GENERALIZED WEIGHTED QUASI-ARITHMETIC MEANS AND THE KOLMOGOROV-NAGUMO THEOREM

BY

JANUSZ MATKOWSKI (Zielona Góra)

Abstract

A generalization of the weighted quasi-arithmetic mean generated by continuous and increasing (decreasing) functions $f_{1}, \ldots, f_{k}: I \rightarrow \mathbb{R}, k \geq 2$, denoted by $A^{\left[f_{1}, \ldots, f_{k}\right]}$, is considered. Some properties of $A^{\left[f_{1}, \ldots, f_{k}\right]}$, including "associativity" assumed in the Kolmogorov-Nagumo theorem, are shown. Convex and affine functions involving this type of means are considered. Invariance of a quasi-arithmetic mean with respect to a special mean-type mapping built of generalized means is applied in solving a functional equation. For a sequence of continuous strictly increasing functions $f_{j}: I \rightarrow \mathbb{R}, j \in \mathbb{N}$, a mean $A^{\left[f_{1}, f_{2}, \ldots\right]}: \bigcup_{k=1}^{\infty} I^{k} \rightarrow I$ is introduced and it is observed that, except symmetry, it satisfies all conditions of the Kolmogorov-Nagumo theorem. A problem concerning a generalization of this result is formulated.

1. Introduction. Supposing that a function $f: I \rightarrow \mathbb{R}$ is continuous and strictly monotonic in a real interval I and $f_{1}, \ldots, f_{k}: I \rightarrow \mathbb{R}, k \geq 2$, are arbitrary functions, we show that a function $M: I^{k} \rightarrow \mathbb{R}$ defined by

$$
M\left(x_{1}, \ldots, x_{k}\right):=f^{-1}\left(\sum_{j=1}^{k} f_{j}\left(x_{j}\right)\right)
$$

is a mean if, and only if, $f=\sum_{j=1}^{k} f_{j}$ and, for each $i \in\{1, \ldots, k\}$, the function f_{i} is continuous, monotonic, and of the same type of monotonicity as f (Theorem 1, cf. also [7] where the case $k=2$ is considered). The function $A^{\left[f_{1}, \ldots, f_{k}\right]}:=M$ generalizes the weighted quasi-arithmetic mean (cf. for instance [1], [2], [4]). We show, in particular, that $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is symmetric iff it is quasi-arithmetic, and, for each $i \in\{1, \ldots, k\}$ and all $x_{1}, \ldots, x_{k} \in I$, we have

$$
A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)=A^{\left[f_{1}, \ldots, f_{k}\right]}(\underbrace{y, \ldots, y}_{i \text { times }}, x_{i+1}, \ldots, x_{k}),
$$

[^0]where $y=A^{\left[f_{1}, \ldots, f_{i}\right]}\left(x_{1}, \ldots, x_{i}\right)$; so the mean $A^{\left[f_{1}, \ldots, f_{k}\right]}$ inherits the characteristic "associativity" property of the classical quasi-arithmetic means (Theorem 2). In Section 3, the equality $A^{\left[g_{1}, \ldots, g_{k}\right]}=A^{\left[f_{1}, \ldots, f_{k}\right]}$ is examined. In Section 4 we consider functions which are convex, concave or affine with respect to the mean $A^{\left[f_{1}, \ldots, f_{k}\right]}$. Using the functional equation $h(\beta(x)+\delta(y))=$ $\gamma(x)+\eta(y)$ (Lemma 1), we find the form of affine functions with respect to $A^{\left[f_{1}, \ldots, f_{k}\right]}$. In Section 5 we remark that the question of comparability of the means $A^{\left[f_{1}, \ldots, f_{k}\right]}$ and $A^{\left[g_{1}, \ldots, g_{k}\right]}$ leads to a convexity-type inequality. In Section 6 we observe that the quasi-arithmetic mean $A^{[f]}$,
$$
A^{[f]}\left(x_{1}, \ldots, x_{k}\right)=f^{-1}\left(\frac{1}{n} \sum_{i=1}^{k} f\left(x_{i}\right)\right), \quad x_{1}, \ldots, x_{k} \in I,
$$
with $f:=f_{1}+\cdots+f_{k}$, is invariant with respect to the mean-type mapping $\mathbf{M}: I^{k} \rightarrow I^{k}$ given by
$$
\mathbf{M}=\left(A^{\left[f_{1}, \ldots, f_{k}\right]}, A^{\left[f_{2}, f_{3}, \ldots, f_{k}, f_{1}\right]}, \ldots, A^{\left[f_{k}, f_{1}, \ldots, f_{k-1}\right]}\right),
$$
and we apply this fact in solving a functional equation.
In connection with the above mentioned "associativity" property, in the final Section 7, for a given sequence of continuous and strictly increasing functions $f_{j}: I \rightarrow \mathbb{R}, j \in \mathbb{N}$, we define a mean $A^{\left[f_{1}, f_{2}, \ldots\right]}: \bigcup_{k=1}^{\infty} I^{k} \rightarrow I$, and observe that, except symmetry, it satisfies all the assumptions of the celebrated theorem of Kolmogorov-Nagumo [3, [10] on a characterization of quasi-arithmetic means (Corollary 3). Based on this, we formulate a conjecture generalizing the Kolmogorov-Nagumo theorem.
2. Generalized quasi-arithmetic means, their properties, and some lemmas. Let $I \subset \mathbb{R}$ be an arbitrary interval and $k \in \mathbb{N}, k \geq 2$. A function $M: I^{k} \rightarrow \mathbb{R}$ is called a k-variable mean in I if
$$
\min \left(x_{1}, \ldots, x_{k}\right) \leq M\left(x_{1}, \ldots, x_{k}\right) \leq \max \left(x_{1}, \ldots, x_{k}\right), \quad x_{1}, \ldots, x_{k} \in I
$$
if, moreover, each of these two inequalities becomes an equality only in the case when $x_{1}=\cdots=x_{k}$, the mean M is called strict.

