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SHARP SPECTRAL MULTIPLIERS FOR HARDY SPACES
ASSOCIATED TO NON-NEGATIVE SELF-ADJOINT OPERATORS

SATISFYING DAVIES–GAFFNEY ESTIMATES

BY

PENG CHEN (Adelaide)

Abstract. We consider an abstract non-negative self-adjoint operator L acting on
L2(X) which satisfies Davies–Gaffney estimates. Let Hp

L(X) (p > 0) be the Hardy spaces
associated to the operator L. We assume that the doubling condition holds for the metric
measure space X. We show that a sharp Hörmander-type spectral multiplier theorem
on Hp

L(X) follows from restriction-type estimates and Davies–Gaffney estimates. We also
establish a sharp result for the boundedness of Bochner–Riesz means on Hp

L(X).

1. Introduction. Suppose that L is a non-negative self-adjoint operator
acting on L2(X,µ), where X is a measure space with measure µ. Then
L admits a spectral resolution E(λ), and for any bounded Borel function
F : [0,∞)→ C, one can define the operator

F (L) =

∞�

0

F (λ) dE(λ).(1.1)

By the spectral theorem, this operator is bounded on L2(X). Spectral multi-
plier theorems give sufficient conditions on F and L which imply the bound-
edness of F (L) on various function spaces defined on X. This is an active
topic in harmonic analysis and has been studied extensively. We refer the
reader to [A, B, C, COSY, CowS, DeM, DOS, DP1, DY2, GHS, Mi, St] and
the references therein.

Before we state our main result, we describe some basic assumptions.
Throughout the paper, we assume that (X, d, µ) is a metric measure space
with metric d and a non-negative Borel measure µ satisfying the volume
doubling condition: there exists a constant C > 0 such that for all x ∈ X
and for all r > 0,

V (x, 2r) ≤ CV (x, r) <∞,(1.2)
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where V (x, r) is the volume of the ball B(x, r) centered at x of radius r. In
particular, X is a space of homogeneous type. See for example [CW].

The doubling condition (1.2) implies that there exist some constants
C, n > 0 such that

(1.3) V (x, λr) ≤ CλnV (x, r)

uniformly for all λ ≥ 1 and all x ∈ X. In what follows, we shall consider n
as small as possible. In the Euclidean space with Lebesgue measure, the
smallest such parameter n is the dimension of the space.

The following conditions on the operator L shall be assumed throughout
this paper unless otherwise specified:

(H1) The operator L is a non-negative self-adjoint operator acting on
L2(X) and the semigroup {e−tL}t>0 generated by L satisfies Davies–Gaffney
estimates: there exist constants C, c > 0 such that for all open subsets
U1, U2 ⊂ X and all t > 0,

(DG) |〈e−tLf1, f2〉| ≤ C exp

(
−dist(U1, U2)

2

ct

)
‖f1‖L2(X)‖f2‖L2(X)

for every fi ∈ L2(X) with supp fi ⊂ Ui, i = 1, 2, where dist(U1, U2) :=
infx∈U1, y∈U2 d(x, y); see for example [D, DL, DY2, HLMMY].

(H2) The operator L satisfies restriction-type estimates: Given a subset
E ⊂ X, we define the projection operator PE by multiplying by the charac-
teristic function of E:

PEf(x) := χE(x)f(x).

For a function F : R → C and for R > 0, we denote by δRF : R → C
the function λ 7→ F (Rλ). Following [COSY], we say that a non-negative
self-adjoint operator L satisfies restriction-type estimates if, for each R > 0
and all Borel functions F such that suppF ⊂ [0, R], there exist some p0 and
q satisfying 1 ≤ p0 < 2 and 1 ≤ q ≤ ∞ such that

(1.4) ‖F (
√
L)PB(x,r)‖p0→2 ≤ CV (x, r)1/2−1/p0(Rr)n(1/p0−1/2)‖δRF‖Lq

for all x ∈ X and all r ≥ 1/R, where n is the dimension from the doubling
condition (1.3). When L is the standard Laplace operator ∆ = −

∑n
i=1 ∂

2
xi

on Rn, this estimate is equivalent to the classical (p0, 2) restriction estimate
of Stein–Tomas. See [COSY] or Proposition 2.5 below.

