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NON-TRANSITIVE POINTS AND POROSITY

BY

T. K. SUBRAHMONIAN MOOTHATHU (Hyderabad)

Abstract. We establish that for a fairly general class of topologically transitive dy-
namical systems, the set of non-transitive points is very small when the rate of transitivity
is very high. The notion of smallness that we consider here is that of σ-porosity, and in
particular we show that the set of non-transitive points is σ-porous for any subshift that
is a factor of a transitive subshift of finite type, and for the tent map of [0, 1]. The result
extends to some finite-to-one factor systems. We also show that for a family of piece-
wise monotonic transitive interval maps, the set of non-transitive points is σ-polynomially
porous. We indicate how similar methods can be used to give sufficient conditions for the
set of non-recurrent points and the set of distal pairs of a dynamical system to be very
small.

1. Introduction. In a complete separable metric space, the commonly
used notion of smallness for a subset is that of being first category. There is
another stronger notion of smallness called σ-porosity : σ-porous subsets are
always of first category, but by [ZA2] every complete metric space without
isolated points contains nowhere dense closed subsets that are not σ-porous.
The notion of σ-porosity was introduced by Dolzhenko [DOL] in 1967, and
there has been a lot of work on it since then; see the survey articles of Zaj́ıček
[ZA1, ZA3]. One classical result about σ-porosity is that for a real-valued
convex function defined on an open subset of a Banach space having a sepa-
rable dual, the set of points of non-Fréchet differentiability is σ-porous (see
Theorem 4.19 of [BEL]). In Rn, every σ-porous set has Lebesgue measure
zero as a consequence of the Lebesgue density theorem, but the converse is
not true; see [ZA1, ZA3] for more information on σ-porous sets.

In this article, we examine how porosity and a more general notion that
we name polynomial porosity appear in the study of three important notions
from topological dynamics: transitivity, recurrence, and proximality. For us,
a dynamical system is a pair (X, f), where X is a complete separable metric
space and f : X → X is a continuous map. We give fairly general conditions
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under which the set of non-transitive points, the set of non-recurrent points,
and the set of non-proximal pairs become σ-(polynomially) porous.

Our main results may be summarized as follows. We show that if the rate
of transitivity in a topologically transitive dynamical system is exponential
in a certain sense, then the set of non-transitive points is σ-(polynomially)
porous (Theorem 3.2). Consequently, the set of non-transitive points is σ-
porous for any subshift that is a factor of a transitive subshift of finite type,
and for the tent map of [0, 1] (Theorem 4.1). The result extends to some
finite-to-one factor systems (Theorem 3.3). We also show that for a family
of piecewise monotonic transitive maps of [0, 1], the set of non-transitive
points is σ-polynomially porous (Theorem 4.5). We indicate how similar
methods can be used to give sufficient conditions for the set of non-recurrent
points and the set of non-proximal pairs of a dynamical system to be σ-
(polynomially) porous (Theorems 5.2, 5.4, 5.5).

2. Preliminaries. Let (X, d) be a complete separable metric space and
f : X → X be continuous. In the dynamical system (X, f), the f -orbit of a
point x ∈ X is the set O(f, x) := {fn(x) : n = 0, 1, 2, . . .}. Let

Recu(f) =
{
x ∈ X : lim inf

n→∞
d(x, fn(x)) = 0

}
be the set of recurrent points of the map f . Let Trans(f) denote the set of
transitive points of f , i.e., points x ∈ X with O(f, x) = X. For U, V ⊂ X,
let

Nf (U, V ) = {n ∈ N : fn(U) ∩ V 6= ∅}.
We say f is transitive if Nf (U, V ) 6= ∅ for any two non-empty open sets
U, V ⊂ X. When X has no isolated points, it is easy to see with a Baire
category argument that f is transitive ⇔ Trans(f) 6= ∅ ⇔ Trans(f) is a
dense Gδ subset of X. We say f is weakly mixing if f × f is transitive, and
mixing if Nf (U, V ) is cofinite for any two non-empty open sets U, V ⊂ X.

Let

Prox(f) =
{

(x, y) ∈ X2 : lim inf
n→∞

d(fn(x), fn(y)) = 0
}

be the collection of proximal pairs for f . Any (x, y) ∈ X2 \Prox(f) is called
a distal pair for f . Observe that when X has no isolated points, we have
Trans(f) ⊂ Recu(f) and Trans(f×f) ⊂ Prox(f). A dynamical system (Y, g)
is said to be a factor of (X, f) if there is a continuous surjection h : X → Y
with h ◦ f = g ◦h, and in this case h is called a factor map. The reader who
wishes to have a quick introduction to Topological Dynamics may refer to
the initial chapters of [BRS].

For λ > 1, we say f : X → X is λ-Lipschitz if d(f(x), f(y)) ≤ λd(x, y)
for every x, y ∈ X. For λ > 1 and 0 < α ≤ 1, we say f is (λ, α)-Hölder
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continuous if d(f(x), f(y)) ≤ λd(x, y)α for every x, y ∈ X. Note that a
λ-Lipschitz map is same as a (λ, 1)-Hölder continuous map.