Theorem 1. Let $I \subset \mathbb{R}$ be an interval, and $k \in \mathbb{N}, k \geq 2$. Suppose that a function $f: I \rightarrow \mathbb{R}$ is continuous and strictly monotonic, and f_{1}, \ldots, f_{k} : $I \rightarrow \mathbb{R}$ are arbitrary functions. Then the function $M: I^{k} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{k}\right):=f^{-1}\left(\sum_{j=1}^{k} f_{j}\left(x_{j}\right)\right), \tag{1}
\end{equation*}
$$

is a mean if, and only if,

$$
\begin{equation*}
f=\sum_{j=1}^{k} f_{j}, \tag{2}
\end{equation*}
$$

and, for each $i \in\{1, \ldots, k\}$, the function f_{i} is continuous, monotonic, and of the same type of monotonicity as f; moreover, for each $i \in\{1, \ldots, k\}$,

$$
\begin{align*}
& M\left(x_{1}, \ldots, x_{k}\right):=f^{-1}\left(\sum_{j=1, j \neq i}^{k} f_{j}\left(x_{j}\right)+f\left(x_{i}\right)-\sum_{j=1, j \neq i}^{k}\right.\left.f_{j}\left(x_{i}\right)\right) \tag{3}\\
& x_{1}, \ldots, x_{k} \in I
\end{align*}
$$

and

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{k}\right):=\left(\sum_{j=1}^{k} f_{j}\right)^{-1}\left(\sum_{j=1}^{k} f_{j}\left(x_{j}\right)\right), \quad x_{1}, \ldots, x_{k} \in I \tag{4}
\end{equation*}
$$

Proof. Since

$$
(-f)^{-1}\left(\sum_{j=1}^{k}\left(-f_{j}\right)\left(x_{j}\right)\right)=f^{-1}\left(\sum_{j=1}^{k} f_{j}\left(x_{j}\right)\right), \quad x_{1}, \ldots, x_{k} \in I,
$$

we can assume, without any loss of generality, that f is strictly increasing.
Assume that M defined by (1) is a mean in I.
From (1), taking $x_{1}=\cdots=x_{k}=x$ in the definition of a mean, we get

$$
f^{-1}\left(\sum_{j=1}^{k} f_{j}(x)\right)=x, \quad x \in I,
$$

whence (2)-(4) hold true.
Fix $i \in\{1, \ldots, k\}$ and take arbitrary $x, y \in I, x<y$. Since M is a mean, setting $x_{j}=x$ for $j \neq i$ and $x_{i}=y$ in (3), we get

$$
x \leq f^{-1}\left(\sum_{j=1, j \neq i}^{k} f_{j}(x)+f(y)-\sum_{j=1, j \neq i}^{k} f_{j}(y)\right) \leq y
$$

whence, as f is increasing,

$$
\begin{equation*}
f(x) \leq \sum_{j=1, j \neq i}^{k} f_{j}(x)+f(y)-\sum_{j=1, j \neq i}^{k} f_{j}(y) \leq f(y) . \tag{5}
\end{equation*}
$$

By (1), from the first of these inequalities, we get

$$
\sum_{j=1}^{k} f_{j}(x) \leq \sum_{j=1, j \neq i}^{k} f_{j}(x)+\sum_{j=1}^{k} f_{j}(y)-\sum_{j=1, j \neq i}^{k} f_{j}(y),
$$

which reduces to the inequality

$$
f_{i}(x) \leq f_{i}(y)
$$

This proves that, for each $i \in\{1, \ldots, k\}$, the function f_{i} is increasing. It follows that at any $t \in \operatorname{int} I$, the one-sided limits $f_{i}(t+)$ and $f_{i}(t-)$ exist.

Letting y tend to x in (5), by the continuity of f, we obtain

$$
f(x)=\sum_{j=1, j \neq i}^{k} f_{j}(x)+f(x)-\sum_{j=1, j \neq i}^{k} f_{j}(x+)
$$

that is,

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{k} f_{j}(x)=\sum_{j=1, j \neq i}^{k} f_{j}(x+) \tag{6}
\end{equation*}
$$

and this equality holds true for all $x \in \operatorname{int} I \cup\{\inf I\}$ if $\inf I \in I$.
Similarly, letting x tend to y in (5), we get

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{k} f_{j}(y)=\sum_{j=1, j \neq i}^{k} f_{j}(y-) \tag{7}
\end{equation*}
$$

for all $y \in \operatorname{int} I \cup\{\sup I\}$ if $\sup I \in I$.
By the continuity of f we have $f(t-)=f(t)=f(t+)$ for all $t \in \operatorname{int} I$; $f(t+)=f(t)$ if $t=\inf I \in I$, and $f(t-)=f(t)$ if $t=\sup I \in I$. Hence, for $t \in \operatorname{int} I$, we get

$$
\sum_{j=1, j \neq i}^{k} f_{j}(t-)+f_{i}(t-)=\sum_{j=1, j \neq i}^{k} f_{j}(t)+f_{i}(t)=\sum_{j=1, j \neq i}^{k} f_{j}(t+)+f_{i}(t+)
$$

whence, by (6) and (7),

$$
f_{i}(t-)=f_{i}(t)=f_{i}(t+)
$$

If $t=\inf I \in I$ then from the equality $f(t+)=f(t)$ and (6) we get $f_{i}(t+)=$ $f_{i}(t)$. If $t=\sup I \in I$ then from the equality $f(t-)=f(t)$ and (7) we get $f_{i}(t-)=f_{i}(t)$. This proves that, for each $i \in\{1, \ldots, k\}$, the function f_{i} is continuous in I.

To prove the converse implication, assume that $f_{1}, \ldots, f_{k}: I \rightarrow \mathbb{R}$ are continuous, increasing, $f: I \rightarrow \mathbb{R}$ is strictly increasing and such that (2) holds true. Hence, for arbitrary $x_{1}, \ldots, x_{k} \in I$, putting

$$
x=\min \left(x_{1}, \ldots, x_{k}\right), \quad y=\max \left(x_{1}, \ldots, x_{k}\right)
$$

we have

$$
\begin{equation*}
f(x)=\sum_{j=1}^{k} f_{j}(x) \leq \sum_{j=1}^{k} f_{j}\left(x_{j}\right) \leq \sum_{j=1}^{k} f_{j}(y)=f(y) \tag{8}
\end{equation*}
$$

Since f is continuous, the number $\sum_{j=1}^{k} f_{j}\left(x_{j}\right)$ belongs to the range of f, and so the function M in (1) is correctly defined.

From (8) we obtain

$$
x=f^{-1}\left(\sum_{j=1}^{k} f_{j}(x)\right) \leq f^{-1}\left(\sum_{j=1}^{k} f_{j}\left(x_{j}\right)\right) \leq f^{-1}\left(\sum_{j=1}^{k} f_{j}(y)\right) \leq y
$$

that is, $\min \left(x_{1}, \ldots, x_{k}\right) \leq M\left(x_{1}, \ldots, x_{k}\right) \leq \max \left(x_{1}, \ldots, x_{k}\right)$. Thus M is a mean. This completes the proof.