The aim of this paper is to prove a Hörmander-type spectral multiplier
theorem for abstract operators satisfying Davies–Gaffney estimates. More
precisely, our result shows that restriction-type estimates imply sharp spec-
tral multipliers on Hardy spaces Hp

L(X) for p > 0, where Hp
L(X) is a new

class of Hardy spaces associated to the operator L (see [ADM, AMR, DL,
DP2, DY1, DY2, HLMMY, HM, HMMc, JY] and Section 2 below).
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The following theorem is the main result of this paper.

Theorem 1.1. Consider a doubling metric measure space (X, d, µ) which
satisfies (1.3) with dimension n. Assume that the operatorL satisfies Davies–
Gaffney estimates (DG) and restriction-type estimates (1.4) for some p0, q
satisfying 1 ≤ p0 < 2 and 1 ≤ q ≤ ∞. Let φ be a non-trivial smooth func-
tion with compact support on (0,+∞). Suppose that 0 < p ≤ 1. Let F be a
bounded Borel function for which there exists some constant s > n(1/p−1/2)
such that

(1.5) sup
t>0
‖φδtF‖W s,q(R) <∞,

where δtF (λ) := F (tλ) and ‖F‖W s,q(R) := ‖(I − d2/dx2)s/2F‖Lq(R). Then

the operator F (
√
L) is bounded on Hp

L(X). That is, there exists a constant
C > 0 such that

‖F (
√
L)f‖Hp

L(X) ≤ C‖f‖Hp
L(X).

A standard application of spectral multiplier theorems is to consider the
boundedness of Bochner–Riesz means. Recall that Bochner–Riesz means
SδR(L) of order δ > 0 for a non-negative self-adjoint operator L are defined
by the formula

(1.6) SδR(L) :=

(
I − L

R2

)δ
+

, R > 0.

In Theorem 1.1, if one chooses F (λ) = (1− λ2)δ+ then F ∈W s,q if and only
if δ > s− 1/q.

As a consequence of Theorem1.1, we obtain the boundedness of Bochner–
Riesz means for the operator L on the Hardy spaces Hp

L(X).

Corollary 1.2. Assume that the operator L satisfies Davies–Gaffney
estimates (DG) and restriction-type estimates (1.4) for some p0, q satisfying
1 ≤ p0 < 2 and 1 ≤ q ≤ ∞. Suppose that 0 < p ≤ 1. Then for all δ >
n(1/p− 1/2)− 1/q, we have

(1.7) ‖SδR(L)‖Hp
L→H

p
L

= ‖(I − L/R2)δ+‖Hp
L→H

p
L
≤ C

uniformly in R > 0.

Remarks. (a) Theorem 1.1 is a variation of a similar result proved by
Duong and Yan [DY2] in which it was assumed that the operator L only
satisfies Davies–Gaffney estimates (DG). In this paper, we show that the
smoothness condition on the spectral multiplier function can be relaxed if
the operator L also satisfies restriction-type estimates (1.4). Namely, instead
of measuring the smoothness of the multiplier with the Sobolev space W s,∞

one can use the larger space W s,q for some q <∞ that appears in restriction-
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type estimates (1.4). Our proof is a fairly technical combination of arguments
from [COSY, DY2].

(b) When L is the standard Laplace operator ∆ = −
∑n

i=1 ∂
2
xi on Rn,

restriction-type estimates (1.4) hold for q = 2 and 1 ≤ p0≤ (2n+ 2)/(n+3).
As a consequence of Corollary 1.2, we obtain an alternative proof of the
classical results due to Sjölin [Sj] and Stein–Taibleson–Weiss [STW] on
the classical Bochner–Riesz means. It is well known that for p ∈ (0, 1]
and δ > n(1/p − 1/2) − 1/2, the operator of Bochner–Riesz means SδR(∆)
is uniformly bounded on Hp(Rn); however, for δ ≤ n(1/p − 1/2) − 1/2,
SδR(∆) is not uniformly bounded on Hp(Rn) (see [Sj, STW]).

Note that when the semigroup e−tL generated by L has a heat kernel
pt(x, y) satisfying Gaussian upper bound estimates, that is,∣∣pt(x, y)

∣∣ ≤ C

V (x,
√
t)

exp

(
−d

2(x, y)

ct

)
(1.8)

for all t > 0 and all x, y ∈ X, then by the observation due to Auscher, Duong
and McIntosh [ADM], the Hardy spaces Hp

L(X), 1 < p < ∞, coincide with
the corresponding Lp(X) spaces (see [ADM, HLMMY]). As a consequence
of Theorem 1.1, we obtain the following multiplier result on Lp(X) for p ≥ 1.

