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ON THE CAUCHY PROBLEM FOR CONVOLUTION EQUATIONS

BY

JAN KISYŃSKI (Lublin)

Abstract. We consider one-parameter (C0)-semigroups of operators in the space
S ′(Rn;Cm) with infinitesimal generator of the form (G ∗)|S′(Rn;Cm) where G is an Mm×m-
valued rapidly decreasing distribution on Rn. It is proved that the Petrovskĭı condition for
forward evolution ensures not only the existence and uniqueness of the above semigroup
but also its nice behaviour after restriction to whichever of the function spaces S(Rn;Cm),
DLp(Rn;Cm), p ∈ [1,∞], (Oa)(Rn;Cm), a ∈ ]0,∞[, or the spaces D′Lq (Rn;Cm), q ∈ ]1,∞],
of bounded distributions.

1. Preliminaries. We shall use the spaces

• S(Rn) of infinitely differentiable rapidly decreasing functions on Rn,
• S ′(Rn) of slowly increasing (or tempered) distributions on Rn,
• OM (Rn) of infinitely differentiable slowly increasing functions on Rn,
• O′C(Rn) of rapidly decreasing distributions on Rn.

A function f belongs to OM (Rn) if and only if f ∈ C∞(Rn) and for every
multiindex α ∈ Nn0 there are K = Kf,α ∈ [0,∞[ and k = kf,α ∈ N such that

|∂αf(ξ)| ≤ K(1 + |ξ|)k for every ξ ∈ Rn.

According to L. Schwartz [S1, Sec. VII.5] a distribution T on Rn belongs
to O′C(Rn) if and only if for every k > 0 the distribution (1 + |x|2)k/2T
is bounded (i.e. it extends to a continuous linear functional on DL1(Rn) =
{ϕ ∈ C∞(Rn) : ∂αϕ ∈ L1(Rn) for every α ∈ Nn0}). The distribution space
O′C(Rn) is a convolution algebra.

The Fourier transformation maps O′C(Rn) in one-to-one manner onto
OM (Rn), so that for every distribution U ∈ O′C(Rn) its Fourier transform is
a function FU = Û ∈ OM (Rn).

ByMm×m we shall denote the set ofm×mmatrices with complex entries.
We shall use Cm-valued and Mm×m-valued functions and distributions.

The results of [S2] and [K2] imply the following
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Theorem 1. If G ∈ O′C(Rn;Mm×m), then we have (G ∗)|S′(Rn;Cm) ∈
L(S ′(Rn;Cm);S ′(Rn;Cm)) and the following five conditions are equivalent:

(1.1) there exists a unique one-parameter operator semigroup (Tt)t≥0 ⊂
L(S ′(Rn;Cm);S ′(Rn;Cm)) of class (C0) whose infinitesimal generator
is equal to (G ∗)|S′(Rn;Cm),

(1.2) G is equal to the generating distribution of an infinitely differentiable
convolution semigroup (St)t≥0 ⊂ O′C(Rn;Mm×m),

(1.3) 0 ∨ max Reσ(Ĝ(ξ)) = O(log |ξ|) as ξ ∈ Rn and |ξ| → ∞ where σ
denotes the spectrum of a matrix belonging to Mm×m,

(1.4) there are K ∈ [0,∞[ and k ∈ N such that

ρ(exp Ĝ(ξ)) ≤ K(1 + |ξ|)k for every ξ ∈ Rn

where ρ denotes the spectral radius of a matrix belonging to Mm×m,
(1.5) there are K ∈ [0,∞[ and k ∈ N such that

‖exp Ĝ(ξ)‖L(Cm;Cm) ≤ K(1 + |ξ|)k for every ξ ∈ Rn.

Moreover, if the above equivalent conditions are satisfied, then the operator
semigroup (Tt)t≥0 ⊂ L(S ′(Rn;Cm);S ′(Rn;Cm)) occurring in (1.1) has the
form

TtΦ = St ∗ Φ, t ∈ [0,∞[, Φ ∈ S ′(Rn;Cm),

where (St)t≥0 ⊂ O′C(Rn;Mm×m) is the convolution semigroup occurring in
(1.2).