According to Theorem 1, given continuous strictly monotonic functions $f_{1}, \ldots, f_{k}: I \rightarrow \mathbb{R}$ of the same kind of monotonicity, the function $A^{\left[f_{1}, \ldots, f_{k}\right]}$: $I^{k} \rightarrow I$,

$$
\begin{equation*}
A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right):=\left(\sum_{j=1}^{k} f_{j}\right)^{-1}\left(\sum_{j=1}^{k} f_{j}\left(x_{j}\right)\right), \quad x_{1}, \ldots, x_{k} \in I \tag{9}
\end{equation*}
$$

is a mean, and will be referred to as a (generalized) weighted quasi-arithmetic mean with generators f_{1}, \ldots, f_{k} (cf. [7], also [9] and [8]).

REMARK 1. Let $\varphi: I \rightarrow \mathbb{R}$ be a continuous and strictly monotonic, and fix $w_{1}, \ldots, w_{k} \in(0,1)$ with $w_{1}+\cdots+w_{k}=1$. Taking $f_{j}=w_{j} \varphi$ for $j=1, \ldots, k$, we get

$$
A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)=\varphi^{-1}\left(\sum_{j=1}^{k} w_{j} \varphi\left(x_{j}\right)\right)
$$

that is, $A^{\left[f_{1}, \ldots, f_{k}\right]}$ becomes a weighted quasi-arithmetic mean with generator φ and weights w_{1}, \ldots, w_{k}. This justifies why $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is called a generalized weighted quasi-arithmetic mean [7].

Let us note some properties of the mean $A^{\left[f_{1}, \ldots, f_{k}\right]}$.
Theorem 2. Let $I \subset \mathbb{R}$ be an interval and $k \in \mathbb{N}, k \geq 2$. Assume that $f_{1}, \ldots, f_{k}: I \rightarrow \mathbb{R}$ are continuous, monotonic of the same type, and $f_{1}+\cdots+f_{k}$ is strictly monotonic. Then
(i) $A^{\left[-f_{1}, \ldots,-f_{k}\right]}=A^{\left[f_{1}, \ldots, f_{k}\right]}$;
(ii) the mean $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is increasing with respect to each variable;
(iii) for all $x_{1}, \ldots, x_{k} \in I$, if $\min \left(x_{1}, \ldots, x_{k}\right)<\max \left(x_{1}, \ldots, x_{k}\right)$ then either

$$
\min \left(x_{1}, \ldots, x_{k}\right)<A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)
$$

or

$$
A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)<\max \left(x_{1}, \ldots, x_{k}\right)
$$

(iv) $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is strictly increasing with respect to each variable if, and only if, f_{1}, \ldots, f_{k} are strictly monotonic;
(v) $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is a strict mean iff it is strictly increasing with respect to each variable;
(vi) $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is symmetric if, and only if, there is a function $g: I \rightarrow \mathbb{R}$ and $c_{j} \in \mathbb{R}$ such that $f_{j}=g+c_{j}$ for $j=1, \ldots, k$; in particular

$$
A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)=g^{-1}\left(\frac{1}{k} \sum_{j=1}^{k} g\left(x_{j}\right)\right), \quad x_{1}, \ldots, x_{k} \in I
$$

i.e. $A^{\left[f_{1}, \ldots, f_{k}\right]}$ coincides with the quasi-arithmetic mean $A^{[g]}$ generated by g;
(vii) $A^{\left[f_{1}, \ldots, f_{k}\right]}$ has the following associativity-type property: for each $i \in$ $\{1, \ldots, k\}$, if the functions $f_{1}+\cdots+f_{i}, f_{2}+\cdots+f_{i+1}, \ldots, f_{k-i+1}+$ $\cdots+f_{k}$ are strictly monotonic, then for all $x_{1}, \ldots, x_{k} \in I$,

$$
A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)
$$

$$
=A^{\left[f_{1}, \ldots, f_{k}\right]}(\underbrace{A^{\left[f_{1}, \ldots, f_{i}\right]}\left(x_{1}, \ldots, x_{i}\right), \ldots, A^{\left[f_{1}, \ldots, f_{i}\right]}\left(x_{1}, \ldots, x_{i}\right)}_{i \text { times }}, x_{i+1}, \ldots, x_{k})
$$

$$
=A^{\left[f_{1}, \ldots, f_{k}\right]}(x_{1}, \underbrace{A^{\left[f_{2}, \ldots, f_{i+1}\right]}\left(x_{2}, \ldots, x_{i+1}\right), \ldots, A^{\left[f_{2}, \ldots, f_{i+1}\right]}\left(x_{2}, \ldots, x_{i+1}\right)}_{\text {times }}, x_{i+2}, \ldots, x_{k})
$$

$$
=\cdots=
$$

$$
A^{\left[f_{1}, \ldots, f_{k}\right]}(x_{1}, \ldots, x_{k-i}, \underbrace{A^{\left[f_{k-i+1}, \ldots, f_{k}\right]}\left(x_{k-i+1}, \ldots, x_{k}\right), \ldots, A^{\left[f_{k-i+1}, \ldots, f_{k}\right]}\left(x_{k-i+1}, \ldots, x_{k}\right)}_{\text {itimes }}) .
$$

Proof. Properties (i)-(iv) are easy to verify.
To prove (v) suppose that $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is strict. We may assume that f_{1}, \ldots, f_{k} are increasing. Choose arbitrarily $i \in\{1, \ldots, k\}, x, y \in I, x<y$, and put

$$
x_{j}=x \quad \text { for } j \in\{1, \ldots, k\} \backslash\{i\}, \quad \text { and } \quad x_{i}=y
$$

Since $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is strict, we have

$$
x=\min \left(x_{1}, \ldots, x_{k}\right)<A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)
$$

Hence, making use of (9) and the strict monotonicity of $\sum_{j=1}^{k} f_{j}$, we get

$$
\left(\sum_{j=1}^{k} f_{j}\right)(x)<\sum_{j=1}^{k} f_{j}\left(x_{j}\right)
$$

that is, $f_{i}(x)<f_{i}(y)$. Thus we have shown that, for every $i \in\{1, \ldots, k\}$, the function f_{i} is strictly increasing. Conversely, if f_{1}, \ldots, f_{k} are strictly monotonic then, by (iv), the mean $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is strict.

