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ON THE CAUCHY PROBLEM FOR CONVOLUTION EQUATIONS

JAN KISYNSKI (Lublin)

Abstract. We consider one-parameter (Cp)-semigroups of operators in the space
S'(R™; C™) with infinitesimal generator of the form (G x)|s/®n,cm) where G is an My xm-
valued rapidly decreasing distribution on R"™. It is proved that the Petrovskii condition for
forward evolution ensures not only the existence and uniqueness of the above semigroup
but also its nice behaviour after restriction to whichever of the function spaces S(R™; C™),
Drr(R™;C™), p € [1,00], (On)(R™; C™), a € ]0, 00], or the spaces D7.q(R™;C™), ¢ € ]1, 00],
of bounded distributions.

[y

. Preliminaries. We shall use the spaces

S(R™) of infinitely differentiable rapidly decreasing functions on R™,
S'(R™) of slowly increasing (or tempered) distributions on R™,

On (R™) of infinitely differentiable slowly increasing functions on R,
Op(R™) of rapidly decreasing distributions on R”™.

A function f belongs to Oy (R™) if and only if f € C°°(R") and for every
multiindex o € N there are K = Ky, € [0,00[ and k = ks, € N such that

10°F(&)] < K(1+ [€])*  for every & € R™

According to L. Schwartz [S1, Sec. VIL5] a distribution 7" on R™ belongs
to OL(R") if and only if for every k > 0 the distribution (1 + |z|2)*/2T
is bounded (i.e. it extends to a continuous linear functional on Dy:(R™) =
{o € C®(R") : *p € L'(R") for every a € NZ}). The distribution space
O4(R™) is a convolution algebra.

The Fourier transformation maps Og(R™) in one-to-one manner onto
Own(R™), so that for every distribution U € O (R™) its Fourier transform is
a function FU = U € Op(R™).

By M, xm we shall denote the set of m xm matrices with complex entries.
We shall use C™-valued and M, «,-valued functions and distributions.

The results of [S2] and [K2|] imply the following
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THEOREM 1. If G € Op(R"™; Myyxm), then we have (G *)|s/mn,cmy €
L(S'(R™;C™); S'(R™; C™)) and the following five conditions are equivalent:

(1.1) there exists a unique one-parameter operator semigroup (1i)i>0 C
L(S'(R™;,C™); S'(R™;C™)) of class (Cp) whose infinitesimal generator
is equal to (G *)|s/@mnicm),

(1.2) G is equal to the generating distribution of an infinitely differentiable
convolution semigroup (S¢)t=0 C Op(R™; Mpyxm),

(1.3) 0V maxRec(G(€)) = O(loglé|) as &€ € R™ and |£| — oo where o
denotes the spectrum of a matriz belonging to My, xm,

(1.4) there are K € [0,00] and k € N such that
pexp G(E)) < K(1+[€)}  for every & € R”

where p denotes the spectral radius of a matriz belonging to My, xm,
(1.5) there are K € [0,00[ and k € N such that

llexp G(&)l| p(cmicmy < K(L+[E[)F for every & € R™.

Moreover, if the above equivalent conditions are satisfied, then the operator
semigroup (Ty)i>0 C L(S'(R™;C™); S'(R™;C™)) occurring in (L.1]) has the

form

T, =8 ®, te[0,00], &ecSR";CM),

where (S¢)i>0 C Op(R™; Myxm) is the convolution semigroup occurring in

(1.2).
If suppG = {0}, i.e. G = G(01,...,0,) ® 0 where § is the Dirac distri-

bution on R™ and G(94,...,0,) is an m x m matrix whose entries are scalar

PDOs with constant coefficients, then the equivalences (:}(:)
are consequences of L. Schwartz’s Theorem III from [S2]. The equivalence
@ is an immediate consequence of [E-N| Sec. 1.3, Lemma 3.19]. The
implication 1) is trivial. The non-trivial implication 1} is
a consequence of the G. E. Shilov inequality discussed in |[K2| whose proof
is based on elaborated results of the theory of functions of matrices. The
conditions and do not occur in [S2]. The conditions and
appeared first in the case of G = G(01,...,0,) ® § in the paper of
I. G. Petrovskil [P].

If G=G(0,...,0,) ®86, then G(€) = G(iy, . .. ,i&,) and condition

takes the form

(1.3)1  max{OVReA: (\¢) € CxR" det(Alxm — G(i€)) = 0}
= O(log[¢])  as [¢] = oo
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Since det(ALpyxm — G(i€)) is a polynomial in (A, &) € C x R™, (1.3)); is
equivalent to the condition

(1.3)2 sup{Re A : (A, €) € C x R",det(ALysm — G(i€)) = 0} < o0,

which can also be written in the form

A~

(1.3)3 sup Rec(G(€)) = sup Reo(G(i€)) < oo.

£eRn £ER™
The equivalence of 1 and 2, conjectured by I. G. Petrovskil [P
footnote on p. 24|, was proved by L. Garding |Gl pp. 11-14], and reproved
by L. Hérmander [HI, proof of Lemma 3.9|, [H2, Appendix|, [H3l Appendix]
by means of the Tarski-Seidenberg projection theorem for semi-algebraic
sets.