For x ∈ X and r > 0 let B(x, r) = {y ∈ X : d(x, y) < r}, which we
may also denote as Bd(x, r) if it is necessary to emphasize the metric d.
A subset E ⊂ X is said to be porous if there is 0 < θ < 1 having the
following property: for any x ∈ E there is a sequence (xk) in X \ {x} with
εk := d(x, xk) → 0 as k → ∞ and E ∩ Bd(xk, θεk) = ∅ for every k ∈ N. If
this holds, we say E is porous of type θ. We remark that our definition of
a porous set is stronger than what is usually given since the same θ works
uniformly for all x ∈ E in our definition whereas usually θ is allowed to vary
with x ∈ E. We say E ⊂ X is σ-porous if E can be written as E =

⋃∞
n=1En,

where each En is porous of type θn for some θn ∈ (0, 1).
We say a set E ⊂ X is polynomially porous if there exist 0 < θ < 1 and a

real number β ≥ 1 with the property that for every x ∈ E there is a sequence

(xk) in X \ {x} with εk := d(x, xk)→ 0 as k →∞ and E ∩Bd(xk, θεβk) = ∅
for every k ∈ N. If this holds, we say E is polynomially porous of type θ and
degree β. When β = 1, we recover the notion of porosity as a special case.
For β ≥ 1, we say E ⊂ X is σ-polynomially porous of degree β if E can be
written as E =

⋃∞
n=1En, where each En is polynomially porous of type θn

and degree β for some θn ∈ (0, 1). Note that if E is σ-polynomially porous
of degree β, then E is σ-polynomially porous of degree β′ for every β′ ≥ β.

Polynomial porosity (and in particular, porosity) is a metric-dependent
notion, but it is preserved if we change the original metric to an equivalent
one:

Proposition 2.1. Let (X, d) be a complete metric space and E ⊂ X

be a polynomially porous set of type θ and degree β. Let d̃ be an equivalent
metric on X in the following sense: there are constants 0 < C1 ≤ 1 ≤ C2

such that C1d(x, y) ≤ d̃(x, y) ≤ C2d(x, y) for every x, y ∈ X. Then E is

polynomially porous of type θ̃ := C1C
−β
2 θ and degree β with respect to d̃.

Proof. Let x ∈ E and (xk) be a sequence in X \ {x} with εk := d(x, xk)

→ 0 as k→∞ and E∩Bd(xk, θεβk) = ∅ for every k ∈N. Then δk := d̃(x, xk)≤
C2εk → 0. Moreover for any yk ∈ Bd̃(xk, θ̃δ

β
k ), we have

d(xk, yk) ≤ C−11 d̃(xk, yk) < C−11 θ̃δβk ≤ C
−1θ̃Cβ2 ε

β
k = θεβk

so that B
d̃
(xk, θ̃δ

β
k ) ⊂ Bd(xk, θεβk), and therefore E ∩B

d̃
(xk, θ̃δ

β
k ) = ∅.

Clearly, polynomially porous sets are nowhere dense, and therefore σ-
polynomially porous sets are of first category. The writing of this article
is justified by the following proposition which says that the collection of
σ-polynomially porous sets is strictly smaller than the collection of first
category sets.
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Proposition 2.2. Let X be a complete metric space without isolated
points. Then there is a nowhere dense closed set Y ⊂ X such that it is not
possible to write Y as a countable union of polynomially porous sets even if
we are allowed to choose different types and different degrees.

Proof. For the sake of this proof, let us define E ⊂ X to be exponentially
porous if for every x ∈ E there is a sequence (xk) in X \ {x} with εk :=
d(x, xk) → 0 as k → ∞ and E ∩ B(xk, e

−1/εk) = ∅ for every k ∈ N. It is

clear that for any θ ∈ (0, 1) and β ≥ 1, we have B(xk, e
−1/εk) ⊂ B(xk, θε

β
k)

for all large k ∈ N if (εk) is a sequence of positive reals converging to 0.
Therefore any polynomially porous set is exponentially porous. If we can
write a subset Y ⊂ X as Y =

⋃∞
n=1 Yn, where Yn is polynomially porous

of type θn and degree βn, then it follows that Y is σ-exponentially porous,
i.e., a countable union of exponentially porous sets. On the other hand—and
this is the real hard part of the proof—by (a special case of) Theorem 1 of
[ZA2], every complete metric space without isolated points has a nowhere
dense closed subset Y that is not σ-exponentially porous.

Subshifts play a significant role in the theory of dynamical systems.
A basic reference for the theory of subshifts is [LIM]. Let A be a finite
discrete space (called an alphabet) with at least two elements in it. A met-
ric d on AZ inducing the product topology is given as follows: d(x, x) = 0,
and d(x, y) = 2−n for x 6= y if n ≥ 0 is the smallest such that xn 6= yn
or x−n 6= y−n. This metric is an ultrametric, which means it satisfies the
stronger version of triangle inequality that d(x, y) ≤ max{d(x, z), d(z, y)}
for every x, y, z ∈ AZ. The (two-sided) shift map ψ : AZ → AZ is given by
(ψ(x))n = xn+1 for x = (xn) ∈ AZ and n ∈ Z. The shift ψ is mixing. If
X ⊂ AZ is a non-empty, ψ-invariant closed subset, then the dynamical sys-
tem (X,ψ) is called a (two-sided) subshift. Similarly one can define one-sided
subshifts by considering AN in place of AZ. A member w of An is called a
word of length n over A, and we write |w| = n. Let A+ =

⋃∞
n=1A

n, the
collection of all non-empty words over A. For a subshift (X,ψ), its language
L(X) is defined as

L(X) = {w ∈ A+ : w appears in some x ∈ X}.