To prove (vi), assume that $A^{\left[f_{1}, \ldots, f_{k}\right]}$ is symmetric. Hence, for $i, j \in$ $\{1, \ldots, k\}, i<j$, we have

$$
A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{k}\right)=A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{k}\right)
$$

whence, taking $x_{i}=x, x_{j}=y$, from the definition of $A^{\left[f_{1}, \ldots, f_{k}\right]}$, we obtain

$$
f_{i}(x)-f_{j}(x)=f_{i}(y)-f_{j}(y), \quad x, y \in I
$$

which implies that $f_{i}-f_{j}$ is a constant function. Taking here $j=1$ and putting $g:=f_{1}, c_{1}:=0$, we get

$$
f_{i}(x)=g(x)+c_{i}, \quad x \in I, i=1, \ldots, k,
$$

for some $c_{2}, \ldots, c_{k} \in \mathbb{R}$. Now from (9), setting $c:=\sum_{j=1}^{k} c_{j}$, we have

$$
\begin{aligned}
A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right) & =\left(\sum_{j=1}^{k} f_{j}\right)^{-1}\left(\sum_{j=1}^{k} f_{j}\left(x_{j}\right)\right) \\
& =(k g+c)^{-1}\left(\sum_{j=1}^{k} g\left(x_{j}\right)+c\right)=g^{-1}\left(\frac{1}{k} \sum_{j=1}^{k} g\left(x_{j}\right)\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{k} \in I$. The converse implication is easy to verify.
To show (vii), take $i \in\{1, \ldots, k\}$ and note that, by (4),

$$
\begin{aligned}
& A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)=\left(\sum_{j=1}^{k} f_{j}\right)^{-1}\left(\sum_{j=1}^{k} f_{j}\left(x_{j}\right)\right) \\
& \quad=\left(\sum_{j=1}^{k} f_{j}\right)^{-1}\left(\left(\sum_{j=1}^{i} f_{j}\right) \circ\left[\left(\sum_{j=1}^{i} f_{j}\right)^{-1}\left(\sum_{j=1}^{i} f_{j}\left(x_{j}\right)\right)\right]+\sum_{j=i+1}^{k} f_{j}\left(x_{j}\right)\right) \\
& \quad=\left(\sum_{j=1}^{k} f_{j}\right)^{-1}\left(\sum_{j=1}^{i} f_{j} \circ\left[\left(\sum_{j=1}^{i} f_{j}\right)^{-1}\left(\sum_{j=1}^{i} f_{j}\left(x_{j}\right)\right)\right]+\sum_{j=i+1}^{k} f_{j}\left(x_{j}\right)\right) \\
& \quad=A^{\left[f_{1}, \ldots, f_{k}\right]}(\underbrace{A^{\left[f_{1}, \ldots, f_{i}\right]}\left(x_{1}, \ldots, x_{i}\right), \ldots, A^{\left[f_{1}, \ldots, f_{i}\right]}\left(x_{1}, \ldots, x_{i}\right)}_{i \text { times }}, x_{i+1}, \ldots, x_{k}),
\end{aligned}
$$

and similarly we get the remaining equalities.
In view of (i), we may assume from now on that f_{1}, \ldots, f_{k} are increasing.
Lemma 1. Let $I, J \subset \mathbb{R}$ be intervals, $\beta, \gamma: I \rightarrow \mathbb{R}$ nonconstant continuous functions, and $\delta, \eta: J \rightarrow \mathbb{R}$ arbitrary functions. If $h: \beta(I)+\delta(J) \rightarrow \mathbb{R}$ satisfies the functional equation

$$
\begin{equation*}
h(\beta(x)+\delta(y))=\gamma(x)+\eta(y), \quad x \in I, y \in J, \tag{10}
\end{equation*}
$$

then there is a unique additive function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ and a unique $c \in \mathbb{R}$ such that

$$
h(u)=\alpha(u)+c, \quad u \in(\beta(I)+\delta(J)) .
$$

Moreover there is $b \in \mathbb{R}$ such that

$$
\gamma(x)=\alpha(\beta(x))-b, \quad x \in I ; \quad \eta(y)=\alpha(\delta(y))+b+c, \quad y \in J .
$$

Here $\beta(I)+\delta(J):=\{u+v: u \in \beta(I), v \in \delta(J)\}$.
Proof. Without any loss of generality we can assume that there are $x_{0} \in$ $\operatorname{int} I$ and $y_{0} \in \operatorname{int} J$ such that $\beta\left(x_{0}\right)=0$ and $\delta\left(y_{0}\right)=0$. Indeed, in the
opposite case we could fix any $x_{0} \in \operatorname{int} I$ and $y_{0} \in \operatorname{int} J$, define $\bar{\beta}: I \rightarrow \mathbb{R}$ by $\bar{\beta}(x):=\beta(x)-\beta\left(x_{0}\right), \bar{\gamma}: J \rightarrow \mathbb{R}$ by $\bar{\gamma}: J(y):=\delta(y)-\delta\left(y_{0}\right), \bar{h}:$ $(\bar{\beta}(I)+\bar{\delta}(J))+\beta\left(x_{0}\right)+\delta\left(y_{0}\right) \rightarrow \mathbb{R}$ and consider the functional equation

$$
\bar{h}(\bar{\beta}(x)+\bar{\delta}(y))=\gamma(x)+\eta(y), \quad x \in I, y \in J,
$$

that is equivalent to (10).
Setting $y=y_{0}$ and then $x=x_{0}$ in (10) we get

$$
h(\beta(x))=\gamma(x)+\eta\left(y_{0}\right), \quad x \in I ; \quad h(\delta(y))=\gamma\left(x_{0}\right)+\eta(y), \quad y \in J .
$$

whence, from (10),

$$
h(\beta(x)+\delta(y))=h(\beta(x))+h(\delta(y))-c, \quad x \in I, y \in J,
$$

where $c:=\eta\left(y_{0}\right)+\gamma\left(x_{0}\right)$. Setting $H:=h-c$, we get

$$
H(\beta(x)+\delta(y))=H(\beta(x))+H(\delta(y)), \quad x \in I, y \in J
$$

whence

$$
H(u+v)=H(u)+H(v), \quad u \in \beta(I), v \in \delta(J),
$$

so H is additive in a nontrivial interval containing 0 . Clearly there exists a unique additive function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ that is an extension of H. From the definition of H we get $h=\alpha+c$. Setting $h=\alpha+c$ in (10) and making use of the additivity of α, we obtain

$$
\alpha(\beta(x))-\gamma(x)=\eta(y)-\alpha(\delta(y))-c, \quad x \in I, y \in J,
$$

whence there is $b \in \mathbb{R}$ such that $\alpha(\beta(x))-\gamma(x)=b$ for all $x \in I$, and $\eta(y)-\alpha(\delta(y))-c=b$ for all $y \in J$. This completes the proof.