If suppG = {0}, i.e. G = G(∂1, . . . , ∂n) ⊗ δ where δ is the Dirac distri-
bution on Rn and G(∂1, . . . , ∂n) is an m×m matrix whose entries are scalar
PDOs with constant coefficients, then the equivalences (1.1)⇔(1.2)⇔(1.5)
are consequences of L. Schwartz’s Theorem III from [S2]. The equivalence
(1.3)⇔(1.4) is an immediate consequence of [E-N, Sec. I.3, Lemma 3.19]. The
implication (1.5)⇒(1.4) is trivial. The non-trivial implication (1.4)⇒(1.5) is
a consequence of the G. E. Shilov inequality discussed in [K2] whose proof
is based on elaborated results of the theory of functions of matrices. The
conditions (1.3) and (1.4) do not occur in [S2]. The conditions (1.3) and
(1.5) appeared first in the case of G = G(∂1, . . . , ∂n) ⊗ δ in the paper of
I. G. Petrovskĭı [P].

If G = G(∂1, . . . , ∂n)⊗ δ, then Ĝ(ξ) = G(iξ1, . . . , iξn) and condition (1.3)
takes the form

(1.3)1 max{0 ∨ Reλ : (λ, ξ) ∈ C× Rn,det(λ1m×m − G(iξ)) = 0}
= O(log |ξ|) as |ξ| → ∞.
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Since det(λ1m×m − G(iξ)) is a polynomial in (λ, ξ) ∈ C × Rn, (1.3)1 is
equivalent to the condition

(1.3)2 sup{Reλ : (λ, ξ) ∈ C× Rn,det(λ1m×m − G(iξ)) = 0} <∞,
which can also be written in the form

(1.3)3 sup
ξ∈Rn

Reσ(Ĝ(ξ)) = sup
ξ∈Rn

Reσ(G(iξ)) <∞.

The equivalence of (1.3)1 and (1.3)2, conjectured by I. G. Petrovskĭı [P,
footnote on p. 24], was proved by L. Gårding [G, pp. 11–14], and reproved
by L. Hörmander [H1, proof of Lemma 3.9], [H2, Appendix], [H3, Appendix]
by means of the Tarski–Seidenberg projection theorem for semi-algebraic
sets.

2. The result. Consider the following locally convex vector spaces:

(2.1) the function spaces S(Rn;Cm), DLp(Rn;Cm) = {u ∈ C∞(Rn;Cm) :
∂αu ∈ Lp(Rn;Cm) for every α ∈ Nn0}, p ∈ [1,∞], and (Oa)(Rn;Cm) =
{u ∈ C∞(Rn;Cm) : supx∈Rn(1 + |x|)−a‖∂αu(x)‖Cm < ∞ for every
α ∈ Nn0}, a ∈ ]0,∞[,

(2.2) the distribution spaces S ′(Rn;Cm), O′C(Rn;Cm), D′Lq(Rn;Cm), q ∈
]1,∞], where D′Lq(Rn;Cm) is equal to the m-th cartesian power of
(DLp(Rn))′, p = q/(q − 1), and the distribution spaces (O′a)(Rn;Cm),
a ∈ ]0,∞[, all equipped with the strong dual topology.

The space D′L∞(Rn) = (DL1(Rn))′ is denoted by B′(Rn) and its elements
are called bounded distributions. Whenever q ∈ ]1,∞[, then D′Lq(Rn) ⊂
B′(Rn). The dual space of DL∞(Rn) is not a space of distributions. The
space (Oa)(Rn;Cm) can be defined for every a ∈ R; it is a Fréchet space
with topology determined by the system of seminorms

pα(u) = sup
x∈Rn

(1 + |x|)−a‖∂αu(x)‖Cm , u ∈ (Oa)(Rn;Cm), α ∈ Nn0 . (1)

The aim of the present paper is to prove the following result announced
in [K2, pp. 50–51]:

Theorem 2. Suppose that G ∈ O′C(Rn;Mm×m) satisfies (1.3), and E is
whichever of the l.c.v.s. (2.1) or (2.2). Let (Tt)t≥0 ⊂ L(S ′(Rn;Cm);
S ′(Rn;Cm)) be the one-parameter semigroup of operators occurring in (1.1),
and (St)t≥0 ⊂ O′C(Rn;Mm×m) the one-parameter convolution semigroup in
(1.2). Then