2. The result. Consider the following locally convex vector spaces:

(2.1) the function spaces S(R";C™), Drp(R™;C™) = {u € C®(R™;C™) :
0% € LP(R™;C™) for every o € Nij}, p € [1,00], and (Og)(R™;C™) =
{u € C®[R™;C™) : sup,epn(1 + |2])~*|0%u(z)||cm < oo for every
a e Nj}, a€]0,00],

(2.2) the distribution spaces S'(R™;C™), Op(R™;C™), D},(R";C™), q €
|1, 00], where D} ,(R"™;C™) is equal to the m-th cartesian power of
(Drr(R™), p = q/(q — 1), and the distribution spaces (O)(R";C™),
a € 10, 00[, all equipped with the strong dual topology.

The space D)o (R™) = (Dr1(R™))" is denoted by B'(R™) and its elements
are called bounded distributions. Whenever ¢ € |1,00[, then D},(R™) C
B'(R™). The dual space of Dre(R™) is not a space of distributions. The
space (Oy)(R™;C™) can be defined for every a € R; it is a Fréchet space
with topology determined by the system of seminorms

Pa(u) = sup (1 + |z])"|0%u(z)||cm, u € (On)(R™;C™), «a € N.

z€R™

The aim of the present paper is to prove the following result announced
in [K2, pp. 50-51]:

THEOREM 2. Suppose that G € On(R"™; My,xm) satisfies (1.3), and E is

whichever of the lcwv.s. [2.1) or (2.2). Let (T})i>0 C L(S'(R™;C™);
S'(R™;C™)) be the one-parameter semigroup of operators occurring in (1.1)),
and (S¢)i>0 C Op(R™; Myyxm) the one-parameter convolution semigroup in

(11.2). Then

(1) This topology induces the convergence of countable sequences which is stronger
than the convergence adopted in [Bl, Sec. 6.2]. Therefore our Lemma 4.4 cannot be deduced
from [B] Sec. 6.4] in spite of the common idea.
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(2.3) (Tt|E)t>0 = ((St%)|Eg)t>0 C L(E; E) is a one-parameter operator semi-
group of class (Cy) with infinitesimal generator (G *)|g,

(2.4) E is sequentially complete,

(2.5) whenever ug € E and f € C*([0,00[; E) where k € N or k = 0o, then
the Cauchy problem

u(0) = ug

has a solution u € CF([0,00[; E) which is unique in the class
C1([0, 0o[; S'(R™; C™)). Moreover, this solution can be expressed by the
formula
¢
u(t):St*qurSST*f(th)dT, t € [0,00],
0
where the integrand is a continuous F-valued function of T and the integral
s understood in the Riemann sense. If, in addition,

A~

s(G) := sup Reo(G(E))
EER™

1s finite, then
(2.6) inf{w € R : the semigroup (e “'T}|g)i>0 C L(E; E) is equicontinuous}
< s(Q), with equality if E = S(R™;C™) or E = §'(R";C™).
REMARK 1. The appearance of various l.c.v.s. F in Theorem [2] should
be compared with [S1 Sec. VIL5, remarks after Theorem XIJ.

REMARK 2. If P is areal polynomial on R" of degree > 2, then exp(iP) €
[Om \ Ua»0(Oa)](R™). If a €]0,00[, k € R and

Yar(r) = (1+ |22 exp(ik - )  for x € R",
then ¢, 1 € (Oy)(R™). If, in addition, k, # 0 for v =1,...,n, then

|acl|i£>n(>o |z| 0% k(x)] =1 for every a € Nj.

REMARK 3. If F = D1 (R™;C™) and G = G(01,...0,) ® J, then the
equivalences (1.3)<(1.5)<(2.3) and the assertion (2.5)) of Theorem [2| coin-

cide with the results of I. G. Petrovskil formulated in Chapter I of |[P] in
terms of classical analysis.

REMARK 4. Theorem [2|is not true for £ = O/ (R"™) (although it is true
for E' = O (R™)). To see this, let G = iAd (on R™). Then supp G = {0},
so that G € OL(R™), and G(§) = —il¢]?, so that s(G) = s(—G) = 0.
The i.d.c.s. (St)i>0 C O (R™) with generating distribution iAd extends to
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a one-parameter convolution group (S¢)ier C Op(R™) such that for every
t € R\ {0} the distribution S; € O, (R") is equal to the function

1—isgnt\"™ i|z|? "
St(.fU) = TM exp A y r eR s

belonging to Oy (R™). See [Gol, Sec. 1.8.13]. Consider the Cauchy problem
for the Schrodinger equation

(2.7) gtu(t) = 1A xu(t) = iAu(t) for t € [0, 00|,
U(O) = S—t()7

where ¢y € ]0,00[. The choice of the initial distribution u(0) = S_y,, to €
10, 0ol resembles some formulas from [R), Sec. 3.4, Problem 2| concerning dis-
persion phenomena. In the class C1([0, co[; S'(R™)) the Cauchy problem
has a unique solution. Since this solution has the form u(t) = S; * S_4,, one
has u(0) = S_;, € Op(R™) and u(tg) = Sy, * S—t, = 6 € S'(R™) \ Opr(R™).
Consequently, the Cauchy problem with initial distribution being the
function S_, € Op(R™) has no solution in the class C1([0, oo[; Opr(R™)).