The following result is a reformulation of Theorem 2 in [7].
Lemma 2. Let $I \subset \mathbb{R}$ be an interval and let $f, g, F, G: I \rightarrow \mathbb{R}$ be continuous, increasing and such that $f+F$ and $g+G$ are strictly increasing. Then $A^{[g, G]}=A^{[f, F]}$ if, and only if, there exist $a, b, c \in \mathbb{R}, a \neq 0$, such that

$$
\begin{equation*}
g(x)=a f(x)+b, \quad G(x)=a F(x)+c, \quad x \in I . \tag{11}
\end{equation*}
$$

3. Equality of generalized weighted quasi-arithmetic means

Theorem 3. Let $I \subset \mathbb{R}$ be an interval, $k \in \mathbb{N}, k \geq 2$, and let f_{1}, \ldots, f_{k}, $g_{1}, \ldots, g_{k}: I \rightarrow \mathbb{R}$ be continuous, increasing such that $f_{1}+\cdots+f_{k}$ and $g_{1}+\cdots+g_{k}$ are strictly increasing. Then

$$
\begin{equation*}
A^{\left[g_{1}, \ldots, g_{k}\right]}=A^{\left[f_{1}, \ldots, f_{k}\right]} \tag{12}
\end{equation*}
$$

if, and only if, there exist $a, b_{1}, \ldots, b_{k} \in \mathbb{R}, a \neq 0$, such that

$$
\begin{equation*}
g_{j}(x)=a f_{j}(x)+b_{j}, \quad x \in I, j=1, \ldots, k . \tag{13}
\end{equation*}
$$

Proof. Assume that (12) holds true for $k=2$. Setting $f:=f_{1}, F:=f_{2}$, $g:=g_{1}, G:=g_{2}$, we hence get $A^{[g, G]}=A^{[f, F]}$ and, in view of Lemma 2, there are $a, b, c \in \mathbb{R}, a \neq 0$, such that (11) holds true. Setting $b_{1}:=b$, and
$b_{2}:=c$ we obtain (13) for $k=2$. Thus, in the case $k=2$, equality (12) implies (13).

Assume that (12) holds true for $k \in \mathbb{N}, k>2$. Choosing arbitrarily $i \in\{1, \ldots, k\}$, we can write (12) in the following form: for all $x_{1}, \ldots, x_{k} \in I$,

$$
\begin{aligned}
&\left(g_{i}+\sum_{j=1, j \neq i}^{k} g_{j}\right)^{-1}\left(g_{i}\left(x_{i}\right)+\sum_{j=1, j \neq i}^{k} g_{j}\left(x_{j}\right)\right) \\
&=\left(f_{i}+\sum_{j=1, j \neq i}^{k} f_{j}\right)^{-1}\left(f_{i}\left(x_{i}\right)+\sum_{j=1, j \neq i}^{k} f_{j}\left(x_{j}\right)\right)
\end{aligned}
$$

Taking $x_{i}=x, x_{j}=y$ for all $j \in\{1, \ldots, k\} \backslash\{i\}$, for $x, y \in I$, and setting

$$
F_{i}:=\sum_{j=1, j \neq i}^{k} f_{j}, \quad G_{i}:=\sum_{j=1, j \neq i}^{k} g_{j}
$$

we hence get

$$
\left(g_{i}+G_{i}\right)^{-1}\left(g_{i}(x)+G_{i}(y)\right)=\left(f_{i}+F_{i}\right)^{-1}\left(f_{i}(x)+F_{i}(y)\right), \quad x, y \in I
$$

that is, $A^{\left[g_{i}, G_{i}\right]}=A^{\left[f_{i}, F_{i}\right]}$. Applying Lemma 2 we conclude that for each $i \in\{1, \ldots, k\}$ there are $a_{i}, b_{i}, c_{i}, \in \mathbb{R}, a_{i} \neq 0, i \in\{1, \ldots, k\}$, such that

$$
g_{i}(x)=a_{i} f_{i}(x)+b_{i}, \quad \sum_{j=1, j \neq i}^{k} g_{j}(x)=a_{i}\left(\sum_{j=1, j \neq i}^{k} f_{j}(x)\right)+c_{i}, \quad x \in I
$$

Adding these equalities we get

$$
\sum_{j=1}^{k} g_{j}(x)=a_{i}\left(\sum_{j=1}^{k} f_{j}(x)\right)+b_{i}+c_{i}, \quad x \in I
$$

It follows that a_{i} does not depend on $i \in\{1, \ldots, k\}$. Thus, setting $a:=a_{1}$, we obtain

$$
g_{i}(x)=a f_{i}(x)+b_{i}, \quad x \in I, i=1, \ldots, k
$$

Since the converse implication is easy to verify, the proof is complete.

4. Convexity and affinity with respect to generalized weighted quasi-arithmetic means

Definition 1. Let $f_{1}, \ldots, f_{k}: I \rightarrow \mathbb{R}, k \geq 2$, be continuous, of the same type of monotonicity and such that $\sum_{j=1}^{k} f_{j}$ is strictly monotonic in the interval I. Let J be a subinterval of I. We say that a function $\varphi: J \rightarrow I$ is $A^{\left[f_{1}, \ldots, f_{k}\right]}$-convex if

$$
\varphi\left(A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right)\right) \leq A^{\left[f_{1}, \ldots, f_{k}\right]}\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{k}\right)\right), \quad x_{1}, \ldots, x_{k} \in J
$$

$A^{\left[f_{1}, \ldots, f_{k}\right]}$-concave if the converse inequality is satisfied; and $A^{\left[f_{1}, \ldots, f_{k}\right]}$-affine if the equality is fulfilled.

For $k=2$, setting here $f=f_{1}, g=f_{2}$, and making use of (9), we see that the $A^{[f, g]}$-convexity of φ reduces to the inequality

$$
\begin{equation*}
\varphi\left((f+g)^{-1}(f(x)+g(y))\right) \leq(f+g)^{-1}(f(\varphi(x))+g(\varphi(y))), \quad x, y \in J \tag{14}
\end{equation*}
$$

(the $A^{[f, g]}$-concavity, to the converse inequality, and $A^{[f, g]}$-affinity to equality).

Remark 2. Let $I=\mathbb{R}, J \subset \mathbb{R}$, and $t \in(0,1)$. Taking $f(x)=t x$, $g(x)=(1-t) x$ for $x \in \mathbb{R}$, in (14) we get

$$
\varphi(t x+(1-t) y) \leq t \varphi(x)+(1-t) \varphi(y), \quad x, y \in J
$$

so $A^{[f, g]}$-convexity generalizes the classical t-convexity of $\varphi: J \rightarrow \mathbb{R}$. In particular, for $t=1 / 2$ we get Jensen convexity.