Next we describe subshifts of finite type and their subshift factors called
sofic subshifts. Elements of these subshifts can always be represented as
infinite paths on some finite directed graph in the manner described below,
after a suitable change of alphabet; see Chapters 2 and 3 of [LIM] and
Section 3.7 of [BRS]. A change of alphabet results in changing the metric
to an equivalent metric so that this is alright for our investigations about
(polynomially) porous sets because of Proposition 2.1. For those readers
who have some familiarity with subshifts, we remark that we are going to
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consider subshifts factors of subshifts of finite type specified by forbidden
words of length 2. Let A,B be alphabets with 2 ≤ |B| ≤ |A|, let π : A→ B
be a surjection, and let G be a directed graph with A as the vertex set.
Denote the edge set of G by EG, and we will write ij ∈ EG to mean there
is an edge from vertex i to vertex j in the directed graph G, where i, j ∈ A.
Let

XG = {x ∈ AZ : xnxn+1 ∈ EG for every n ∈ Z},
Y π
G = {(π(xn)) ∈ BZ : x ∈ XG}.

The subshift (XG, ψ) is called a subshift of finite type, and the subshift
(Y π
G , ψ) is called a sofic shift. Note that h : XG → YG given by h(x) =

(π(xn)) is a factor map from (XG, ψ) to (Y π
G , ψ).

The standard tent map f : [0, 1] → [0, 1] is defined as f(x) = 2x for
0 ≤ x ≤ 1/2 and f(x) = 2−2x for 1/2 ≤ x ≤ 1. The tent map is a prototype
while studying transitivity and chaos of interval maps. More details about
the dynamics of interval maps can be found in [BLC].

3. Exponential rate of transitivity, and porosity. Our basic idea
is to show that in a transitive dynamical system (X, f), the set of non-
transitive points is very small when the rate of transitivity is exponential,
where the phrase in italics means roughly the following: given any x ∈ X and
any non-empty open set V ⊂ X, there exists a sequence (εk) of positive reals
converging to 0 such that if nk ∈ N is the smallest with fnk(B(x, εk))∩V 6= ∅,
then enk is not much larger than 1/εk (equivalently, nk is not much larger
than log(1/εk)).

First we will formulate some abstract results giving sufficient conditions
for the set of non-transitive points to be σ-(polynomially) porous. Appli-
cations to some familiar systems will be presented in the next section. We
start with a lemma whose proof contains the key idea that generated this
article.

Lemma 3.1. Let (X, f) be a dynamical system, and suppose f is λ-
Lipschitz for some λ > 1. Let V = B(z, r) ⊂ X be an open ball with
0 < r < 1 and P ⊂ X be an arbitrary subset. Assume that there are con-
stants β,C ≥ 1 so that for any x ∈ P the following is satisfied:

There is a sequence (xk) in X \ {x} with 1 > εk := d(x, xk) → 0 as
k → ∞, and there is an increasing sequence (nk) of natural numbers such
that

fnk(xk) ∈ B(z, r/2) and nk ≤
β log(C/εk)

log λ
for every k ∈ N.

Then the set E := {x ∈ P : fn(x) /∈ V for every n ∈ N} is polynomially
porous of type θ := 2−1C−βr and degree β in X.
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Proof. Fix x ∈ E, and let (xk), (nk) be as in the hypothesis. Note that
λnk = enk log λ ≤ eβ log(C/εk) = (C/εk)

β. Also, Cβθ = r/2. Therefore, for any

yk ∈ B(xk, θε
β
k), we have

d(fnk(xk), f
nk(yk)) ≤ λnkd(xk, yk) < λnkθεβk ≤ (C/εk)

βθεβk = r/2,

which implies d(z, fnk(yk)) ≤ d(z, fnk(xk))+d(fnk(xk), f
nk(yk)) < r/2+r/2

= r, and thus fnk(yk) ∈ V . This shows that E ∩ B(xk, θε
β
k) = ∅ for every

k ∈ N.

By a cover of X we mean a collection of subsets (not necessarily open)
whose union contains X. From Lemma 3.1 we deduce that:

Theorem 3.2. Let (X, f) be a dynamical system, and suppose f is
λ-Lipschitz for some λ > 1. Assume that there exist a constant β ≥ 1,
a countable collection P of subsets of X covering X, and a countable base V
of open balls with radius < 1 for the topology of X such that the following
condition is satisfied:

For each P ∈ P and V = B(z, r) ∈ V, there is a constant C = CP,V ≥ 1
so that for any x ∈ P there is a sequence (xk) in X \ {x} with 1 > εk :=
d(x, xk)→ 0 as k →∞, and there is an increasing sequence (nk) of natural
numbers such that

fnk(xk) ∈ B(z, r/2) and nk ≤
β log(C/εk)

log λ
for every k ∈ N.

Then X \Trans(f) is σ-polynomially porous of degree β in X. In partic-
ular, if β = 1, then X \ Trans(f) is σ-porous.

Proof. For (P, V ) ∈ P×V, the set EP,V := {x ∈ P : fn(x) /∈ V for every
n ∈ N} is polynomially porous of type some θP,V ∈ (0, 1) and degree β in X
by Lemma 3.1. And X \Trans(f) =

⋃
(P,V )∈P×V EP,V , which is a countable

union.