(1) This topology induces the convergence of countable sequences which is stronger
than the convergence adopted in [B, Sec. 6.2]. Therefore our Lemma 4.4 cannot be deduced
from [B, Sec. 6.4] in spite of the common idea.
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(2.3) (Tt|E)t≥0 = ((St ∗)|E)t≥0 ⊂ L(E;E) is a one-parameter operator semi-
group of class (C0) with infinitesimal generator (G ∗)|E,

(2.4) E is sequentially complete,
(2.5) whenever u0 ∈ E and f ∈ Ck([0,∞[;E) where k ∈ N or k = ∞, then

the Cauchy problem
du(t)

dt
= G ∗ u(t) + f(t) for t ∈ [0,∞[,

u(0) = u0

has a solution u ∈ Ck([0,∞[;E) which is unique in the class
C1([0,∞[;S ′(Rn;Cm)). Moreover, this solution can be expressed by the
formula

u(t) = St ∗ u0 +

t�

0

Sτ ∗ f(t− τ) dτ, t ∈ [0,∞[,

where the integrand is a continuous E-valued function of τ and the integral
is understood in the Riemann sense. If, in addition,

s(G) := sup
ξ∈Rn

Reσ(Ĝ(ξ))

is finite, then

(2.6) inf{ω ∈ R : the semigroup (e−ωtTt|E)t≥0 ⊂ L(E;E) is equicontinuous}
≤ s(G), with equality if E = S(Rn;Cm) or E = S ′(Rn;Cm).

Remark 1. The appearance of various l.c.v.s. E in Theorem 2 should
be compared with [S1, Sec. VII.5, remarks after Theorem XI].

Remark 2. If P is a real polynomial on Rn of degree≥ 2, then exp(iP ) ∈
[OM \

⋃
a>0(Oa)](Rn). If a ∈ ]0,∞[, k ∈ Rn and

ϕa,k(x) = (1 + |x|2)a/2 exp(ik · x) for x ∈ Rn,

then ϕa,k ∈ (Oa)(Rn). If, in addition, kν 6= 0 for ν = 1, . . . , n, then

lim
|x|→∞

|x|−a|∂αϕa,k(x)| = 1 for every α ∈ Nn0 .

Remark 3. If E = DL∞(Rn;Cm) and G = G(∂1, . . . ∂n) ⊗ δ, then the
equivalences (1.3)⇔(1.5)⇔(2.3) and the assertion (2.5) of Theorem 2 coin-
cide with the results of I. G. Petrovskĭı formulated in Chapter I of [P] in
terms of classical analysis.

Remark 4. Theorem 2 is not true for E = OM (Rn) (although it is true
for E′ = O′C(Rn)). To see this, let G = i∆δ (on Rn). Then suppG = {0},
so that G ∈ O′C(Rn), and Ĝ(ξ) ≡ −i|ξ|2, so that s(G) = s(−G) = 0.
The i.d.c.s. (St)t≥0 ⊂ O′C(Rn) with generating distribution i∆δ extends to
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a one-parameter convolution group (St)t∈R ⊂ O′C(Rn) such that for every
t ∈ R \ {0} the distribution St ∈ O′C(Rn) is equal to the function

St(x) =

(
1− i sgn t

2
√

2π|t|

)m
exp

(
i|x|2

4t

)
, x ∈ Rn,

belonging to OM (Rn). See [Go, Sec. 1.8.13]. Consider the Cauchy problem
for the Schrödinger equation

(2.7)


∂

∂t
u(t) = i∆δ ∗ u(t) = i∆u(t) for t ∈ [0,∞[,

u(0) = S−t0 ,

where t0 ∈ ]0,∞[. The choice of the initial distribution u(0) = S−t0 , t0 ∈
]0,∞[, resembles some formulas from [R, Sec. 3.4, Problem 2] concerning dis-
persion phenomena. In the class C1([0,∞[;S ′(Rn)) the Cauchy problem (2.7)
has a unique solution. Since this solution has the form u(t) = St ∗ S−t0 , one
has u(0) = S−t0 ∈ OM (Rn) and u(t0) = St0 ∗ S−t0 = δ ∈ S ′(Rn) \ OM (Rn).
Consequently, the Cauchy problem (2.7) with initial distribution being the
function S−t0 ∈ OM (Rn) has no solution in the class C1([0,∞[;OM (Rn)).