Taking $J \subset(0, \infty), f(x)=t \log x, g(x)=(1-t) \log x$ for $x>0$ in (14) we get

$$
\varphi\left(x^{t} y^{1-t}\right) \leq[\varphi(x)]^{t}[\varphi(y)]^{1-t}, \quad x, y \in J
$$

so $A^{[f, g]}$-convexity generalizes the geometrical t-convexity of $\varphi: J \rightarrow(0, \infty)$. For $t=1 / 2$ we get Jensen geometrical convexity:

$$
\varphi(\sqrt{x y}) \leq \sqrt{\varphi(x) \varphi(y)}, \quad x, y \in J
$$

Theorem 4. Let I and $J \subset I$ be intervals. Suppose that $f, g: I \rightarrow \mathbb{R}$ are increasing and such that $f+g$ is continuous and strictly increasing. A function $\varphi: J \rightarrow I$ is $A^{[f, g]}$-affine, that is,

$$
\begin{equation*}
\varphi\left((f+g)^{-1}(f(x)+g(y))\right)=(f+g)^{-1}(f(\varphi(x))+g(\varphi(y))), \quad x, y \in J \tag{15}
\end{equation*}
$$

$i f$, and only if, there is an additive function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ and $b, c \in \mathbb{R}$ such that

$$
\varphi=(f+g)^{-1} \circ[\alpha \circ(f+g)+c]
$$

and

$$
f \circ \varphi=\alpha \circ f-b, \quad g \circ \varphi=\alpha \circ g+b+c
$$

Proof. Assume that $\varphi: J \rightarrow I$ is $A^{[f, g]}$-affine. From (15) we get

$$
(f+g) \circ \varphi\left((f+g)^{-1}(f(x)+g(y))\right)=f(\varphi(x))+g(\varphi(y)), \quad x, y \in J
$$

Applying Lemma 1 with $h:=(f+g) \circ \varphi \circ(f+g)^{-1}, \beta:=f, \delta:=g, \gamma:=f \circ \varphi$ and $\eta:=g \circ \varphi$, we obtain $(f+g) \circ \varphi \circ(f+g)^{-1}=\alpha+c$ for some additive function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$, whence

$$
\varphi=(f+g)^{-1} \circ[\alpha \circ(f+g)+c] .
$$

From the "moreover" part of Lemma 1 we get

$$
f \circ \varphi=\alpha \circ f-b, \quad g \circ \varphi=\alpha \circ g+b+c
$$

for some $b \in \mathbb{R}$. The converse implication is easy to verify.

Hence, by induction, we obtain
Theorem 5. Let I and $J \subset I$ be intervals. Suppose that f_{1}, \ldots, f_{k} : $I \rightarrow \mathbb{R}, k \geq 2$, are increasing and $f_{1}+\cdots+f_{k}$ is continuous and strictly increasing. A function $\varphi: J \rightarrow I$ is $A^{\left[f_{1}, \ldots, f_{k}\right]}$-affine if, and only if, there is an additive function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ and $b_{1}, \ldots, b_{k}, c \in \mathbb{R}$ such that

$$
\begin{aligned}
& \varphi=\left(\sum_{j=1}^{k} f_{j}\right)^{-1} \circ\left[\alpha \circ\left(\sum_{j=1}^{k} f_{j}\right)^{-1}+c\right], \\
& f_{j} \circ \varphi=\alpha \circ f_{j}+b_{j}, \quad j=1, \ldots, k \\
& \sum_{j=1}^{k} b_{j}=c
\end{aligned}
$$

5. Comparability of generalized weighted quasi-arithmetic means

Remark 3. Let $I \subset \mathbb{R}$ be an interval and $k \in \mathbb{N}, k \geq 2$. Assume that $f_{j}, g_{j}: I \rightarrow \mathbb{R}, j=1, \ldots, k$, are continuous, increasing and such that the functions $f:=f_{1}+\cdots+f_{k}$ and $g:=g_{1}+\cdots+g_{k}$ are strictly increasing. If moreover f_{1}, \ldots, f_{k} are strictly increasing, then

$$
A^{\left[f_{1}, \ldots, f_{k}\right]} \leq A^{\left[g_{1}, \ldots, g_{k}\right]}
$$

if, and only if,

$$
\begin{equation*}
g \circ f^{-1}\left(\sum_{j=1}^{k} u_{j}\right) \leq \sum_{j=1}^{k} g_{j} \circ f_{j}^{-1}\left(u_{j}\right), \quad u_{j} \in f_{j}(I), j=1, \ldots, k . \tag{16}
\end{equation*}
$$

Example 1. Let $\varphi, \psi: I \rightarrow \mathbb{R}$ be continuous and strictly increasing. Taking in this remark $f_{j}=\varphi, g_{j}=\psi$ for $j=1, \ldots, k$, we find that $A^{[\varphi]} \leq A^{[\varphi]}$, that is,
$\varphi^{-1}\left(\frac{\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{k}\right)}{n}\right) \leq \psi^{-1}\left(\frac{\psi\left(x_{1}\right)+\cdots+\psi\left(x_{k}\right)}{n}\right), \quad x_{1}, \ldots, x_{k} \in I$, if, and only if,

$$
\psi \circ \varphi^{-1}\left(\frac{u_{1}+\cdots+u_{k}}{k}\right) \leq \frac{\psi \circ \varphi^{-1}\left(u_{1}\right)+\cdots+\psi \circ \varphi^{-1}\left(u_{k}\right)}{k},
$$

Similarly, taking $f_{j}=t_{j} \varphi, g_{j}=t_{j} \psi, t_{j}>0$ for $j=1, \ldots, k, t_{1}+\cdots+t_{k}=1$, we infer that

$$
\varphi^{-1}\left(\sum_{j=1}^{k} t_{j} \varphi\left(x_{j}\right)\right) \leq \psi^{-1}\left(\sum_{j=1}^{k} t_{j} \psi\left(x_{j}\right)\right), \quad x_{1}, \ldots, x_{k} \in I,
$$

if, and only if, for all $u_{1}, \ldots, u_{k} \in \varphi(I)$,

$$
\psi \circ \varphi^{-1}\left(t_{1} u_{1}+\cdots+t_{k} u_{k}\right) \leq t_{1} \psi \circ \varphi^{-1}\left(u_{1}\right)+\cdots+t_{k} \psi \circ \varphi^{-1}\left(u_{k}\right)
$$

Thus inequality (16) is related to convexity.