REMARK 5. From it follows that if G € Op(R"; Myxm) and s(G)
< 00, then the semigroups (1;|g)t>0 C L(E; E) for E of the form or
are uniformly exponential. More exactly, if w € |s(G), oo[, then, for each
such E, the (Cp)-semigroup of operators (e~ “!T;|g)i>0 C L(E; E) is equicon-
tinuous in the topology of E. According to the theory of equicontinuous
one-parameter operator semigroups of class (Cp) in a sequentially complete
lLe.vs. (see [Y, Chapter IX]), the operator (G *)|s/mn,cm) € L(S'(R™;C™),
S'(R™;C™)) has the L(S'(R™;C™),S'(R™; C™))-valued resolvent defined in
the half-plane {A € C : ReX > s(G)}, and this resolvent is equal to the
Laplace transform of the semigroup (T3);>0 C L(S'(R"™;C™),S"(R™;C™)).
Moreover, if E is whichever of the l.c.v.s. or , then the restrictions
to L(E; E) of the values of this resolvent constitute an L(E; E)-valued resol-
vent defined in the half-plane {A € C : Re A > s(G)}. The L(E; E)-valued
resolvent obtained in this way is equal to the Laplace transform of the semi-
group (Ti|g)t>0 C L(E;E), and is equal to the resolvent of the operator
(Gx)|g € L(E; E).

Moreover, still under the assumptions that G € Op(R"; My,xm) and
s(G) < o0, all the above resolvents have the form

{A€C:ReA>s(G) >\ (Ry#+)|g € L(E,E)

where for each A€ C with Re A> s(G) the distribution Ry € O (R™; My xm)
is defined by the formula

Ry = S e NS, dt
0
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with improper Riemann integral in the sequentially complete l.c.v.s.
On(R™; Mypsm) C Ly (S(R™; C™); S(R™; C™)). The mapping {\ € C: Re X >
$(G)} 3 A= Ry € OL(R™; My, xm) is holomorphic, and is an Op (R™; My, xm )-
valued convolutional pseudoresolvent, i.e. it satisfies the equality

Ry—R, = (p—A)RyxR,, for every A\, € C such that Re A, Re > s(G).
For every k € N and A\ € C such that Re A > s(G) one has

and -
*k 1 g -
(BN = (k—1)! (aA By

3. Strongly (G *)-invariant locally convex vector spaces. Assume
that (S¢)i>0 C Op(R"™; Mpxm) is an infinitely differentiable convolution
semigroup, and let G € Op(R™; Mp,xm) be its generating distribution.

By an (S. %)-invariant l.c.v.s. we mean a sequentially complete l.c.v.s. E
continuously imbedded in 8’ (R™; M,;,« ) which satisfies the three conditions:

(3.1) Sy« E C E for every t € [0, 0],

(3.2) the mapping [0,00[ X E > (t,u) — S; * u € E is continuous,

(3.3) ((St*)|E)t>0 C L(E;E) is a one-parameter (Cp)-semigroup with in-
finitesimal generator Gg such that Dom(Gg) = {u € E : G xu € E},
Gru = G xu for u € Dom(Gg).

We say that a l.c.v.s. E is strongly (G *)-invariant if G« E C E and E is
(S. )-invariant.

In the above definitions the sequential completeness of a l.c.v.s. is im-
portant for two reasons: (i) one can use Riemann integrals of continuous
E-valued functions, and (ii) one can use |[E2, Theorem 7.4.4].

Every distribution 7' € S'(R"™; My, xm) is represented by an m X m-
matrix whose entries are scalar distributions belonging to S’'(R™). Then
Tt e & (R™; Myyyxm) is defined as the distribution represented by the ma-
trix transpose of the matrix representing 7', the distribution-entries being
reflected. ?Nhenever G € O4(R™; My xm) satisfies the condition (1.3)), then
so does GT.

THEOREM 3. Suppose that a distribution G € Op(R™; Mpxm) satisfies
the condition (1.3), and that (St)i>0 C Op(R™; Mynxm) is the i.d.c.s. whose
generating distribution is G. Under these assumptions the following two as-
sertions hold true:

(A) If E is a sequentially complete l.c.v.s. continuously imbedded in
S'(R™; Myyxm) such that (S¢+x)E C E for every t € [0,00[ and the
mapping [0,00[ X E 3 (t,u) — Sy xu € E is separately continuous,
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then (St|g)i>0 C L(E;E) is a one-parameter operator semigroup
of class (Cy) whose infinitesimal generator is the operator Gg such
that D(Gg) = {u € E : G*xu € E}, and Ggu = G * u whenever

(B) Suppose that F is a barrelled l.c.v.s. continuously imbedded in S'(R™)
such that S(R™) is continuously and densely imbedded in F. Let F
be the dual space of F equipped with the strong dual topology. If
E = XL F is strongly (G %)-invariant, then E' := X Fy s
strongly (G *)-invariant. If the semigroup ((S’tT *)|E)i>0 C L(E;E)
is equicontinuous, then the semigroup ((S¢*)|g/)i>0 C L(E';E') is
equicontinuous.

Proof of (A). It is obvious that ((S¢*)|g)i>0 C L(E; E) is a (Cp)-semi-
group. Denote by Apg its infinitesimal generator. We have to prove that
Ap = Gpg. To this end notice that whenever T € S'(R™; C™) is fixed, the
mapping On(R™; Myxm) 2 U — U xT € S'(R";C™) is continuous, and
hence the mapping [0,00[ 3 h — S« T € S'(R";C™) is infinitely differen-
tiable. Moreover,

d

%(Sh xT) = <dCiLSh> «T = (Sp+«G)*T for every h € [0, 00].

