 in (10) we get

h(β(x)) = γ(x) + η(y0), x ∈ I; h(δ(y)) = γ(x0) + η(y), y ∈ J.
whence, from (10),

h(β(x) + δ(y)) = h(β(x)) + h(δ(y))− c, x ∈ I, y ∈ J,
where c := η(y0) + γ(x0). Setting H := h− c, we get

H(β(x) + δ(y)) = H(β(x)) +H(δ(y)), x ∈ I, y ∈ J,
whence

H(u+ v) = H(u) +H(v), u ∈ β(I), v ∈ δ(J),

so H is additive in a nontrivial interval containing 0. Clearly there exists
a unique additive function α : R→ R that is an extension of H. From the
definition of H we get h = α+ c. Setting h = α+ c in (10) and making use
of the additivity of α, we obtain

α(β(x))− γ(x) = η(y)− α(δ(y))− c, x ∈ I, y ∈ J,
whence there is b ∈ R such that α(β(x)) − γ(x) = b for all x ∈ I, and
η(y)− α(δ(y))− c = b for all y ∈ J . This completes the proof.

The following result is a reformulation of Theorem 2 in [7].

Lemma 2. Let I ⊂ R be an interval and let f, g, F,G : I → R be contin-
uous, increasing and such that f +F and g+G are strictly increasing. Then
A[g,G] = A[f,F ] if, and only if, there exist a, b, c ∈ R, a 6= 0, such that

(11) g(x) = af(x) + b, G(x) = aF (x) + c, x ∈ I.

3. Equality of generalized weighted quasi-arithmetic means

Theorem 3. Let I ⊂ R be an interval, k ∈ N, k ≥ 2, and let f1, . . . , fk,
g1, . . . , gk : I → R be continuous, increasing such that f1 + · · · + fk and
g1 + · · ·+ gk are strictly increasing. Then

(12) A[g1,...,gk] = A[f1,...,fk]

if, and only if, there exist a, b1, . . . , bk ∈ R, a 6= 0, such that

(13) gj(x) = afj(x) + bj , x ∈ I, j = 1, . . . , k.

Proof. Assume that (12) holds true for k = 2. Setting f := f1, F := f2,
g := g1, G := g2, we hence get A[g,G] = A[f,F ] and, in view of Lemma 2,
there are a, b, c ∈ R, a 6= 0, such that (11) holds true. Setting b1 := b, and
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b2 := c we obtain (13) for k = 2. Thus, in the case k = 2, equality (12)
implies (13).

Assume that (12) holds true for k ∈ N, k > 2. Choosing arbitrarily
i ∈ {1, . . . , k}, we can write (12) in the following form: for all x1, . . . , xk ∈ I,(

gi +
k∑

j=1, j 6=i
gj

)−1(
gi(xi) +

k∑
j=1, j 6=i

gj(xj)
)

=
(
fi +

k∑
j=1, j 6=i

fj

)−1(
fi(xi) +

k∑
j=1, j 6=i

fj(xj)
)
.

Taking xi = x, xj = y for all j ∈ {1, . . . , k} \ {i}, for x, y ∈ I, and setting

Fi :=
k∑

j=1, j 6=i
fj , Gi :=

k∑
j=1, j 6=i

gj ,

we hence get

(gi +Gi)
−1(gi(x) +Gi(y)) = (fi + Fi)

−1(fi(x) + Fi(y)), x, y ∈ I,

that is, A[gi,Gi] = A[fi,Fi]. Applying Lemma 2 we conclude that for each
i ∈ {1, . . . , k} there are ai, bi, ci, ∈ R , ai 6= 0, i ∈ {1, . . . , k}, such that

gi(x) = aifi(x) + bi,
k∑

j=1, j 6=i
gj(x) = ai

( k∑
j=1, j 6=i

fj(x)
)

+ ci, x ∈ I.

Adding these equalities we get
k∑
j=1

gj(x) = ai

( k∑
j=1

fj(x)
)

+ bi + ci, x ∈ I.

It follows that ai does not depend on i ∈ {1, . . . , k}. Thus, setting a := a1,
we obtain

gi(x) = afi(x) + bi, x ∈ I, i = 1, . . . , k.

Since the converse implication is easy to verify, the proof is complete.