Remark 5. From (2.6) it follows that if G ∈ O′C(Rn;Mm×m) and s(G)
< ∞, then the semigroups (Tt|E)t≥0 ⊂ L(E;E) for E of the form (2.1) or
(2.2) are uniformly exponential. More exactly, if ω ∈ ]s(G),∞[, then, for each
such E, the (C0)-semigroup of operators (e−ωtTt|E)t≥0 ⊂ L(E;E) is equicon-
tinuous in the topology of E. According to the theory of equicontinuous
one-parameter operator semigroups of class (C0) in a sequentially complete
l.c.v.s. (see [Y, Chapter IX]), the operator (G ∗)|S′(Rn;Cm) ∈ L(S ′(Rn;Cm),
S ′(Rn;Cm)) has the L(S ′(Rn;Cm),S ′(Rn;Cm))-valued resolvent defined in
the half-plane {λ ∈ C : Reλ > s(G)}, and this resolvent is equal to the
Laplace transform of the semigroup (Tt)t≥0 ⊂ L(S ′(Rn;Cm),S ′(Rn;Cm)).
Moreover, if E is whichever of the l.c.v.s. (2.1) or (2.2), then the restrictions
to L(E;E) of the values of this resolvent constitute an L(E;E)-valued resol-
vent defined in the half-plane {λ ∈ C : Reλ > s(G)}. The L(E;E)-valued
resolvent obtained in this way is equal to the Laplace transform of the semi-
group (Tt|E)t≥0 ⊂ L(E;E), and is equal to the resolvent of the operator
(G ∗)|E ∈ L(E;E).

Moreover, still under the assumptions that G ∈ O′C(Rn;Mm×m) and
s(G) <∞, all the above resolvents have the form

{λ ∈ C : Reλ > s(G)} 3 λ 7→ (Rλ ∗)|E ∈ L(E,E)

where for each λ∈C with Reλ>s(G) the distribution Rλ∈O′C(Rn;Mm×m)
is defined by the formula

Rλ =

∞�

0

e−λSt dt
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with improper Riemann integral in the sequentially complete l.c.v.s.
O′C(Rn;Mm×m)⊂Lb(S(Rn;Cm);S(Rn;Cm)). The mapping {λ ∈ C : Reλ >
s(G)}3λ 7→Rλ∈O′C(Rn;Mm×m) is holomorphic, and is an O′C(Rn;Mm×m)-
valued convolutional pseudoresolvent, i.e. it satisfies the equality

Rλ−Rµ = (µ−λ)Rλ∗Rµ for every λ, µ ∈ C such that Reλ,Reµ > s(G).

For every k ∈ N and λ ∈ C such that Reλ > s(G) one has

(λ1m×m ⊗ δ −G) ∗Rλ = Rλ ∗ (λ1m×m ⊗ δ −G) = 1m×m ⊗ δ
and

(Rλ)∗,k =
1

(k − 1)!

(
∂

∂λ

)k−1
Rλ.

3. Strongly (G ∗)-invariant locally convex vector spaces. Assume
that (St)t≥0 ⊂ O′C(Rn;Mm×m) is an infinitely differentiable convolution
semigroup, and let G ∈ O′C(Rn;Mm×m) be its generating distribution.

By an (S. ∗)-invariant l.c.v.s. we mean a sequentially complete l.c.v.s. E
continuously imbedded inS ′(Rn;Mm×m)which satisfies the three conditions:

(3.1) St ∗ E ⊂ E for every t ∈ [0,∞[,
(3.2) the mapping [0,∞[× E 3 (t, u) 7→ St ∗ u ∈ E is continuous,
(3.3) ((St ∗)|E)t≥0 ⊂ L(E;E) is a one-parameter (C0)-semigroup with in-

finitesimal generator GE such that Dom(GE) = {u ∈ E : G ∗ u ∈ E},
GEu = G ∗ u for u ∈ Dom(GE).