Since S’(R™;C™) is complete, it follows that whenever h € [0,00[ and T €
S'(R™; M), then
h
Sh*T—T:SST*G*TdT
0
where the Riemann integral on the right-hand side is convergent in the topol-
ogy of 8&'(R™;C™). This last equality implies that Ap = Gg. Indeed, if
T = u € D(Gg), then the integrand on the right-hand side is a continu-
ous FE-valued function of 7, so that, by sequential completeness of F, the
Riemann integral makes sense. It follows that if u € D(Gg) and h | 0, then
h
1 1
E-lim —(Sp, *u — u) = E-lim — S Sy x Gpudr = Ggru,
hlo  h RO R 0

proving that Gg C Ag. On the other hand, if u € D(Ag) and h | 0, then

Apu = E-lim %(Sh xu—u) =8 (R";C™)-lim %(Sh kU — U)
1 h
:S’(R";Cm)-limﬁs& «Gxudr=Gxu
0

where the Riemann integral is understood in the sense of &’(R"™;C™). It
follows that if w € D(Ag), then Apu = G % u, and so G *xu € FE and
Agpu = Ggu, proving that Agp C Gg.
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Proof of (B). Since S(R™;C™) is continuously and densely imbedded
in F, it follows that every element of F’ has a unique extension to a distri-
bution belonging to S'(R™; C™), and E' = x ' F{ is continuously imbedded
in §'(R™; C™). Furthermore, the barrelledness of F' implies the sequential
completeness of F’. Indeed, suppose that T}, v = 1,2,..., is a Cauchy se-
quence in F’. Then, by the Banach—Steinhaus theorem, there is T' € F’ such
that lim, oo (Ty,u) = (T,u) for every u € F. Let B be a bounded subset

of F. Since T}, v = 1,2,..., is a Cauchy sequence uniformly on B, there is
a sequence v; < vy < --- such that
k
SUP|< Ty u) = Ty w)] < 1/2%.
ueB
Since
oo
(T, u) — Z (T, u) = (T, )
=k

it follows that

%)
sup [(Ty,, w) — (T, u)| < sup [(Ty, u) — (Ty,,,u)| < 1/2871
ueB ueB

From this and the fact that
lim _sup [(Ty,u) — (T u)] = 0

1V =00 ye B

it follows that
lim sup [(T,,,u) — (T, u)| = 0.
k—o0 ueB
Thanks to the already proved assertion (A), in_order to complete the
proof of (B) we have to show that if E is strongly (GT *)-invariant, then:

(3.4) (G#)E' C E,

(3.5) (S¢x)E' C E' for every t € [0, 00],

(3.6) the mapping [0,00[ X E' 3 (t,u) — Sy *u € E’ is continuous (so that
((St*)|g)e=0 C L(E'; E') is an operator semigroup of class (Cp)),

(3.7) if the semigroup ((S’tT *)|g)t>0 C L(E; E) is equicontinuous, then so is
(81 4)] 7 )iz0 C L(E'; EY),

(3.8) for every u € E' the mapping [0,00[ 2 t — Sy xu € E’ is continuously
differentiable (so that D(Gg/) = E" and hence G = (G *)|gr, by (A)).

For the proof of (3.4) observe that whenever T' € S'(R™;C™) and u €
S(R™;C™), then
(G*T,u) = (T,G" xu).
If T € E’, then the right-hand side of this equality can be uniquely extended

to a linear functional of u continuous on E. This implies that G« T € E'.
An analogous argument proves (3.5)).
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In order to prove we have to show that whenever ¢y € [0, 00| and
To € FE', then for every neighbourhood U of Sy, * Ty in E’ there are a
neighbourhood V' C [0, 00[ of tp and a neighbourhood W of Ty in E’ such
that whenever t € V and T' € W, then S; * T € U. It is sufficient to prove
this for

(3.9) U:{XEE’:SEE\<X—StO*TO,u>]<5}

where € € ]0,00[ and B is a bounded subset of E. It will appear that if U
has the form (3.9)), then one can take

(3.10) W:{TeE’:supy<T—T0,v>\ <5/2}
vel
where
C:{S’Z*u:te [0,to + 1], u € B}.
The boundedness of C' follows from [E2, Theorem 7.4.4] because whenever

u € F is arbitrarily fixed, then {S’Z xu:te[0,to+ 1]} is a bounded subset
of E.

The construction of V is more complicated. Notice first that for every
t € [0,00[, T € E' and u € F one has
(S¢x T — Sty * To, u) = ((St — Sty) * To,u) + (St * (T — Tp), u)
= (To, (S — S} ) % u) + (T — Ty, 8 * u).
It follows that if U and W have the form (3.9) and (3.10)), then Sy « T € U
if only T € W and
(3.11) sup]<T0,(5’2—S’;ro)*u>\ <e/2 foreveryteV.
ueB

In order to construct V' which satisfies (3.11)) and has the form V = {t €
[0,t0 + 1[ : |t — to| < 0}, observe that for every ¢ € [0,%p + 1] and v € E one

has
t

(S’Z—SJO)*u:SSi*GT*udT,
to

so that whenever B is a bounded subset of E, then

sup [(To, (S] — 8] ) * u)| < [t — to| sup |(Tp, v)|
u€eB veED

where, by [E2, Theorem 7.4.4],
D={ST«G sxu:1el0,ty+1], uc B}

is a bounded subset of E. It follows that if § = 2e(1 + sup,ep [(To,v)|) 7,
then (3.11]) holds. This completes the proof of (3.6).
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In order to prove ({3.7)), take a neighbourhood U of zero in E’ of the form

U= {X € B :sup [(X,u)| < E}

ueB

where ¢ € ]0,00[ and B is a bounded subset of E. Put

W = {T € E' :sup (T,v)| < 5} where C = {8 xu:te[0,00[, uc B}.
vel

By [E2, Theorem 7.4.4], C' is a bounded subset of E, because the equicontinu-
ity of the semigroup ((S’;r *)|E)t>0 C L(E; E) implies that whenever u € E,

then {S]*u : t € [0, 00[} is a bounded subset of E. Hence W is a neighbhour-
hood of zero in E’. Since (S; *x T,u) = (T, 5’2 x u), it follows that whenever
T € W, then S; T € U for every t € [0, 00].