Proposition 1.3. Assume that the heat kernel corresponding to the op-
erator L satisfies Gaussian upper bound estimates (1.8) and restriction-type
estimates (1.4) for some p0, q satisfying 1 < p0 < 2 and 1 ≤ q ≤ ∞.
Let 1 ≤ p1 ≤ p0. Then for any even bounded Borel function F such that
supt>0 ‖φδtF‖W s,q <∞ for some s > n(1/p1− 1/2), the operator F (

√
L) is

bounded on Lp(X) for p1 < p < p′1. That is, there exists a constant C > 0
such that

‖F (
√
L)f‖Lp(X) ≤ C‖f‖Lp(X).

We should mention that Theorem 1.1 is valid for abstract self-adjoint
operators. However, one has to verify (H1) and (H2) before the result can
be applied. Usually, it is difficult to verify restriction-type estimates (1.4).
We list in Section 4 several examples of operators which satisfy Davies–
Gaffney estimates (DG) and restriction-type estimates (1.4). On the other
hand, restriction-type estimates (1.4) with p0 = 1 and q = ∞ follow from
Gaussian upper bound estimates (1.8) for the heat kernel corresponding to
the operator (see [COSY, DOS]).

While this paper was being finalized we learned that M. Uhl introduced
recently in his Ph.D. thesis [U] a similar condition to our restriction-type
estimates and proved a similar spectral multiplier result for the space H1

L(X)
(see also [KU]).
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2. Preliminaries. In this section, first we state the finite speed propa-
gation property for the wave equation corresponding to the operator L. Then
we state some propositions for the operator L, deduced from restriction-type
estimates. These propositions and the finite speed propagation property will
be used to deduce the off-diagonal estimates for F (

√
L) in Section 3. At

the end of Section 2, we state the definition of the Hardy space Hp
L(X),

0 < p < ∞, associated to the operator L and state a criterion for the
boundedness of spectral multipliers on Hp

L(X).

Let us recall some standard notations. In this paper, we often write B
for B(x, r). Given λ > 0, we write λB for the λ-dilated ball, which is the ball
with the same center as B and with radius λr. For 1 ≤ p ≤ ∞, we denote
the norm of a function f ∈ Lp(X,µ) by ‖f‖p. If T is a bounded linear
operator from Lp(X,µ) to Lq(X,µ) where p, q ∈ [1,∞], we write ‖T‖p→q for
the operator norm ‖T‖Lp→Lq . Let φ ∈ C∞c (0,∞) be a non-negative function
such that

(2.1) suppφ ⊆ (1/4, 1) and
∑
`∈Z

φ(2−`λ) = 1 for all λ > 0.

2.1. Finite speed propagation property for the wave equation.
Following [CouS], for ρ > 0 we set

Dρ := {(x, y) ∈ X ×X : d(x, y) ≤ ρ}.

Given an operator T from Lp(X) to Lq(X), we write

(2.2) suppKT ⊆ Dρ
if 〈Tf1, f2〉 = 0 whenever fk is in C(X) and supp fk ⊆ B(xk, ρk) for k = 1, 2,
and ρ1 + ρ2 + ρ < d(x1, x2).

Definition 2.1. One says that the operator L satisfies the finite speed
propagation property if

(FS) suppKcos(t
√
L) ⊆ Dt for all t ≥ 0.

Proposition 2.2. Let L be a non-negative self-adjoint operator acting
on L2(X). Then the finite speed propagation property (FS) and Davies–
Gaffney estimates (DG) are equivalent.

Proof. Consult Theorem 2 in [S1] and Theorem 3.4 in [CouS]. See also
[CGT].

The following lemma gives a straightforward consequence of the finite
speed propagation property (FS).

Lemma 2.3. Assume that L satisfies the finite speed propagation property
(FS) and that F is an even bounded Borel function with Fourier transform
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F̂ satisfying supp F̂ ⊂ [−ρ, ρ] for some ρ > 0. Then

suppKF (
√
L) ⊆ Dρ.