Theorem 3.2 has the flexibility that we can transfer the conclusion to
some special factor dynamical systems also:

Theorem 3.3. Let (X, f), (Y, g) be dynamical systems. Suppose that:

(i) f is λ1-Lipschitz and g is λ2-Lipschitz for some λ2 ≥ λ1 > 1.
(ii) There is a factor map h : (X, f) → (Y, g) such that h−1(y) is a

finite set for each y ∈ Y , and h is (λ, α)-Hölder continuous for
some λ > 1 and 0 < α ≤ 1.

(iii) (X, f) satisfies the hypothesis of Theorem 3.2 with constant β1 ≥ 1.

Then Y \Trans(g) is σ-polynomially porous of degree β2 := β1 log λ2
α log λ1

in Y .
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Proof. Let the constant β1 ≥ 1, cover P1 of X, and countable base V1
of X be as in the hypothesis of Theorem 3.2. Let P2 = {h(P ) : P ∈ P1},
and V2 be any countable base of open balls of radius < 1 for Y . Fix P2 =
h(P1) ∈ P2 and V2 = B(z2, r2) ∈ V2. Let V1 = B(z1, r1) ∈ V1 be such that
h(B(z1, r1/2)) ⊂ B(z2, r2/2). Let C2 = C1λ, where C1 = CP1,V1 . We will
now show that (Y, g) satisfies the hypothesis of Theorem 3.2 with constant
β2 = (β1 log λ2)/(α log λ1).

Let d1, d2 be the metrics on X and Y respectively. Consider y ∈ P2

and choose x ∈ P1 with h(x) = y. Since (X, f) satisfies the hypothesis of
Theorem 3.2, there is a sequence (xk) in X\{x} with 1 > εk := d1(x, xk)→ 0
as k →∞, and there is an increasing sequence (nk) of natural numbers such
that

fnk(xk) ∈ B(z1, r1/2) and nk ≤
β1 log(C1/εk)

log λ1
for every k ∈ N.

Since h−1(y) is a finite set, without loss of generality we may assume yk :=
h(xk) 6= y for every k ∈ N. Observe that δk := d2(y, yk) ≤ λεαk → 0
as k → ∞, and gnk(yk) = gnk(h(xk)) = h(fnk(xk)) ∈ h(B(z1, r1/2)) ⊂
B(z2, r2/2) for every k ∈ N. Since δk ≤ λεαk and Cα1 ≤ C1, we have
(C1/εk)

α ≤ C1λ/δk = C2/δk and thus log(C1/εk) ≤ α−1 log(C2/δk). Also
recall that β2 = (β1 log λ2)/(α log λ1). Therefore,

nk ≤
β1 log(C1/εk)

log λ1
≤ β1 log(C2/δk)

α log λ1
=
β2 log(C2/δk)

log λ2
.

Thus (Y, g) satisfies the hypothesis of Theorem 3.2 with constant β2, and
we are through.

4. Applications. First we apply Theorem 3.2 to subshift factors of
transitive subshifts of finite type, and to the tent map. For the subshifts
mentioned in Theorem 4.1 below, the metric under consideration is the
ultrametric defined earlier.

Theorem 4.1. For the following dynamical systems, the set of non-
transitive points is a σ-porous subset of the domain of the dynamical system:

(i) Any subshift that is a factor of a transitive subshift of finite type.
(ii) The tent map of [0, 1] when [0, 1] is equipped with the Euclidean

metric.
(iii) The map z 7→ zk of the unit circle for any integer k ≥ 2 when

the unit circle is equipped with either the arc-length metric or the
Euclidean metric.

Proof. In all the three cases, we will show that the system satisfies the
hypothesis of Theorem 3.2 with the constant β = 1.
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(i) We will work with two-sided subshifts. The proof for one-sided sub-
shifts is similar. Following our description in Section 2 involving a finite
directed graph G, we may assume the following:

(1) There are alphabets A,B with 2 ≤ |B| ≤ A, and there is a surjection
π : A→ B.

(2) The given sofic subshift (Y π
G , ψ) is a factor of a transitive subshift

of finite type (XG, ψ) via the factor map h : XG → Y π
G given by

h(x) = (π(xn))n∈Z.
(3) Here, XG = {x ∈ AZ : xnxn+1 ∈ EG for every n ∈ Z}.
From now onwards, write X for XG and Y for Y π

G . Without loss of
generality we assume each letter of A appears in some x ∈ X. If Y has
an isolated point, (Y, ψ) reduces to a periodic orbit, and there is nothing
to prove. So we assume Y (and similarly X) is infinite with no isolated
points. Let L0(X) = {w ∈ L(X) : |w| is odd}, and for w ∈ L0(X), let Uw =
{x ∈ X : x[−s,s] = w}, where 2s + 1 = |w| and x[−s, s] = x−s · · ·x0 · · ·xs.
Note that {Uw : w ∈ L0(X)} is a countable base for X. Since our plan is
to arrange things so that Theorem 3.2 becomes applicable to (Y, ψ), we will
now try to use the notations from Theorem 3.2.

Let P = {Y } and V be any countable base of open balls of radius < 1
for Y . Fix an open ball V = B(z, r) ∈ V and choose a word w ∈ L0(X)
such that h(Uw) ⊂ B(z, r/2). Let s ∈ N with |w| = 2s + 1. Since (X,ψ)
is transitive, there is t ∈ N such that for every a, a′ ∈ A there is a word
u ∈ L(X) of length ≤ t such that u starts with a and ends with a′. We
will show that the hypothesis of Theorem 3.2 is satisfied for (Y, ψ) with
constants β = 1 and C = CY,V = 2t+s.