Finally, notice that means that whenever u € E', tp € |0, 00[ and a
bounded set B C E are fixed, then the mappings

[0,t) 2t (S¢xu,p) €C, ¢eEB,

are continuously differentiable uniformly with respect to ¢ ranging over B.
To prove this, it is sufficient to observe that

T (S u) T w8l >}
Sup —_ t*u,go = Sup —u, *(p
©EB, te[0,to] dt? wEB, te[0,to] dt? '
= swp (5« GG g)|
pEB, te[0,to]
= sup <U, ¢>’ <00
pel

where
C={S«G«Glxp:te(0t], ¢ B}

is a bounded subset of E. To prove the boundedness of C' it is sufficient to
recall that E is strongly (G #)-invariant, and to apply [E2, Theorem 7.4.4].

4. The strong (G *)-invariance and property (2.6) of the func-
tion spaces (2.1). By [EL, Sec. devoted to factors of class (.9,.5)| or [K1l
Theorem 2.1|, one has

(4.1) Op(R") ={T € S'(R") : (T #)|s(rn) € L(S(R™); S(R™))}.
Recall that by |[K2l p. 53]
(4.2) the topology in O (R™) is induced from Ly(S(R™); S(R™)) via the map-
ping
Oc(R™) 5T +— (T *)|sm®ny € L(SR™); S(R™)).

From (4.1) and (4.2), by the Banach—Steinhaus theorem, it follows that if
(St)t>0 C Op(R™; Myyxm) is an id.c.s., then for every to € |0, 00 the set



CAUCHY PROBLEM FOR CONVOLUTION EQUATIONS 125

of operators {(S;*)|smn.cmy @ t € [0,t0]} C L(S(R™;C™); S(R™;C™)) is
equicontinuous. This implies that for £ = S(R™;C™) the conditions
and are satisfied.

Furthermore, if (S;)i>0 C Op(R™; Mpyxm) is an id.c.s., then for every
¢ € S(R™;C™) the mapping [0,00[ 3 t — St *x p € S(R™;C™) is infinitely
differentiable, so that the domain of the infinitesimal generator A of the
operator semigroup ((S; *)|s(rn;cm))i>0 C L(S(R™; C™); S(R™; C™)) is equal
to the whole S(R"; C™).

By Theorem 3(A), it follows that A = (G *)|g@n,cm) Where G € Og(R™;
M, 5m) 1s the generating distribution of the i.d.c.s. Thus for E = S(R™; C™)
the condition is satisfied with Gg = (G *)|g. Altogether, this means
that S(R™;C™) is strongly (G *)-invariant. A direct consequence of [K2,
Theorem 2.2| is that holds for E = S(R™;C™).

In order to establish analogous facts for E = Dp»(R";C™), p € [1, 0],
and E = (O,)(R™;C™), a € ]0, 00[, we shall use the following four lemmas.
For every k € ]0, 0o let

Bi(R"; Mycn) = { £ € CR™ Mynson) = 5up,[ol (211, < 00}
rER™
Equipped with the norm || f||p, = supyegn (1 + [2))*||f(2)|| a1, .., the space
By (R™; M, xm) is a Banach space.

LEMMA 4.1. Suppose that the distribution G € O (R™; Myxm) satisfies
, and let (St)i>0 C Op(R™; Myxm) be the i.d.c.s. with generating dis-
tribution G. Then for every ty € ]0,00[ and k € N there are jo € N and a
continuously differentiable mapping [0,to] > t — fi € Bog(R™; Myyxm) such
that whenever t € [0,1¢], then

(43) ft c BQk(Rn§ mem) N O/C(Rna mem)
and
(4.4) Se= (1= 2)f.

If in addition s(G) := supgepn Reo(G(§)) < oo, then for every k € N there
are jo € N and a continuously differentiable mapping [0,00] > t — fi €
Bop(R™; Myysm) such that (4.3) and hold for every t € [0,00[, and
moreover
(4.5) sup e ¥ fillp,, < 00  for every w € ]s(G),o0].

te[0,00]

It is instructive to compare Lemma with [S1, Sec. VIL.5, Theorem
IX, 10] which implies that an M, «x,-valued distribution 7" on R™ belongs to
Op(R™; Myyxm) (i.e. is rapidly decreasing) if and only if for every k € ]0, oo
there is m; € N and a finite collection {fro : @ € Nf, |a] < my} C
By (R™; My sm) such that T = Zla\ﬁmk 0° fi,o- The argument of the proof
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of Lemma (applied to a single T' € Op(R"™; My, xm)) yields a new proof
of Theorem IX, 1° of [S1]. This new proof depends on the Fourier transfor-
mation but is independent of the knowledge about fundamental solutions of
iterated laplacians.