Proof. If F is an even function, then by the Fourier inversion formula,

F (
√
L) =

1

2π

+∞�

−∞
F̂ (t) cos(t

√
L) dt.

Note that supp F̂ ⊂ [−ρ, ρ]. Then Lemma 2.3 follows from (FS).

2.2. Restriction-type estimates. Let us recall the following result.
For its proof, we refer the reader to [COSY, Proposition 2.3].

Proposition 2.4. Suppose that (X, d, µ) satisfies the doubling prop-
erty (1.3) with dimension n. Let 1 ≤ p0 < 2 and N > n(1/p − 1/2). Then
the following statements are equivalent:

(i) Restriction-type estimates (1.4) hold with q =∞.
(ii) For all x > 0 and all r, t with r ≥ t > 0 we have

(Gp0,2) ‖e−t2LPB(x,r)‖p0→2 ≤ CV (x, r)1/2−1/p0(r/t)n(1/p0−1/2).

(iii) For all x ∈ X and all r, t with r ≥ t > 0 we have

(Ep0,2) ‖(1 + t
√
L)−NPB(x,r)‖p0→2 ≤ CV (x, r)1/2−1/p0(r/t)n(1/p0−1/2).

Following [GHS], we say that the operator L satisfies Lp0 to Lp
′
0 restric-

tion estimates if the spectral measure dE√L(λ) maps Lp0(X) to Lp
′
0(X) for

some p0 satisfying 1 ≤ p0 ≤ 2n/(n+ 1), with an operator norm estimate

(Rp0) ‖dE√L(λ)‖p0→p′0 ≤ Cλ
n(1/p0−1/p′0)−1

for all λ > 0.

Proposition 2.5. Suppose that there exist positive constants 0 < C1 ≤
C2 <∞ such that C1r

n ≤ V (x, r) ≤ C2r
n for every x ∈ X and r > 0. Then

Lp0 to Lp
′
0 restriction estimates (Rp0) and restriction-type estimates (1.4)

with q = 2 are equivalent.

Proof. See [COSY, Proposition 2.4].

2.3. Hardy spacesHp
L(X). Assume that the operatorL satisfiesDavies–

Gaffney estimates (DG). Following [AMR], one can define the L2 adapted
Hardy space

(2.3) H2(X) := R(L),

that is, the closure of the range of L in L2(X). Then L2(X) is the orthogonal
sum of H2(X) and the null space N(L). Consider the following quadratic
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operators associated to L:

SKf(x) :=

(∞�
0

�

d(x,y)<t

|(t2L)Ke−t
2Lf(y)|2 dµ(y)

V (x, t)

dt

t

)1/2

,(2.4)

where x ∈ X, f ∈ L2(X) and K is a natural number. For each K ≥ 1 and
0 < p <∞, we now define

DK,p := {f ∈ H2(X) : SKf ∈ Lp(X)}.

Definition 2.6. Let L be a non-negative self-adjoint operator on L2(X)
satisfying (DG).

(i) For each p ∈ (0, 2], the Hardy space Hp
L(X) associated to L is the

completion of the space D1,p in the norm

‖f‖Hp
L(X) := ‖S1f‖Lp(X).

(ii) For each p ∈ (2,∞), the Hardy space Hp
L(X) associated to L is the

completion of the space DK0,p in the norm

‖f‖Hp
L(X) := ‖SK0f‖Lp(X), where K0 = [n/4] + 1.

Under the assumption of Gaussian upper bound estimates (1.8), by the
observation due to Auscher, Duong and McIntosh [ADM], Hardy spaces
Hp
L(X), 1 < p < ∞, coincide with the corresponding Lp(X) spaces (see

[ADM, HLMMY]). Note that in this paper, we only assume Davies–Gaffney
estimates on the heat kernel of L, and hence for 1 < p <∞, p 6= 2, Hp

L(X)
may or may not coincide with the space Lp(X). However, it can be verified

that H2
L(X) = H2(X) and the dual of Hp

L(X) is Hp′

L (X) with 1/p+1/p′ = 1
(see [HLMMY, Proposition 9.4]).

2.4.Acriterion for boundedness of spectralmultipliers onHp
L(X).

We now state a criterion from [DY2] that allows us to derive estimates
on Hardy spaces Hp

L(X). This criterion generalizes the classical Calderón–
Zygmund theory. We would like to emphasize that the conditions imposed
involve the multiplier operator and its action on functions, but not its kernel.