Consider y ∈ Y and let x ∈ X with h(x) = y. By the choice of t, for each
k ∈ N there exist k < jk ≤ k+ t and x(k) ∈ X such that x(k)[−k, k] = x[−k, k]
and x(k)[jk, jk+2s] = w. We claim that the choice of x(k) can be made in such
a way that we also have h(x(k)) 6= y for every k ∈ N. We argue as follows.
Observe that since there are conditions only on finitely many coordinates of
x(k), we may choose x(k) from any dense subset of X. If y is a transitive
point for (Y, ψ), we may assume each x(k) is a periodic point in (X,ψ)
since it is well-known and easy to show that a transitive subshift of finite
type has a dense set of periodic points. Then h(x(k)) 6= y, for otherwise
y will become a periodic point, forcing (Y, ψ) to be a finite periodic orbit,
contradicting the earlier assumption that Y has no isolated points. Next, if
y is a non-transitive point, then we may assume each x(k) is a transitive
point in (X,ψ), which will ensure h(x(k)) 6= y. This proves our claim.

Let y(k) = h(x(k)) for k ∈ N. Since y(k)[−k, k] = y[−k,k], we get εk :=

d(y, y(k)) < 2−k → 0 as k →∞. Let nk = jk + s. Then

ψnk(y(k)) = h(ψnk(x(k))) ∈ h(Uw) ⊂ B(z, r/2).
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Since εk < 2−k, we obtain k < log(1/εk)/log 2, and therefore

nk = jk + s ≤ k + t+ s <
log(1/εk)

log 2
+ t+ s =

log(C/εk)

log 2

by our choice of C. Finally note that the shift map ψ is 2-Lipschitz with
respect to the ultrametric d. Thus (Y, ψ) satisfies the hypothesis of Theorem
3.2 with constant β = 1, and therefore Y \ Trans(ψ) is σ-porous in Y .

(ii) Let P = {[0, 1]}, and V be any countable base of open balls of radius
< 1 for [0, 1]. Consider V = B(z, r) ∈ V. We will show that the hypothesis of
Theorem 3.2 is satisfied with constants β = 1 and C = C[0,1],V = 1. Consider

x ∈ [0, 1]. Let I(k, j) = [(j−1)/2k, j/2k] for 1 ≤ j ≤ 2k and k ∈ N. The tent
map has the property that fk(I(k, j)) = [0, 1] for 1 ≤ j ≤ 2k and k ∈ N.
Hence we can find a sequence (xk) in [0, 1]\{x} such that εk := |x−xk| ≤ 2−k

and fk(xk) ∈ B(z, r/2) for every k ∈ N. We have k ≤ log(1/εk)/log 2. Since
f is 2-Lipschitz, we are done by Theorem 3.2.

(iii) is similar to the case of the tent map, and is left to the reader.

Remark 4.2. Another commonly used metric d̃ on AZ is given by d̃(x, y)
:=

∑
n∈Z 2−|n|ρ(xn, yn), where ρ is the discrete metric on A. We have d(x, y)

≤ d̃(x, y) ≤ 4d(x, y), where d is the ultrametric. Hence by Proposition 2.1,
the assertion about sofic subshifts in Theorem 4.1 remains true with respect
to the metric d̃ also.

Remark 4.3. There is a class of well-studied dynamical systems called
topologically Anosov (TA) homeomorphisms. By Theorem 4.3.6 of [AOH]
(first proved by Bowen), any mixing TA homeomorphism is a finite-to-one
factor of a two-sided mixing subshift of finite type. If g : Y → Y is a mixing
TA homeomorphism, and if the hypothesis of Theorem 3.3 is satisfied with
the corresponding mixing subshift of finite type in place of (X, f), then we
can conclude that Y \ Trans(g) is σ-(polynomially) porous in Y .

Remark 4.4. Let f : [0, 1] → [0, 1] be the tent map. Since E := [0, 1] \
Trans(f) is an uncountable Fσ set, we can find a Cantor set K ⊂ (0, 1)∩E.
By a re-scaling of the open intervals in [0, 1] \K, we can find a homeomor-
phism h : [0, 1]→ [0, 1] such that the Cantor set h(K) has positive Lebesgue
measure. Let g : [0, 1] → [0, 1] be g = h ◦ f ◦ h−1. Then g is conjugate to
the tent map f , but [0, 1] \Trans(g) is not σ-porous since it has a subset of
positive Lebesgue measure, namely h(K).

As another application of Theorem 3.2, we will show that for a family
of piecewise monotonic transitive maps on [0, 1], the set of non-transitive
points is σ-polynomially porous. This generalizes the case of the tent map
with a weaker conclusion, and we do not know whether the conclusion can
be improved to σ-porosity in general.
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Theorem 4.5. Let f : [0, 1] → [0, 1] be λ-Lipschitz for some λ > 1.
Assume that f satisfies the following two conditions:

(i) There exist η ∈ (1, λ] and a partition 0 = a0 < a1 < · · · < aq−1 <
aq = 1 of [0, 1] for some integer q ≥ 2 with the property that f is
differentiable on

⋃q
j=1 Uj, where Uj := (aj−1, aj), and |f ′(x)| ≥ 2η

for every x ∈
⋃q
j=1 Uj.