LEMMA 4.2. Suppose that a > 0 and k > a+n. Then
B(R"™; Minxm) * (Oa)(R";C™) C (Oa)(R"™; C™)
where * denotes convolution of functions. Moreover, the mapping
B (R™; Mimxm) X (Oa)(R™;C™) 3 (f,u) = [+ u € (Oa)(R"; C™)
18 continuous.

LEMMA 4.3. Suppose that 0 < h < k < oo, and let (¢,)ven C D(R™)
be a non-negative sequence such that supp ¢, C {v € R" : |z| < 1/v} and
(gn wv(z)dr =1 for every v € N. Let B be a bounded subset of By(R™)
consisting of equicontinuous functions. Then

lim sup || f * ¢, — fl|B, = 0.
l/—)OOfeB

LEMMA 4.4. Whenever a > 0, k > a+n, f € Bi(R") N On(R™)
and u € (Og)(R"), the distribution-theoretical convolution (defined via the
duality between distributions and sample functions) of f € Op(R™) and
u € S'(R™) coincides with the convolution of the functions f € Bj(R™)
and v € (Og)(R™).

Before proving the above lemmas, let us show how they imply that
whenever G € O (R"; Mp,xm) satisfies and either £ = Dr»(R™; C™),
p € [1,00] or E = (Oy)(R™;C™), a € |0,00[, then E is a strongly (G *)-
invariant l.c.v.s. such that holds if s(G) < oo. To this end fix a and
k € N such that a > 0 and 2k > a + n. Then, by Lemmas and for
every to € |0, 00| there are jp € N and a continuously differentiable mapping

[0,t0] >t — fi € Bog(R™; Myyxm) such that (4.3)) and (4.4) hold, so that

(4.6)  Spxu=((1—AYf)xu=f;*((1— A)ou)
for every t € [0,t0] and u € (Og)(R™; Mpxm,)-

In the symbols * denote the distribution-theoretical convolution of an
element (1—A)0 f; or fi of O (R™; Myyxm) with an element u or (1—A)0y
of 8'(R™;C™). By Lemmal[4.4] for every fixed t € [0,o] the last term in
is equal to the elementary convolution of the M,,xm,-valued function f; €
Bop(R™; Myysem) with the C™-valued function (1 — A)ou € (O,)(R™; C™).
If E = (O,)(R"C™), then, by Lemma[{.2] the mapping

(4.7) [0,t0] X E > (t,u) — Sixu= fi+ (1 — AY°u) € E
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is continuous, and for every fixed u € E the mapping

(4.8) 0,t0) Dt — Sy xu=fix((1—A)ou) € E

is continuously differentiable. The statements and remain valid
for E = Dr»(R™;C™) because if 2k > n, then Bog(R™; Myyxm) is con-
tinuously imbedded in L'(R™; M%), and the mapping L'(R™; M,,xm) X
Drp(R",C™) 3 (f,u) — fxu € Drp(R™; C™) is continuous by the Young
inequality. From it follows that if either £ = Drp(R™;C™), p € [1, 0],
or E = (O,)(R";C™), a € ]0,00[, then the conditions and are
satisfied. From it follows that Gg = (G *)|g, so that G« E C E. Hence
if either £ = Dpp(R™;C™), p € [1,00], or E = (Oy)(R™;C™), a € ]0,00],
then E is a strongly (G x)-invariant l.c.v.s.

Suppose now that s(G) < oo and either E = D, (R";C™), p € [1, 0],
or E = (0,)(R™;C™), a € ]0,00[. The topology in E is determined by the
system of seminorms p,, a € N, where either p,(u) = [|0%u||pr(rn,cm) oF
Pa(u) = supgepn (1 + |2]) 7% 0% (2)||cm. If s(G) < oo, then holds for
every ¢t € [0,00[ and u € E, so that whenever w > s(G), then, by (L.5),
Lemma continuity of the imbedding Bay(R"™; Myxm) C LY (R™; Myyxm)
and the Young inequality,

Pal(e™ Sy u) = pale™ frx (1 = AYPu)) = e™“'pa(fe * (1 — AYu))
< Cupa((1 = A)Yu)
for every t € [0,00[ and v € E, with some constant C,, € |0, co[. This proves

that for every w > s(G) the operator semigroup ((e"“*S; x)|g)i>0 C L(E; E)
is equicontinuous, so that (2.6 holds.

Proof of Lemma . Suppose that (S¢)i>0 C Op(R™ Mpxm) is an
i.d.c.s. with generating distribution G. Fix k € |0, 00[. Take jo € N whose
value will be determined later. For every t € [0, 00| the formula

(4.9) gi(§) = (1+ [¢P) P exp(tG(¢)), £€R™,
defines an element g; of Opr(R™; My xm). Let

(410) ft = f-f_lgt_

Then

fi € O5(R™; M) and (1 — A0 f, = F 1 (exptG) = 5.
Lemma [£.1] follows once it is proved that

(4.11) whenever ty € ]0, 00[, there is jo € N such that f; € Bor(R"™; Myyxm)
for every t € [0, to] and the mapping [0,¢g] 3 ¢t — f; € Bor(R™; My xm)
is continuously differentiable,

(4.12) whenever s(G) < oo, there is jo € N such that f; € Bok(R"™; My sm)
for every t € [0, oo[, the mapping [0,00[ 3 t — f; € Bog(R"™; Mysm)
is continuously differentiable and holds.