Lemma 2.7. Let L be a non-negative self-adjoint operator acting on
L2(X) and satisfying Davies–Gaffney estimates (DG). Let m be a bounded
Borel function. Suppose that 0 < p ≤ 1 and M > (n/2)(1/p− 1/2). Assume
that there exist constants s > n(1/p − 1/2) and C > 0 such that, for every
j = 2, 3, . . . ,

(2.5) ‖F (L)(I − e−r2BL)Mf‖L2(2jB\2j−1B) ≤ C2−js‖f‖L2(B)

for every ball B with radius rB and for all f ∈ L2(X) with supp f ⊂ B.
Then the operator F (L) extends to a bounded operator on Hp

L(X). More
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precisely, there exists a constant C > 0 such that for all f ∈ Hp
L(X),

(2.6) ‖F (L)f‖Hp
L(X) ≤ C‖f‖Hp

L(X).

Proof. We refer the reader to [DY2, Theorem 3.1].

3. Proof of Theorem 1.1. In order to prove Theorem 1.1, we will need
an auxiliary lemma about some estimates for the operator F (

√
L) away from

the diagonal which are deduced from restriction-type estimates and the finite
speed propagation property. In the following, for s ∈ R and 1 ≤ p, q ≤ ∞,
Bp,q
s (R) denotes the usual Besov space (see for example [BL]).

Lemma 3.1. Assume that the operator L satisfies the finite speed prop-
agation property (FS) and restriction-type estimates (1.4) for some p0, q
satisfying 1 ≤ p0 < 2 and 1 ≤ q ≤ ∞. Also assume that the function F is
even and supported on [−R,R]. Then for each s > max{n(1/p0−1/2)−1, 0},
there exists a constant Cs such that for each ball B = B(x, r) and for every
j = 1, 2, . . . , we have the following estimates:

(i) for rR ≥ 1,

(3.1) ‖PB(x,2jr)cF (
√
L)PB(x,r)‖p0→2

≤ CsV (x, r)1/2−1/p0(Rr)n(1/p0−1/2)(2jrR)−s‖δRF‖Bq,1s (R);

(ii) for rR < 1,

(3.2) ‖PB(x,2jr)cF (
√
L)PB(x,r)‖p0→2

≤ CsV (x,R−1)1/2−1/p0(2jrR)−s‖δRF‖Bq,1s (R).

Proof. For all r,R > 0 and every j = 1, 2, . . . , we can see that if
2j−5rR ≤ 1, then estimates (3.1) and (3.2) follow from restriction-type es-
timates (1.4) immediately. Thus in the rest of the proof, we fix r, j and R
such that 2j−5rR > 1.

Let φ0 and φk be smooth even functions supported in [−4,4] and [2k, 2k+2]
∪ [−2k+2,−2k] respectively, such that φ0(λ) +

∑
k≥1 φk(λ) = 1 for all λ > 0

and φ0 = 1 on [−2,2]. Set ψ(λ) = φ0(λ/(2
j−3r)) and ψ0(λ) = φ0(λ/(2

j−3rR)).

Define Tφ by T̂φF := φF̂ . Since suppψ ⊂ [−2j−1r, 2j−1r], it follows from
Lemma 2.3 that

suppKTψF (
√
L) ⊂ {(z, y) ∈ X ×X : d(z, y) ≤ 2j−1r}.

This implies

KF (
√
L)(z, y) = K[F−TψF ](

√
L)(z, y)

for all z, y such that d(z, y) > 2j−1r. Hence,

(3.3) ‖PB(x,2jr)cF (
√
L)PB(x,r)‖p0→2 ≤ ‖[F − TψF ](

√
L)PB(x,r)‖p0→2.
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Since suppF ⊂ [−R,R], one can write

(3.4) F − TψF = δR−1(φ0)[F − TψF ]− (1− δR−1(φ0))TψF,

which gives

(3.5) ‖PB(x,2jr)cF (
√
L)PB(x,r)‖p0→2

≤ ‖δR−1(φ0)[F − TψF ](
√
L)PB(x,r)‖p0→2

+ ‖(1− δR−1(φ0))TψF (
√
L)PB(x,r)‖p0→2

=: I + II.