(ii) For every i, j ∈ {1, . . . , q}, there is n ∈ N such that Uj ⊂ fn(Ui).

Then [0, 1] \Trans(f) is σ-polynomially porous of degree β := log λ/log η
in [0, 1].

Proof. Let t ∈ N be such that for every i, j ∈ {1, . . . , q} there is n ∈
{1, . . . , t} with Uj ⊂ fn(Ui). Let P = {[0, 1]}, and V be any countable
base of open balls of radius < 1 for [0, 1]. Consider V = B(z, r) ∈ V. We
will show that the hypothesis of Theorem 3.2 is satisfied with constants
β = log λ/log η and C = C[0,1], V = ηt. Let x ∈ [0, 1]. We denote by |L|
the length of a subinterval L ⊂ [0, 1]. Let δ = min{η−1, |U1|, . . . , |Uq|}, and
let (δk) be a sequence in (0, δ) converging to 0. Fix k ∈ N, and choose
i0 ∈ {1, . . . , q} such that the interval L0 := B(x, δk) ∩ Ui0 has length ≥ δk.

We claim that there exist a natural number mk ≤ log(1/δk)/log η and
i ∈ {1, . . . , q} such that Ui ⊂ fmk(L0) ⊂ fmk(B(x, δk)). Indeed, observe
that f(L0) is an interval of length ≥ 2η|L0| by property (i). If there is
i ∈ {1, . . . , q} with Ui ⊂ f(L0), we stop the process. Otherwise, we note
that the interval f(L0) can intersect at most two adjacent Ui’s, and therefore
there is i1 ∈ {1, . . . , q} such that the interval L1 := f(L0) ∩ Ui1 satisfies

|L1| ≥ |f(L0)|/2 ≥ η|L0| ≥ ηδk.
Now we repeat the argument with L1 in the place of L0. If the process
does not stop with m − 1 steps, then at the mth step we will obtain an
interval Lm ⊂ fm(L0) with |Lm| ≥ ηmδk. Here we must have ηmδk ≤ 1
since Lm ⊂ [0, 1]. This implies that the claim must be true.

Let j ∈ {1, . . . , q} be with Uj ∩ B(z, r/2) 6= ∅, and sk ∈ {1, . . . , t} be
with Uj ⊂ fsk(Ui). Then we have Uj ∩ B(z, r/2) ⊂ fmk+sk(B(x, δk)). Pick
xk ∈ B(x, δk) \ {x} with fmk+sk(xk) ∈ B(z, r/2). Put nk = mk + sk and
εk = |x − xk| < δk. By assuming that (δk) converges to 0 sufficiently fast,
we may ensure that (nk) is an increasing sequence. By what is proved in the
previous paragraph, mk ≤ log(1/εk)/log η. Also recall that β = log λ/log η,
and C = ηt so that t = logC/log η. Therefore,

nk = mk + sk ≤ mk + t ≤ log(1/εk)

log η
+

logC

log η
=

log(C/εk)

log η
=
β log(C/εk)

log λ
.

Thus the hypothesis of Theorem 3.2 is satisfied, and so [0, 1] \ Trans(f) is
σ-polynomially porous of degree β = log λ/log η in [0, 1].
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Examples of maps satisfying the hypothesis of Theorem 4.5 are easy to
construct, and we give one such example:

Example 4.6. Let a0 = 0, a1 = 2/7, a2 = 5/7, a3 = 1, and Uj =
(aj−1, aj) for 1 ≤ j ≤ 3. Let f : [0, 1] → [0, 1] be the continuous piecewise
linear map defined by the conditions that f(a0) = 1/7, f(a1) = 1, f(a2) = 0,
f(a3) = 6/7, and the graph of f is linear on Uj for 1 ≤ j ≤ 3. We have
|f ′| = 3 on U1 ∪ U3 and |f ′| = 7/3 on U2. Hence f is 3-Lipschitz; and

|f ′(x)| ≥ 2η for every x ∈
⋃3
j=1 Uj if we put η = 7/6. Moreover, Ui ⊂ f2(Uj)

for every i, j ∈ {1, 2, 3}. Hence by Theorem 4.5, the set of non-transitive
points of f is σ-polynomially porous of degree log 3/log(7/6) in [0, 1].

5. Non-recurrent points, non-proximal pairs, and porosity. The
methods that we used to analyze the set of non-transitive points can also be
used to analyze the set of non-recurrent points and the set of non-proximal
pairs (i.e., distal pairs). The similarity between the theories of recurrence and
proximality was exploited by the author in an earlier work [TKS] also. The
material of this section may look a little repetitive, but we choose to provide
most of the details for the benefit of the reader since various constants and
estimates are involved. The idea is to imitate Lemma 3.1 and then deduce
an analogue of Theorem 3.2. We state the results for σ-polynomially porous
sets, but observe that when the degree β is equal to 1, we get the case of σ-
porous sets as a special case. First we look at the set of non-recurrent points.

Lemma 5.1. Let (X, f) be a dynamical system, and suppose that f is
λ-Lipschitz for some λ > 1. Let 0 < r ≤ 1, and P ⊂ X be an arbitrary
subset. Assume that there are constants β,C ≥ 1 such that for any x ∈ P
the following is satisfied:

There is a sequence (xk) in X \ {x} with 1 > εk := d(x, xk) → 0 as
k → ∞, and there is an increasing sequence (nk) of natural numbers such
that

d(xk, f
nk(xk)) < r/3 and nk ≤

β log(C/εk)

log λ
for every k ∈ N.