128 J. KISYNSKI

The condition (4.11)) is satisfied if for every to € |0, oo[ there is jo € N such
that

(4.13) {(d/dt)}(1 — A)*g, = t € [0,%0], 1 = 0,1,2} is a bounded subset of
LY (R™; Myysem).
Notice that

d . R .
(dt) Bl = S IR 0O et
|oe|+1B]+|v]=]x|
where the first bracketed factor is a scalar function, and the second and third
factors are M., «m-valued functions. Since

08 (L+ €))7 = (1 + |¢[*) 7 Pa(€)

where P, is a polynomial of degree ||, the function R" 5 £ — (1+ |€|?) 70 €
R belongs to (O_g;,)(R™). Moreover the function R” 3 € — G(£)! € Mme
belongs to Onr(R™; Myxm), and by [K2, Proposition 3.2], {exp(tQ@) :
[0,t0]} is a set of uniformly slowly increasing C*°-functions on R™. It follows
that whenever jo € N is sufficiently large, then {(d/dt)laggt 1t € [0,to], I=
0,1,2, || <2k} is a bounded subset of L' (R™; My, ), which implies (4.13)).

The proof of is similar to that of , but this time we make
use of the fact that whenever w > s(G) then, by |[K2, Proposition 3.3],
{e=“texp(t@) : t € [0,00]} C Onr(R™; Mypxrm) is a set of uniformly slowly in-
creasing C'*°-functions on R™. This implies that whenever w > s(G) and jy €
N is sufficiently large, then {e=“!(d/dt)!(1 — A¢)*g; : t € [0,00[, 1 = 0,1,2}
is a bounded subset of LY(R™; M,,xm). Consequently, the mapping [0, oo 3
t — fi € Bop(R"™; Myyxm) is continuously differentiable and holds.

Proof of Lemma [{.3 Suppose that @ > 0 and k > a + n. Let f €
Bi(R™; Myyxm) and u € (Og)(R™; C™). Then, for every a € N,
V17 @w)o*ul@ = y)llem dy < ([ fllBepa(u) § (14 y) (1 + o —y))*dy
R R”
< fllBypalw) § (14 ly) ™ (1 + J2| + [y))*d
RTL

< I flmepalw)( § O+ ™" dy) (1 + Ja))?,
o

where {5, (1 + |y|)**dy = C < oo because a — k < —n. This implies that
[xu € (Og)(R™;C™) and po(f *u) < C| f|| pa(u) for every a € Njj. Hence
it is easy to deduce the continuity of the mapping

Bi(R™; Mysim) % (O2)(R™;C™) 3 (f,u) = f +u € (Og)(R™;C™).

Proof of Lemma[4.3 Denote by w the common modulus of continuity of
functions belonging to B. Whenever f € B and v > 2, then for every m > 0
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one has
15 %60 = flls, = sup (11| § (7 =) = F@)euly) dy
reR" R
< (4 m)"(1/0) + sup (14 " (1+el=1/0) 2],
x|>m
< (1 +m)w(1/v) + |S|1;p (14 [z)™(5 + 3lz)) 2] fll 5,
< (14 m)hw1/v) + (1 +m)"*2k L sup || £ 5,,
feB
whence

Jim sup | = o, = fllm, =0

Proof of Lemma[.7 In the present proof, denote by * the general dist-
ribution-theoretical convolution, and by *g convolution of functions. Fix a
sequence (¢ ) eny € D(R™) of non-negative functions such that suppp, C
{r e R": |z| < 1/v} and (3, ¢, (2) dz = 1 for every v € N. Then, by Lemma
[1.3] for every ¢ € S(R™) the sequence (¢, * ¢)ven = (pu *0 ¢)ven C S(R™)
converges to ¢ in S(R™), and this convergence is uniform with respect to ¢
ranging over any bounded subset of S(R™). By it follows that whenever
f € On(R") and ¢ € S(R™), then the distributions (f*@,)*¢ = f* (¢, * ),
v € N, are functions belonging to S(R™), and the sequence ((f * ) * @) en
converges to f * ¢ in the topology of S(R™), uniformly with respect to ¢
ranging over any bounded subset of S(R™). This means that the sequence
(f xov)ven C S(R™) C O(R™) converges to f € Op(R™) in the topology
of Op(R™). (In this way we have proved that S(R") is sequentially dense
in Op(R™).) Since for every fixed u € (O,)(R") C S'(R") the mapping
OH(R™) 5 f— fxue S (R") is continuous (in the strong dual topology of
S’ (R™)), it follows that

(4.14) whenever f € O (R") and u € (O,)(R"), then the sequence of distri-
butions ((f * ¢,) *u)yeny C S’ (R™) converges to the distribution f *u
in the strong dual topology of &’(R™).

Suppose now that a > 0, k > a +n, f € Op(R") N Bx(R™) and
u € (Og)(R™). Then, by (1), f * ¢, € S(R") C By(R") for every v € N, so
that, by Lemmal4.2] the distribution (f*p,)*u € S'(R") is equal to the func-
tion (f*yy)*ou € (Oy)(R™) (because the distribution u is a slowly increasing
continuous function). Fix now h € |a + n,k[. Then By (R") C Bj(R") and
whenever f € B(R") (so that f € L!(R")), then Lemma applied to the
singleton B = {f} implies that the sequence of functions (f * ¢, ), en con-
verges to the function f in the norm of B (R"™). By Lemmait follows that
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(4.15) whenever f € By(R")NOR(R") and u € (Og)(R™), then the distribu-
tions (f *¢,) *u, v € N, are functions belonging to (O,)(R™) and the
sequence ((f*¢,)*u),en converges to the function f*pu in (Og)(R™).