4. Convexity and affinity with respect to generalized weighted
quasi-arithmetic means

Definition 1. Let f1, . . . , fk : I → R, k ≥ 2, be continuous, of the
same type of monotonicity and such that

∑k
j=1 fj is strictly monotonic in

the interval I. Let J be a subinterval of I. We say that a function ϕ : J → I
is A[f1,...,fk]-convex if

ϕ
(
A[f1,...,fk](x1, . . . , xk)

)
≤ A[f1,...,fk](ϕ(x1), . . . , ϕ(xk)), x1, . . . , xk ∈ J ;
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A[f1,...,fk]-concave if the converse inequality is satisfied; and A[f1,...,fk]-affine
if the equality is fulfilled.

For k = 2, setting here f = f1, g = f2, and making use of (9), we see
that the A[f,g]-convexity of ϕ reduces to the inequality

(14) ϕ
(
(f+g)−1(f(x)+g(y))

)
≤ (f+g)−1

(
f(ϕ(x))+g(ϕ(y))

)
, x, y ∈ J,

(the A[f,g]-concavity, to the converse inequality, and A[f,g]-affinity to equal-
ity).

Remark 2. Let I = R, J ⊂ R , and t ∈ (0, 1). Taking f(x) = tx,
g(x) = (1− t)x for x ∈ R, in (14) we get

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y), x, y ∈ J,
so A[f,g]-convexity generalizes the classical t-convexity of ϕ : J → R. In
particular, for t = 1/2 we get Jensen convexity.

Taking J ⊂ (0,∞), f(x) = t log x, g(x) = (1− t) log x for x > 0 in (14)
we get

ϕ(xty1−t) ≤ [ϕ(x)]t[ϕ(y)]1−t, x, y ∈ J,
so A[f,g]-convexity generalizes the geometrical t-convexity of ϕ : J → (0,∞).
For t = 1/2 we get Jensen geometrical convexity:

ϕ(
√
xy) ≤

√
ϕ(x)ϕ(y), x, y ∈ J.

Theorem 4. Let I and J ⊂ I be intervals. Suppose that f, g : I → R
are increasing and such that f + g is continuous and strictly increasing.
A function ϕ : J → I is A[f,g]-affine, that is,

(15) ϕ
(
(f+g)−1(f(x)+g(y))

)
= (f+g)−1

(
f(ϕ(x))+g(ϕ(y))

)
, x, y ∈ J,

if, and only if, there is an additive function α : R→R and b, c ∈ R such that

ϕ = (f + g)−1 ◦ [α ◦ (f + g) + c]

and
f ◦ ϕ = α ◦ f − b, g ◦ ϕ = α ◦ g + b+ c.

Proof. Assume that ϕ : J → I is A[f,g]-affine. From (15) we get

(f + g) ◦ ϕ
(
(f + g)−1(f(x) + g(y))

)
= f(ϕ(x)) + g(ϕ(y)), x, y ∈ J,

Applying Lemma 1 with h := (f+g)◦ϕ◦(f+g)−1, β := f , δ := g, γ := f ◦ϕ
and η := g ◦ ϕ, we obtain (f + g) ◦ ϕ ◦ (f + g)−1 = α + c for some additive
function α : R→ R and c ∈ R, whence

ϕ = (f + g)−1 ◦ [α ◦ (f + g) + c].

From the “moreover” part of Lemma 1 we get

f ◦ ϕ = α ◦ f − b, g ◦ ϕ = α ◦ g + b+ c

for some b ∈ R. The converse implication is easy to verify.
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Hence, by induction, we obtain

Theorem 5. Let I and J ⊂ I be intervals. Suppose that f1, . . . , fk :
I → R, k ≥ 2, are increasing and f1 + · · · + fk is continuous and strictly
increasing. A function ϕ : J → I is A[f1,...,fk]-affine if, and only if, there is
an additive function α : R→ R and b1, . . . , bk, c ∈ R such that

ϕ =
( k∑
j=1

fj

)−1
◦
[
α ◦

( k∑
j=1

fj

)−1
+ c
]
,

fj ◦ ϕ = α ◦ fj + bj , j = 1, . . . , k,

k∑
j=1

bj = c.

5. Comparability of generalized weighted
quasi-arithmetic means

Remark 3. Let I ⊂ R be an interval and k ∈ N, k ≥ 2. Assume that
fj , gj : I → R, j = 1, . . . , k, are continuous, increasing and such that the
functions f := f1 + · · ·+ fk and g := g1 + · · ·+ gk are strictly increasing. If
moreover f1, . . . , fk are strictly increasing, then

A[f1,...,fk] ≤ A[g1,...,gk]

if, and only if,

(16) g ◦ f−1
( k∑
j=1

uj

)
≤

k∑
j=1

gj ◦ f−1j (uj), uj ∈ fj(I), j = 1, . . . , k.