For (i), i.e. rR ≥ 1, we note that supp δR−1(φ0) ⊂ [−4R, 4R]. By restric-
tion-type estimates (1.4), it follows that

I ≤ CV (x, r)1/2−1/p0(Rr)n(1/p0−1/2)‖φ0δR[F − TψF ]‖Lq .(3.6)

Note that φi(λ)(1 − ψ0(λ)) = φi(λ)(1 − φ0(λ/(2j−3rR))) = 0 for all λ ∈ R
unless 2i ≥ 2j−4rR. Consequently, Tφi [I − Tψ0 ]δRF = 0 unless i ≥ i0, where
i0 = log2(2

j−4rR). This implies that

(3.7) ‖φ0δR[F − TψF ]‖Lq

≤ ‖δRF − Tψ0(δRF )‖Lq =
∥∥∥∑
i≥0

Tφi [I − Tψ0 ]δRF
∥∥∥
Lq

≤
∑
i≥i0

‖Tφi [I − Tψ0 ]δRF‖Lq ≤
∑
i≥i0

‖TφiδRF‖Lq

≤ 2−i0s
∑
i≥i0

2is‖TφiδRF‖Lq ≤ C(2jrR)−s‖δRF‖Bq,1s (R).

Combining estimates (3.6) and (3.7), we have

I ≤ CV (x, r)1/2−1/p0(Rr)n(1/p0−1/2)(2jrR)−s‖δRF‖Bq,1s (R).

To estimate the term II, we let f̌ denote the inverse Fourier transform
of a function f . Observe that |λ− y| ≈ |λ| if |λ| ≥ 2R and |y| ≤ R, and then

sup
λ

(1− δR−1(φ0)(λ))TψF (λ)(1 +R−1|λ|)s+1

≤ sup
λ

(1− φ0(λ/R))
∣∣∣ R�
−R

F (y)ψ̌(λ− y) dy
∣∣∣(1 + |λ|/R)s+1

≤ C sup
λ

(1− φ0(λ/R))2j−3rR(1 + 2j−3r|λ|)−s−1(1 + |λ|/R)s+1‖δRF‖Lq

≤ C(2jrR)−s‖δRF‖Lq .

This,together with Proposition 2.4, shows for each s>max{n(1/p0−1/2)−1,0}
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that

II ≤ sup
λ
|(1− δR−1(φ0)(λ))TψF (λ)(1 +R−1|λ|)s+1|(3.8)

× ‖(I +R−1
√
L)−s−1PB(x,r)‖p0→2

≤ CV (x, r)1/2−1/p0(Rr)n(1/p0−1/2)(2jrR)−s‖δRF‖Lq

as desired.

Combining estimates of I and II, we obtain estimate (3.1) for each s >
max{n(1/p0 − 1/2)− 1, 0}.

For (ii), i.e. rR < 1, we use estimate (3.5) and r < R−1 to write

‖PB(x,2jr)cF (
√
L)PB(x,r)‖p0→2 ≤ ‖δR−1(φ0)[F − TψF ](

√
L)PB(x,R−1)‖p0→2

+ ‖(1− δR−1(φ0))TψF (
√
L)PB(x,R−1)‖p0→2.

Replacing B(x, r) by B(x,R−1) in (3.6) and (3.8), a similar argument to
that for (i) shows (3.2). We omit the details.

Proof of Theorem 1.1. We will apply Lemma 2.7. It suffices to verify
condition (2.5). Recall that φ is a non-negative C∞0 function such that

suppφ ⊆ (1/4, 1) and
∑
`∈Z

φ(2−`λ) = 1 for all λ > 0.

Then

F (λ) =
∑
`∈Z

φ(2−`λ)F (λ) =:
∑
`∈Z

F`(λ) for all λ > 0.

For every ` ∈ Z and r > 0, set F `r,M := F`(λ)(1− e−r2λ2)M . So for every ball

B = B(x, r) and f ∈ L2(X),

(3.9) ‖F (
√
L)(I − e−r2L)Mf‖L2(2jB\2j−1B)≤

∑
`∈Z
‖F `r,M (

√
L)f‖L2(2jB\2j−1B).