Then the set E := {x ∈ P : d(x, fn(x)) ≥ r for every n ∈ N} is polyno-
mially porous of type θ := 3−1C−βr and degree β in X.

Proof. Let x ∈ E, and (xk), (nk) be as given. For any yk ∈ B(xk, θε
β
k),

we have d(fnk(xk), f
nk(yk)) < λnkθεβk < r/3 as in the proof of Lemma 3.1.

Moreover, d(xk, yk) < θεβk < θ < r/3. Hence

d(yk, f
nk(yk)) ≤ d(yk, xk) + d(xk, f

nk(xk)) + d(fnk(xk), f
nk(yk))

< r/3 + r/3 + r/3 = r,

which implies E ∩B(xk, θε
β
k) = ∅ for every k ∈ N.
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Theorem 5.2. Let (X, f) be a dynamical system, and suppose that f
is λ-Lipschitz for some λ > 1. Assume that there exist a constant β ≥ 1,
a countable collection P of subsets of X covering X, and a countable base
V of open balls with radius < 1 for the topology of X such that the following
condition is satisfied:

For each P ∈ P and r > 0, there is a constant C = CP,r ≥ 1 so that for
any x ∈ P there is a sequence (xk) in X \ {x} with 1 > εk := d(x, xk) → 0
as k →∞, and there is an increasing sequence (nk) of natural numbers such
that

d(xk, f
nk(xk)) < r/3 and nk ≤

β log(C/εk)

log λ
for every k ∈ N.

Then X \Recu(f) is σ-polynomially porous of degree β in X. In partic-
ular, if β = 1, then X \ Recu(f) is σ-porous.

Proof. For P ∈ P and k ∈ N, let EP,k = {x ∈ P : d(x, fn(x)) ≥ 1/k for
every n ∈ N}. Then each EP,k is polynomially porous of degree β by Lemma
5.1, and X \ Recu(f) =

⋃
(P,k)∈P×NEP,k.

Next we look at the set of non-proximal pairs (i.e., distal pairs) in X2 for
a dynamical system (X, f). If (X, d) is a complete separable metric space,
we equip X2 with the metric d′ given by d′((x1, y1), (x2, y2)) = d(x1, x2) +
d(y1, y2).

Lemma 5.3. Let (X, f) be a dynamical system, and suppose f is
λ-Lipschitz for some λ > 1. Let 0 < r ≤ 1, and P ⊂ X2 be an arbi-
trary subset. Assume that there are constants β,C ≥ 1 such that for any
(x, y) ∈ P the following is satisfied:

There is a sequence (xk, yk) in X2 \ {(x, y)} with 1 > εk := d(x, xk) +
d(y, yk)→ 0 as k →∞, and there is an increasing sequence (nk) of natural
numbers such that

d(fnk(xk), f
nk(yk)) < r/3 and nk ≤

β log(C/εk)

log λ
for every k ∈ N.

Then the set E := {(x, y) ∈ P : d(fn(x), fn(y)) ≥ r for every n ∈ N} is
polynomially porous of type θ := 3−1C−βr and degree β in X2.

Proof. Let (x, y) ∈ E, and ((xk, yk)), (nk) be as given. Consider (ak, bk)

∈ B((xk, yk), θε
β
k) ⊂ X2. We have d(fnk(ak), f

nk(xk)) < λnkθεβk < r/3 as in
the proof of Lemma 3.1, and similarly d(fnk(bk), f

nk(yk)) < r/3. Moreover,
d(fnk(xk), f

nk(yk)) < r/3 by hypothesis. Hence

d(fnk(ak), f
nk(bk))

≤ d(fnk(ak), f
nk(xk)) + d(fnk(xk), f

nk(yk)) + d(fnk(yk), f
nk(bk)) < r,

which implies E ∩B((xk, yk), θε
β
k) = ∅ for every k ∈ N.
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Theorem 5.4. Let (X, f) be a dynamical system, and suppose f is λ-
Lipschitz for some λ > 1. Assume that there exist a constant β ≥ 1 and a
countable collection P of subsets of X2 covering X2 such that the following
condition is satisfied:

For each P ∈ P and r > 0, there is a constant C = CP,r ≥ 1 so
that for any (x, y) ∈ P there is a sequence ((xk, yk)) in X2 \ {(x, y)} with
1 > εk := d(x, xk) + d(y, yk) → 0 as k → ∞, and there is an increasing
sequence (nk) of natural numbers such that

d(fnk(xk), f
nk(yk)) < r/3 and nk ≤

β log(C/εk)

log λ
for every k ∈ N.

Then X2 \ Prox(f) is σ-polynomially porous of degree β in X2. In par-
ticular, if β = 1, then X2 \ Prox(f) is σ-porous.

Proof. For P ∈ P and k ∈ N, let EP,k = {(x, y) ∈ P : d(fn(x), fn(y)) ≥
1/k for every n ∈ N}. Then each EP,k is polynomially porous of degree β
in X2 by Lemma 5.3, and X2 \ Prox(f) =

⋃
(P,k)∈P×NEP,k.

We may also transfer the conclusions of Theorems 5.2 and 5.4 to some
special factor systems:

Theorem 5.5. Let (X, f), (Y, g) be dynamical systems. Suppose that:

(i) f is λ1-Lipschitz and g is λ2-Lipschitz for some λ2 ≥ λ1 > 1.
(ii) There is a factor map h : (X, f)→ (Y, g) such that h−1(y) is a finite

set for each y ∈ Y , and h is (λ, α)-Hölder continuous for some λ > 1
and 0 < α ≤ 1.