Example 1. Let ϕ,ψ : I → R be continuous and strictly increasing.
Taking in this remark fj = ϕ, gj = ψ for j = 1, . . . , k, we find that
A[ϕ] ≤ A[ψ], that is,

ϕ−1
(
ϕ(x1) + · · ·+ ϕ(xk)

n

)
≤ ψ−1

(
ψ(x1) + · · ·+ ψ(xk)

n

)
, x1, . . . , xk ∈ I,

if, and only if,

ψ ◦ ϕ−1
(
u1 + · · ·+ uk

k

)
≤ ψ ◦ ϕ−1(u1) + · · ·+ ψ ◦ ϕ−1(uk)

k
,

u1, . . . , uk ∈ ϕ(I).

Similarly, taking fj = tjϕ, gj = tjψ, tj > 0 for j = 1, . . . , k, t1 + · · ·+ tk = 1,
we infer that

ϕ−1
( k∑
j=1

tjϕ(xj)
)
≤ ψ−1

( k∑
j=1

tjψ(xj)
)
, x1, . . . , xk ∈ I,
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if, and only if, for all u1, . . . , uk ∈ ϕ(I),

ψ ◦ ϕ−1(t1u1 + · · ·+ tkuk) ≤ t1ψ ◦ ϕ−1(u1) + · · ·+ tkψ ◦ ϕ−1(uk).
Thus inequality (16) is related to convexity.

6. Invariance of means and application in solving a functional
equation

Remark 4. Let f1, . . . , fk : I → R be continuous, increasing with f :=
f1 + · · ·+ fk strictly increasing. The quasi-arithmetic mean A[f ],

A[f ](x1, . . . , xk) = f−1
(

1

n

k∑
i=1

f(xi)

)
, x1, . . . , xk ∈ I,

is invariant with respect to the mean-type mapping M : Ik → Ik defined by

(17) M = (A[f1,...,fk], A[f2,f3,...,fk,f1], . . . , A[fk,f1,...,fk−1]),

that is, A[f ] ◦M = A[f ].

Indeed, for all x1, . . . , xk ∈ I, we have

nf
(
A[f ] ◦M[f ](x1, . . . , xk)

)
=

k∑
i=1

f
(
A[fi,fi+1,...,fk,f1,...,fk−i−1](x1, . . . , xk)

)
=

k∑
i=1

(fi(x1) + fi+1(x2) + · · ·+ fk(xi−1) + f1(xi) + · · ·+ fk−i−1(xk))

=
k∑
i=1

k∑
j=1

fj(xi) =
k∑
j=1

k∑
i=1

fj(xi) =
k∑
j=1

( k∑
i=1

fj

)
(xi) =

k∑
j=1

f(xi),

whence the invariance follows.

Theorem 2(iii) implies that if min(x1, . . . , xk) < max(x1, . . . , xk), then

maxM(x1, . . . , xk)−minM(x1, . . . , xk)<max(x1, . . . , xk)−min(x1, . . . , xk),

for all x1, . . . , xk ∈ I. Hence, applying [6, Theorem 1] (cf. also [5]) we obtain

Corollary 1. The sequence (Mn)n∈N of iterates of the mean-type map-
ping M : Ik → Ik given by (17) converges uniformly on compact subsets of
Ik to the mean-type mapping K = (K1, . . . ,Kk) such that K1 = · · · = Kk

= A[f ].

Example 2. The functions f1, f2 : (0,∞) → (0,∞) given by f1(x) =
ex−x, f2(x) = x, are increasing, f1 + f2 = exp is strictly increasing, and we
have

A[f1,f2](x, y) = log(ex−x+ y), A[f2,f1](x, y) = log(x+ ey− y), x, y > 0.
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According to Remark 4, the quasi-arithmetic mean

A[f1+f2](x, y) = log

(
ex + ey

2

)
, x, y > 0,

is invariant with respect to the mapping (A[f1,f2], A[f2,f1]) and, in view of
Corollary 1,

lim
n→∞

(A[f1,f2], A[f2,f1])n = (A[f1+f2], A[f1+f2]) in (0,∞)2.