From (4.14) and (4.15) it follows that the distribution f * u is equal to the
function f *g u.

5. The strong (G x)-invariance and property (2.6) of the dis-
tribution spaces . Suppose that the matrix-valued distribution G €
Or(R™; My xm) satisfies the condition . Then also Gt € O (R™; My xm),
and GT satisfies (I-3). Moreover, s(GT) = s(G). In Section {4 it was proved
that S(R™;C™) is strongly (G x)-invariant and satisfies (2.6)). Similarly,
S(R™; C™) is strongly (G %)-invariant. Hence, by Theorem 3(B), S'(R™; C™)
is strongly (G *)-invariant. (The strong (G *)-invariance of &'(R";C™) also
follows directly from condition of Theorem ) Moreover, since the pair
S(R™), S'(R™) is reflexive (S’ (R™) being equipped with the strong dual topol-
ogy), from Theorem (B) it follows that for every w € R™ the equicontinuity
of the semigroup (e*“’tTf\S(Rn;Cm))Qo C L(S(R™;C™); S(R™;C™)) is equiv-
alent to the equicontinuity of the semigroup (e “'T});>0 C L(S'(R™;C™);
S'(R™;C™)). Therefore wg/mn,cm) = Wsmncm) = s(GH = s(@G).

Similar reasonings, based on Theorem |3(B) and the results of Section
prove that each of the distribution spaces D, (R";C™) = x}; (Dp»(R™))’,
qg€]l,00], p=¢q/(g—1), and (O,)(R™;C™), a € ]0,00], is strongly (G *)-
invariant and satisfies .

The strong (G *)-invariance and property of the distribution space
O (R™; C™) follow directly from the properties of the convolution semigroup
(St)t=0 C O (R™; C™) with generating distribution G.

6. Proof of Theorem [2. Assume that the matrix-valued distribu-
tion G € O (R™; Myyxm) satisfies (L.3). By Theorem [1] (or by the strong
(G *)-invariance of S'(R";C™) proved in Section [5), the assertion is
true. Moreover, S'(R";C™) = xj';S'(R") where §'(R") is equipped with
the strong dual topology, so that S&’'(R™) is reflexive and hence barrelled.
Therefore S’(R™; C™) is barrelled, and the uniqueness in the class C*(]0, ool;
S'(R™;C™)) of a solution of the Cauchy problem can be proved by an
argument analogous to the one used in the proof of [H-P, Theorem 23.8.1].
See also [E-N| Sec. I1.6, Proposition 6.4], [Gol Sec. 1.2, Remark 2.14|, [Pal,
Sec. 1.2, Theorem 2.6].

Thanks to the results of Sections 4] and [pl, in order to complete the proof
of Theorem [2] it remains to prove the existence of solutions of the Cauchy
problem and the Duhamel formula representing them. So, it remains
to show that whenever F is a strongly (G *)-invariant l.c.v.s., ug € E, f €
C*([0,00[; E) where k € N, and (S¢)1>0 C O (R™; Myysem) is the i.d.c.s. with
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generating distribution G, then the formula
t
(6.1) u(t) = Spxug+ | Sy = f(t —7)dr, te€0,00],
0
represents a solution of the Cauchy problem (2.5) belonging to C*([0, oo[; E).
To this end we shall consider separately the cases of f =0 and of ug = 0.
If f=0and up € E, then, by (2.3)), the formula (6.1) takes the form
u(t) = (Ty| g)uo. Hence, again by [2.3), u(-) € C*°(]0, oo[; E) and (d/dt)*u(t)
= (G *)*u(t) for t € [0, 00].
If up = 0 and f € CY([0,00[; E), then (6.1) takes the form u(t) = v¢(t)
where
t
(6.2) ve(t) =\ 8-« f(t —7)dr
0
or equivalently

(6.3) ve(t) = SSt,T x f(7)dr.
0

By (3.2), the mapping [0,00[ x E > (t,u) — S; *u € E is continuous, so
the integrands in and are E-valued functions of (7,t) continuous
in the topology of E on the set {(1,¢) € R? : 0 < 7 <t < oo}. Since E is
sequentially complete, the Riemann integrals in and make sense,
and so is the case for all integrands and integrals in the subsequent formulas.

We shall follow [PhL], [Kr, Sec. 1.6.2], [Go, Sec. I1.1.3] and [Pa, Sec. 4.2].
From and we infer that whenever h # 0 and ¢, ¢+ h € [0, oo[, then

1

(64) o (vr(t+h) —vs(t))
t+h t 1
=5 | ST*f(t—Fh—T)dT—i—SST*E(f(t—l—h—T)—f(t—T))dr
t 0

and

1 1 s
(65) 3 (Sh— )% v7(t) = 3 (0g(t+) = 0g(0) 7 | Soorr » F(r) .

t

By continuity of [0,00] x E > (t,u) — Sy *xu € E, from (6.2) and (6.3)
one concludes that vy, v € C([0,00[; E), and (6.4) and (6.5) imply that the
derivative %vf(t) exists in the topology of E for every t € [0, 00|, and

%vf@) = Sy % [(0) + up(t) = G xug(t) + (D).

From the left equality it follows that if f € C*([0, cc[; E) where k € N, then
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for every [ = 1,..., k the expression

v () + Sex (FE0) + G# F7D(0) + - + (G )17 £(0))

is equal to (d/dt)!vs(t), so that vy € C*(]0, 00[; E).
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