Fix f ∈ L2(X) with supp f ⊂ B and take j ≥ 2. Note that suppF `r,M
⊂ [−2`, 2`]. So if r2` < 1, it follows by Lemma 3.1 that for each s >
max{n(1/p0 − 1/2)− 1, 0},

(3.10) ‖F `r,M (
√
L)f‖L2(2jB\2j−1B)

≤ ‖P2jB\2j−1BF
`
r,M (
√
L)PB‖p0→2‖f‖p0

≤ CV (x, 2−`)1/2−1/p0(2jr2`)−s‖δ2`F `r,M‖Bq,1s (R)‖f‖p0

≤ CV (x, 2−`)1/2−1/p0(2jr2`)−s‖δ2`F `r,M‖Bq,1s (R)V (x, r)1/p0−1/2‖f‖2

≤ C2−js(2`r)2M−s‖φδ2`F‖Bq,1s (R)‖f‖2.
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If r2` ≥ 1, then

(3.11) ‖F `r,M (
√
L)f‖L2(2jB\2j−1B)

≤ ‖P2jB\2j−1BF
`
r,M (
√
L)PB‖p0→2‖f‖p0

≤ CV (x, r)1/2−1/p0(2`r)n(1/p0−1/2)(2jr2`)−s‖δ2`F `r,M‖Bq,1s (R)‖f‖p0
≤ C(2`r)n(1/p0−1/2)(2jr2`)−s‖δ2`F `r,M‖Bq,1s (R)‖f‖2

≤ C2−js(2`r)n(1/p0−1/2)−s‖φδ2`F‖Bq,1s (R)‖f‖2.

Note that for each ε > 0, ‖F‖
Bq,1s−ε(R)

≤ Cε‖F‖W s,q(R) (see for example

[BL]). Choosing s such that M > s > n(1/p − 1/2), it follows from (1.5)
and (3.9)–(3.11) that

‖F (
√
L)(I − e−r2L)Mf‖L2(2jB\2j−1B) ≤ C2−js‖f‖2.

This proves condition (2.5). Hence, by Lemma 2.7, F (
√
L) can be extended

to a bounded operator on Hp
L(X).

Proof of Proposition 1.3. We observe that for p1 = p0, Proposition 1.3
follows from [COSY, Theorem 4.1]. By Theorem 1.1, Proposition 1.3 holds
for p1 = 1. We now use an idea from [Mi] to construct a family {Fz : z ∈ C,
0 ≤ Re z ≤ 1} of spectral multipliers as follows:

Fz(λ) =
∞∑

j=−∞
η(2−jλ)

(
1− 22j

d2

dλ2

)(z−θ)n(1−1/p0)/2
(F (λ)φ(2−jλ)),

where θ = (1 − 1/p1)/(1 − 1/p0) and η ∈ C∞c ([1/4, 4]), φ ∈ C∞c ([1/2, 2]),
η = 1 on [1/2, 2] and

∑
j η(2−jλ) =

∑
j φ(2−jλ) = 1 for all λ > 0. Observe

that if z = 1 + iy, then

sup
t>0
‖φδtF1+iy‖W s1,q ≤ C sup

t>0
‖φδtF‖W s,q(1 + |y|)n/2

for some s1 > n(1/p0 − 1/2). On the other hand, if z = iy, then

sup
t>0
‖φδtFiy‖W s2,q ≤ C sup

t>0
‖φδtF‖W s,q(1 + |y|)n/2

for some s2 > n/2. It follows by [COSY, Theorem 4.1] that F1+iy(
√
L) is

bounded on Hp
L(X) for p0 < p < p′0, and by Theorem 1.1 that Fiy(

√
L)

is bounded on H1
L(X). Applying the three-line theorem, we conclude that

Fθ(
√
L) = F (

√
L) is bounded on Hp

L(X), that is, F (
√
L) is bounded on

Lp(X) for p1 < p < p′1.

4. Applications. In this section, we discuss several examples of oper-
ators which satisfy the Davies–Gaffney estimates (H1) and restriction-type
estimates (H2), and then we apply our main results to these operators.
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4.1. Sub-Laplacians on homogeneous groups. Let G be a homoge-
neous Lie group of polynomial growth with homogeneous dimension n (see
for example [C, DeM, FS]), and let X1, . . . , Xk be a system of left-invariant
vector fields on G satisfying the Hörmander condition. We define the sub-
Laplace operator L acting on L2(G) by the formula

(4.1) L = −
k∑
i=1

X2
i .