Then we have the following:

(a) If (X, f) satisfies the hypothesis of Theorem 5.2 with constant
β1 ≥ 1, then Y \ Recu(g) is σ-polynomially porous of degree β2 :=
(β1 log λ2)/(α log λ1) in Y .

(b) If (X, f) satisfies the hypothesis of Theorem 5.4 with constant
β1 ≥ 1, then Y 2 \ Prox(g) is σ-polynomially porous of degree
β2 := (β1 log λ2)/(α log λ1) in Y 2.

Proof. Just imitate the proof of Theorem 3.3.

6. Directions for further research. Till now we have been discussing
the notion of porosity for Lipschitz maps. Since Hölder continuity is a gener-
alization of Lipschitz continuity, the next natural step in research can be to
study whether the results given above can be extended to the case of Hölder
continuous maps. Though we could not do this extension step, we provide
some remarks. First we observe the following:
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Proposition 6.1. Let (X, f) be a dynamical system, and suppose f is
(λ, α)-Hölder continuous for some λ > 1 and 0 < α ≤ 1.

(i) Let sn =
∑n−1

j=0 α
j for n ∈ N. Then fn is (λsn , αn)-Hölder continuous

for every n ∈ N.
(ii) Assume further that α < 1. Then for every x, y ∈ X with d(x, y) ≤ 1,

we have d(fn(x), fn(y)) ≤ λ1/(1−α) for every n ∈ N.

Proof. (i) This is an easy verification by induction on n, where the initial
step is covered by the definition of Hölder continuity. Assuming the nth step,
we obtain

d(fn+1(x), fn+1(y)) ≤ λd(fn(x), fn(y))α

≤ λ(λsnd(x, y)α
n
)α = λsn+1d(x, y)α

n+1

for every x, y ∈ X since 1 + snα = sn+1.

(ii) This is a direct consequence of (i) since d(x, y)α
n ≤ 1 and

∑∞
j=0 α

j =
1/(1− α).

The above observation already implies that there are some restrictions
for a Hölder continuous, non-Lipschitz map to be transitive when the metric
is unbounded:

Corollary 6.2. Let (X, f) be a dynamical system, and suppose f is
(λ, α)-Hölder continuous for some λ > 1 and 0 < α < 1 (note that we
have excluded the case α = 1). Also assume that the metric d on X under
consideration is unbounded. Then:

(i) f cannot be weakly mixing.
(ii) If f has a bounded orbit, then f cannot be transitive.

Proof. (i) If f is weakly mixing, there must exist (x, y) ∈ Trans(f × f)
with d(x, y) ≤ 1. Since d is unbounded and (x, y) ∈ Trans(f × f) we should
have supn∈N d(fn(x), fn(y)) =∞. This contradicts Proposition 6.1(ii).

(ii) Let y ∈ X be such that the orbit O(f, y) is bounded. If f is transitive,
there must exist x ∈ Trans(f) with d(x, y) ≤ 1. Since d is unbounded and
x ∈ Trans(f), we should have

sup
n∈N

d(fn(x), fn(y)) ≥ sup
n∈N

dist(fn(x), O(f, y) =∞,

contradicting Proposition 6.1(ii).

In contrast, spaces with unbounded metric can support weakly mixing
Lipschitz maps. In fact, every infinite-dimensional separable Banach space
admits bounded linear operators that are mixing [ANS, BER]. Moreover,
Hölder continuous, non-Lipschitz maps can be mixing on compact metric
spaces. We give one such example:
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Example 6.3. Let U1 = (0, 1/9), U2 = (1/9, 5/9) and U3 = (5/9, 1). Let
f : [0, 1]→ [0, 1] be the continuous map defined by the following conditions:
f(0) = f(5/9) = 0, f(1/9) = f(1) = 1, f(x) = 3

√
x for x ∈ U1 and the

graph of f is linear on each of U2, U3. For x ∈ U1, we have |f ′(x)| ≥ 9/2
since f ′(x) = 3/(2

√
x). For x ∈ U2 ∪ U3, we have |f ′(x)| = 9/4. Therefore,

by imitating the proof of Theorem 4.5 it can be shown that for any non-
degenerate subinterval L ⊂ [0, 1], there is n ∈ N with fn(L) = [0, 1]. This
implies f is mixing. Since f is (3, 1/2)-Hölder continuous on [0, 1/9] and
(9/4)-Lipschitz on [1/9, 1], it follows that f is (3, 1/2)-Hölder continuous on
[0, 1]. But f is not Lipschitz on [0, 1] since x 7→

√
x is not Lipschitz on [0, a]

for any a > 0.

Many examples similar to the one given above can easily be constructed.
Thus it is worth investigating sufficient conditions for the set of non-tran-
sitive points of a Hölder continuous map to be σ-(polynomially) porous.
As noted in Proposition 6.1(i), if f is (λ, α)-Hölder continuous and sn =∑n−1

j=0 α
j , then d(fn(x), fn(y)) ≤ λsnd(x, y)α

n
. The presence of the power

αn in this inequality creates obstructions to imitating the estimate technique
from the proof of Lemma 3.1. We invite the reader to come up with new
techniques to analyze the Hölder continuous case.
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