6. Invariance of means and application in solving a functional equation

REMARK 4. Let $f_{1}, \ldots, f_{k}: I \rightarrow \mathbb{R}$ be continuous, increasing with $f:=$ $f_{1}+\cdots+f_{k}$ strictly increasing. The quasi-arithmetic mean $A^{[f]}$,

$$
A^{[f]}\left(x_{1}, \ldots, x_{k}\right)=f^{-1}\left(\frac{1}{n} \sum_{i=1}^{k} f\left(x_{i}\right)\right), \quad x_{1}, \ldots, x_{k} \in I
$$

is invariant with respect to the mean-type mapping $\mathbf{M}: I^{k} \rightarrow I^{k}$ defined by

$$
\begin{equation*}
\mathbf{M}=\left(A^{\left[f_{1}, \ldots, f_{k}\right]}, A^{\left[f_{2}, f_{3}, \ldots, f_{k}, f_{1}\right]}, \ldots, A^{\left[f_{k}, f_{1}, \ldots, f_{k-1}\right]}\right) \tag{17}
\end{equation*}
$$

that is, $A^{[f]} \circ \mathbf{M}=A^{[f]}$.
Indeed, for all $x_{1}, \ldots, x_{k} \in I$, we have

$$
\begin{aligned}
& n f\left(A^{[f]} \circ \mathbf{M}^{[f]}\left(x_{1}, \ldots, x_{k}\right)\right)=\sum_{i=1}^{k} f\left(A^{\left[f_{i}, f_{i+1}, \ldots, f_{k}, f_{1}, \ldots, f_{k-i-1}\right]}\left(x_{1}, \ldots, x_{k}\right)\right) \\
& \quad=\sum_{i=1}^{k}\left(f_{i}\left(x_{1}\right)+f_{i+1}\left(x_{2}\right)+\cdots+f_{k}\left(x_{i-1}\right)+f_{1}\left(x_{i}\right)+\cdots+f_{k-i-1}\left(x_{k}\right)\right) \\
& \quad=\sum_{i=1}^{k} \sum_{j=1}^{k} f_{j}\left(x_{i}\right)=\sum_{j=1}^{k} \sum_{i=1}^{k} f_{j}\left(x_{i}\right)=\sum_{j=1}^{k}\left(\sum_{i=1}^{k} f_{j}\right)\left(x_{i}\right)=\sum_{j=1}^{k} f\left(x_{i}\right)
\end{aligned}
$$

whence the invariance follows.
Theorem 2(iii) implies that if $\min \left(x_{1}, \ldots, x_{k}\right)<\max \left(x_{1}, \ldots, x_{k}\right)$, then $\max \mathbf{M}\left(x_{1}, \ldots, x_{k}\right)-\min \mathbf{M}\left(x_{1}, \ldots, x_{k}\right)<\max \left(x_{1}, \ldots, x_{k}\right)-\min \left(x_{1}, \ldots, x_{k}\right)$, for all $x_{1}, \ldots, x_{k} \in I$. Hence, applying [6, Theorem 1] (cf. also [5]) we obtain

Corollary 1. The sequence $\left(\mathbf{M}^{n}\right)_{n \in \mathbb{N}}$ of iterates of the mean-type mapping $\mathbf{M}: I^{k} \rightarrow I^{k}$ given by (17) converges uniformly on compact subsets of I^{k} to the mean-type mapping $\mathbf{K}=\left(K_{1}, \ldots, K_{k}\right)$ such that $K_{1}=\cdots=K_{k}$ $=A^{[f]}$.

EXAMPLE 2. The functions $f_{1}, f_{2}:(0, \infty) \rightarrow(0, \infty)$ given by $f_{1}(x)=$ $e^{x}-x, f_{2}(x)=x$, are increasing, $f_{1}+f_{2}=\exp$ is strictly increasing, and we have
$A^{\left[f_{1}, f_{2}\right]}(x, y)=\log \left(e^{x}-x+y\right), \quad A^{\left[f_{2}, f_{1}\right]}(x, y)=\log \left(x+e^{y}-y\right), \quad x, y>0$.

According to Remark 4, the quasi-arithmetic mean

$$
A^{\left[f_{1}+f_{2}\right]}(x, y)=\log \left(\frac{e^{x}+e^{y}}{2}\right), \quad x, y>0
$$

is invariant with respect to the mapping ($\left.A^{\left[f_{1}, f_{2}\right]}, A^{\left[f_{2}, f_{1}\right]}\right)$ and, in view of Corollary 1,

$$
\lim _{n \rightarrow \infty}\left(A^{\left[f_{1}, f_{2}\right]}, A^{\left[f_{2}, f_{1}\right]}\right)^{n}=\left(A^{\left[f_{1}+f_{2}\right]}, A^{\left[f_{1}+f_{2}\right]}\right) \quad \text { in }(0, \infty)^{2} .
$$

Corollary 1 allows us to solve a functional equation. Namely, we have the following

Theorem 6. Let $I \subset \mathbb{R}$ be an interval and $f_{1}, \ldots, f_{k}: I \rightarrow \mathbb{R}$ be continuous, increasing with $f:=f_{1}+\cdots+f_{k}$ strictly increasing. Assume that $F: I^{k} \rightarrow \mathbb{R}$ is continuous on the diagonal $\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}=\cdots=x_{k} \in I\right\}$. Then F satisfies the functional equation

$$
\begin{equation*}
F \circ\left(A^{\left[f_{1}, \ldots, f_{k}\right]}, A^{\left[f_{2}, f_{3}, \ldots, f_{k}, f_{1}\right]}, \ldots, A^{\left[f_{k}, f_{1}, \ldots, f_{k-1}\right]}\right)=F \tag{18}
\end{equation*}
$$

if, and only if, $F=\varphi \circ A^{[f]}$ where $\varphi: I \rightarrow \mathbb{R}$ is an arbitrary continuous function.

Proof. Suppose that $F: I^{k} \rightarrow \mathbb{R}$ is continuous on the diagonal of I^{k} and satisfies (18), that is, $F \circ \mathbf{M}=F$, where \mathbf{M} is given by (17). By induction we get

$$
F=F \circ \mathbf{M}^{n}, \quad n \in \mathbb{N} .
$$

Letting $n \rightarrow \infty$, and making use of Corollary 1 and the continuity of F on the diagonal of I^{k}, we get

$$
F\left(x_{1}, \ldots, x_{k}\right)=F\left(A^{[f]}\left(x_{1}, \ldots, x_{k}\right), A^{[f]}\left(x_{1}, \ldots, x_{k}\right), \ldots, A^{[f]}\left(x_{1}, \ldots, x_{k}\right)\right)
$$

for all $\left(x_{1}, \ldots, x_{k}\right) \in I^{k}$. Hence, setting $\varphi(x):=F(x, \ldots, x)$ for $x \in I$, we obtain

$$
F\left(x_{1}, \ldots, x_{k}\right)=\varphi\left(A^{[f]}\left(x_{1}, \ldots, x_{k}\right)\right), \quad x_{1}, \ldots, x_{k} \in I
$$

Since it is easy to verify that any function of this form satisfies (18), the proof is complete.