Proposition 4.1. Let L be the homogeneous sub-Laplacian defined by
(4.1) acting on a homogeneous group G. Then condition (1.4) holds for
p0 = 1 and q = 2, and hence the conclusions of Theorem 1.1 and Corol-
lary 1.2 hold for q = 2.

Proof. It is well known that the heat kernel corresponding to L satisfies
Davies–Gaffney estimates (DG). It is not difficult to check that for some
constant C > 0,

‖F (
√
L)‖2L2(X)→L∞(X) = C

∞�

0

|F (t)|2tn−1 dt.

See for example, [DOS, (7.1)], or [C, Proposition 10]. It is known that the
above equality implies condition (1.4) with p0 = 1 and q = 2 (see [COSY,
Section 12]). Then Theorem 1.1 and Corollary 1.2 imply Proposition 4.1.

Proposition 4.1 can be extended to “quasi-homogeneous” operators act-
ing on homogeneous groups; see [S2] and [DOS].

4.2. Schrödinger operators on asymptotically conic manifolds.
Asymptotically conic manifolds (see [Me]) are defined as the interior of
a compact manifold M with boundary, such that the metric g is smooth on
the interior, and in a collar neighborhood of the boundary it has the form

g =
dx2

x4
+
h(x)

x2
,

where x is a defining function of the smooth boundary and h(x) is a smooth
family of metrics on the boundary.

Proposition 4.2. Let (M, g) be a non-trapping asymptotically conic
manifold of dimension n ≥ 3, and let x be a defining function of the smooth
boundary ∂M . Let L := −∆ + V be a Schrödinger operator with V ∈
x3C∞(M), and assume that L is a positive operator and 0 is neither an
eigenvalue nor a resonance. Then restriction-type estimates (1.4) hold with
q = 2 for all 1 ≤ p0 ≤ (2n + 2)/(n + 3), and hence the conclusions of
Theorem 1.1 and Corollary 1.2 hold for q = 2.

Proof. It was proved in [GHS, Theorem 1.3] that condition (Rp0) is sat-
isfied for L when 1 ≤ p0 ≤ (2n+2)/(n+3). By Proposition 2.5, Theorem 1.1
and Corollary 1.2, we obtain Proposition 4.2.
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4.3. Schrödinger operators with the inverse-square potential.
Now we consider Schrödinger operator L = −∆ + V on L2(Rn, dx), where
V (x) = c/|x|2. We assume that n > 2 and c > −(n− 2)2/4. The classical
Hardy inequality

(4.2) −∆ ≥ (n− 2)2

4
|x|−2

shows that the self-adjoint operator L is non-negative if c > −(n− 2)2/4.
Set p∗c = n/σ and σ = max{(n − 2)/2 −

√
(n− 2)2/4 + c, 0}. If c ≥ 0,

then the semigroup exp(−tL) is pointwise bounded by the Gaussian upper
bound (1.8) and hence acts on all Lp spaces with 1 ≤ p ≤ ∞. If c < 0,
then exp(−tL) acts as a uniformly bounded semigroup on Lp(Rn) for p ∈
((p∗c)

′, p∗c) and the range ((p∗c)
′, p∗c) is optimal (see for example [LSV]).

For these Schrödinger operators, we have the following proposition.

Proposition 4.3. Assume that n > 2 and let L = −∆ + V be a
Schrödinger operator on L2(Rn, dx), whereV (x) = c/|x|2 and c>−(n−2)2/4.
Suppose that p0 ∈ ((p∗c)

′, 2n/(n+ 2)] where p∗c = n/σ, (p∗c)
′ is its dual expo-

nent and σ = max{(n − 2)/2 −
√

(n− 2)2/4 + c, 0}. Then restriction-type
estimates (1.4) hold with q = 2, and hence the conclusions of Theorem 1.1
and Corollary 1.2 hold for q = 2.

Proof. It was proved in [COSY, Section 10] that L satisfies restriction
estimates (Rp0) for all p0 ∈ ((p∗c)

′, 2n/(n+ 2)]. If c ≥ 0, then p = (p∗c)
′ = 1

is included. By Proposition 2.5, (Rp0) and (1.4) with q = 2 are equivalent.
Now Proposition 4.3 follows from Theorem 1.1 and Corollary 1.2.
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