Corollary 1 allows us to solve a functional equation. Namely, we have the
following

Theorem 6. Let I ⊂ R be an interval and f1, . . . , fk : I → R be con-
tinuous, increasing with f := f1 + · · · + fk strictly increasing. Assume that
F : Ik → R is continuous on the diagonal {(x1, . . . , xk) : x1 = · · · = xk ∈ I}.
Then F satisfies the functional equation

(18) F ◦ (A[f1,...,fk], A[f2,f3,...,fk,f1], . . . , A[fk,f1,...,fk−1]) = F

if, and only if, F = ϕ ◦ A[f ] where ϕ : I → R is an arbitrary continuous
function.

Proof. Suppose that F : Ik → R is continuous on the diagonal of Ik and
satisfies (18), that is, F ◦M = F, where M is given by (17). By induction
we get

F = F ◦Mn, n ∈ N.

Letting n → ∞, and making use of Corollary 1 and the continuity of F on
the diagonal of Ik, we get

F (x1, . . . , xk) = F
(
A[f ](x1, . . . , xk), A

[f ](x1, . . . , xk), . . . , A
[f ](x1, . . . , xk)

)
for all (x1, . . . , xk) ∈ Ik. Hence, setting ϕ(x) := F (x, . . . , x) for x ∈ I, we
obtain

F (x1, . . . , xk) = ϕ(A[f ](x1, . . . , xk)), x1, . . . , xk ∈ I.

Since it is easy to verify that any function of this form satisfies (18), the
proof is complete.

From Example 2, applying Theorem 6, we obtain

Corollary 2. A function F : (0,∞)2 → (0,∞) that is continuous on
the set {(x, x) : x > 0} satisfies the functional equation

F
(
log(ex − x+ y), log(x+ ey − y)

)
= F (x, y), x, y > 0,

if, and only if, F (x, y) = ϕ(ex + ey) where ϕ : (0,∞) → R is an arbitrary
continuous function.
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7. A conjecture generalizing the Kolmogorov–Nagumo theorem.
From Theorem 2(vii) & (vi) we obtain the following

Corollary 3. Let I ⊂ R be an interval and fj : I → R, j ∈ N, be
a sequence of continuous and strictly increasing functions. Then A[f1,f2,...] :⋃∞
k=1 I

k → I given by

A[f1,f2,...](x1, . . . , xk) := A[f1,...,fk](x1, . . . , xk), (x1, . . . , xk) ∈ Ik, k ∈ N,
is an “associative” mean in

⋃∞
k=1 I

k, that is, for all n, r, k1, . . . , kr ∈ N,
k1 < · · · < kr = n, and x1, . . . , xn ∈ I, we have

(19) M(x1, . . . , xn) = M
(
M1, . . . ,M1︸ ︷︷ ︸

k1 times

,M2, . . . ,M2︸ ︷︷ ︸
k2−k1 times

, . . . ,Mr, . . . ,Mr︸ ︷︷ ︸
n−kr−1 times

)
,

where M := A[f1,f2,...] and

Mi := A[fki−1+1,...,fki ](xki−1+1, . . . , xki), i = 1, . . . , r (k0 := 0).

Moreover, the mean A[f1,f2,...] is symmetric if, and only if, there is a contin-
uous and strictly increasing function f : I → R such that A[f1,f2,...] is the
quasi-arithmetic mean A[f,f,...] given by

A[f,f,...](x1, . . . , xk) := f−1
(
f(x1) + · · ·+ f(xk)

n

)
,

(x1, . . . , xk) ∈ Ik, k ∈ N.
Recall that according to the celebrated result, obtained independently

by Kolmogorov [3] and Nagumo [10], the quasi-arithmetic mean A[f,...] :⋃∞
k=1 I

k → I is the only continuous, strictly increasing, symmetric and “as-
sociative” mean.

This corollary shows that there are a lot of associative quasi-arithmetic
means which are not symmetric.

Assume that I ⊂ R is an interval and M :
⋃∞
k=1 I

k → I is a mean that
is continuous, strictly increasing (with respect to each variable) and such
that for all n, r, k1, . . . , kr ∈ N, k1 < · · · < kr = n, and x1, . . . , xn ∈ I,
equality (19) holds true. We conjecture that then there exists a sequence of
continuous and strictly increasing functions fj : I → R, j ∈ N, such that
M = A[f1,f2,...].
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