From Example 2, applying Theorem 6, we obtain
Corollary 2. A function $F:(0, \infty)^{2} \rightarrow(0, \infty)$ that is continuous on the set $\{(x, x): x>0\}$ satisfies the functional equation

$$
F\left(\log \left(e^{x}-x+y\right), \log \left(x+e^{y}-y\right)\right)=F(x, y), \quad x, y>0,
$$

if, and only if, $F(x, y)=\varphi\left(e^{x}+e^{y}\right)$ where $\varphi:(0, \infty) \rightarrow \mathbb{R}$ is an arbitrary continuous function.
7. A conjecture generalizing the Kolmogorov-Nagumo theorem. From Theorem 2(vii) \& (vi) we obtain the following

Corollary 3. Let $I \subset \mathbb{R}$ be an interval and $f_{j}: I \rightarrow \mathbb{R}, j \in \mathbb{N}$, be a sequence of continuous and strictly increasing functions. Then $A^{\left[f_{1}, f_{2}, \ldots\right]}$: $\bigcup_{k=1}^{\infty} I^{k} \rightarrow I$ given by

$$
A^{\left[f_{1}, f_{2}, \ldots\right]}\left(x_{1}, \ldots, x_{k}\right):=A^{\left[f_{1}, \ldots, f_{k}\right]}\left(x_{1}, \ldots, x_{k}\right), \quad\left(x_{1}, \ldots, x_{k}\right) \in I^{k}, k \in \mathbb{N},
$$

is an "associative" mean in $\bigcup_{k=1}^{\infty} I^{k}$, that is, for all $n, r, k_{1}, \ldots, k_{r} \in \mathbb{N}$, $k_{1}<\cdots<k_{r}=n$, and $x_{1}, \ldots, x_{n} \in I$, we have

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{n}\right)=M(\underbrace{M_{1}, \ldots, M_{1}}_{k_{1} \text { times }}, \underbrace{M_{2}, \ldots, M_{2}}_{k_{2}-k_{1} \text { times }}, \ldots, \underbrace{M_{r}, \ldots, M_{r}}_{n-k_{r-1} \text { times }}), \tag{19}
\end{equation*}
$$

where $M:=A^{\left[f_{1}, f_{2}, \ldots\right]}$ and

$$
M_{i}:=A^{\left[f_{k_{i-1}+1}, \ldots, f_{k_{i}}\right]}\left(x_{k_{i-1}+1}, \ldots, x_{k_{i}}\right), \quad i=1, \ldots, r \quad\left(k_{0}:=0\right) .
$$

Moreover, the mean $A^{\left[f_{1}, f_{2}, \ldots\right]}$ is symmetric if, and only if, there is a continuous and strictly increasing function $f: I \rightarrow \mathbb{R}$ such that $A^{\left[f_{1}, f_{2}, \ldots\right]}$ is the quasi-arithmetic mean $A^{[f, f, \ldots]}$ given by

$$
\begin{aligned}
& A^{[f, f, \ldots]}\left(x_{1}, \ldots, x_{k}\right):=f^{-1}\left(\frac{f\left(x_{1}\right)+\cdots+f\left(x_{k}\right)}{n}\right) \\
&\left(x_{1}, \ldots, x_{k}\right) \in I^{k}, k \in \mathbb{N} .
\end{aligned}
$$

Recall that according to the celebrated result, obtained independently by Kolmogorov [3] and Nagumo [10], the quasi-arithmetic mean $A^{[f, \ldots]}$: $\bigcup_{k=1}^{\infty} I^{k} \rightarrow I$ is the only continuous, strictly increasing, symmetric and "associative" mean.

This corollary shows that there are a lot of associative quasi-arithmetic means which are not symmetric.

Assume that $I \subset \mathbb{R}$ is an interval and $M: \bigcup_{k=1}^{\infty} I^{k} \rightarrow I$ is a mean that is continuous, strictly increasing (with respect to each variable) and such that for all $n, r, k_{1}, \ldots, k_{r} \in \mathbb{N}, k_{1}<\cdots<k_{r}=n$, and $x_{1}, \ldots, x_{n} \in I$, equality (19) holds true. We conjecture that then there exists a sequence of continuous and strictly increasing functions $f_{j}: I \rightarrow \mathbb{R}, j \in \mathbb{N}$, such that $M=A^{\left[f_{1}, f_{2}, \ldots\right]}$.

Acknowledgments. I would like to thank the anonymous referee for constructive suggestions.

REFERENCES

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl. 31, Cambridge Univ. Press, Cambridge, 1989.
[2] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, Math. Appl. 31, Reidel, Dordrecht, 1988.
[3] A. N. Kolmogorov, Sur la notion de la moyenne, Atti Accad. Naz. Lincei Rend. 12 (1930), 388-391.
[4] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equations and Jensen Inequality, Uniwersytet Sląski-PWN, Warszawa-Kraków-Katowice, 1985.
[5] J. Matkowski, Iterations of mean-type mappings and invariant means, Ann. Math. Siles. 13 (1999), 211-226.
[6] J. Matkowski, Iterations of the mean-type mappings, in: ECIT' 08, A. N. Sharkovsky and I. M. Susko (eds.), Grazer Math. Ber. 354 (2009), 158-179.
[7] J. Matkowski, Generalized weighted quasi-arithmetic means, Aequationes Math. 79 (2010), 203-212.
[8] J. Matkowski, Generalized weighted arithmetic means, Chapter 36 in: Th. M. Rassias and J. Brzdęk (eds.), Functional Equations in Mathematical Analysis, Springer, New York, 2012, 563-582.
[9] J. Matkowski and P. Volkmann, A functional equation with two unknown functions, http://www.mathematik.uni-karlsruhe.de/~semlv, Seminar LV, No 30 (2008).
[10] M. Nagumo, Uber eine Klasse von Mittelwerten, Japan. J. Math. 7 (1930), 71-79.
Janusz Matkowski
Faculty of Mathematics, Computer Sciences and Econometrics
University of Zielona Góra
Szafrana 4a
65-516 Zielona Góra, Poland
E-mail: J.Matkowski@wmie.uz.zgora.pl

[^0]: 2010 Mathematics Subject Classification: Primary 26A24, 26E60, 39B22.
 Key words and phrases: mean, generalized quasi-arithmetic mean, convex function, affine function, mean-type mapping, iteration, functional equation, "associativity" of a mean, Kolmogorov-Nagumo theorem.