We say that a l.c.v.s. E is strongly (G ∗)-invariant if G ∗ E ⊂ E and E is
(S. ∗)-invariant.

In the above definitions the sequential completeness of a l.c.v.s. is im-
portant for two reasons: (i) one can use Riemann integrals of continuous
E-valued functions, and (ii) one can use [E2, Theorem 7.4.4].

Every distribution T ∈ S ′(Rn;Mm×m) is represented by an m × m-
matrix whose entries are scalar distributions belonging to S ′(Rn). Then
Ť † ∈ S ′(Rn;Mm×m) is defined as the distribution represented by the ma-
trix transpose of the matrix representing T , the distribution-entries being
reflected. Whenever G ∈ O′C(Rn;Mm×m) satisfies the condition (1.3), then
so does Ǧ†.

Theorem 3. Suppose that a distribution G ∈ O′C(Rn;Mm×m) satisfies
the condition (1.3), and that (St)t≥0 ⊂ O′C(Rn;Mm×m) is the i.d.c.s. whose
generating distribution is G. Under these assumptions the following two as-
sertions hold true:

(A) If E is a sequentially complete l.c.v.s. continuously imbedded in
S ′(Rn;Mm×m) such that (St ∗)E ⊂ E for every t ∈ [0,∞[ and the
mapping [0,∞[ × E 3 (t, u) 7→ St ∗ u ∈ E is separately continuous,
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then (St|E)t≥0 ⊂ L(E;E) is a one-parameter operator semigroup
of class (C0) whose infinitesimal generator is the operator GE such
that D(GE) = {u ∈ E : G ∗ u ∈ E}, and GEu = G ∗ u whenever
u ∈ D(GE).

(B) Suppose that F is a barrelled l.c.v.s. continuously imbedded in S ′(Rn)
such that S(Rn) is continuously and densely imbedded in F . Let F ′s
be the dual space of F equipped with the strong dual topology. If
E := ×mµ=1F is strongly (Ǧ† ∗)-invariant, then E′ := ×mµ=1F

′
s is

strongly (G ∗)-invariant. If the semigroup ((Š†t ∗)|E)t≥0 ⊂ L(E;E)
is equicontinuous, then the semigroup ((St ∗)|E′)t≥0 ⊂ L(E′;E′) is
equicontinuous.

Proof of (A). It is obvious that ((St ∗)|E)t≥0 ⊂ L(E;E) is a (C0)-semi-
group. Denote by AE its infinitesimal generator. We have to prove that
AE = GE . To this end notice that whenever T ∈ S ′(Rn;Cm) is fixed, the
mapping O′C(Rn;Mm×m) 3 U 7→ U ∗ T ∈ S ′(Rn;Cm) is continuous, and
hence the mapping [0,∞[ 3 h 7→ Sh ∗ T ∈ S ′(Rn;Cm) is infinitely differen-
tiable. Moreover,

d

dh
(Sh ∗ T ) =

(
d

dh
Sh

)
∗ T = (Sh ∗G) ∗ T for every h ∈ [0,∞[.

Since S ′(Rn;Cm) is complete, it follows that whenever h ∈ [0,∞[ and T ∈
S ′(Rn;Mm×m), then

Sh ∗ T − T =

h�

0

Sτ ∗G ∗ T dτ

where the Riemann integral on the right-hand side is convergent in the topol-
ogy of S ′(Rn;Cm). This last equality implies that AE = GE . Indeed, if
T = u ∈ D(GE), then the integrand on the right-hand side is a continu-
ous E-valued function of τ , so that, by sequential completeness of E, the
Riemann integral makes sense. It follows that if u ∈ D(GE) and h ↓ 0, then

E-lim
h↓0

1

h
(Sh ∗ u− u) = E-lim

h↓0

1

h

h�

0

Sτ ∗GEu dτ = GEu,

proving that GE ⊂ AE . On the other hand, if u ∈ D(AE) and h ↓ 0, then

AEu = E-lim
1

h
(Sh ∗ u− u) = S ′(Rn;Cm)-lim

1

h
(Sh ∗ u− u)

= S ′(Rn;Cm)-lim
1

h

h�

0

Sτ ∗G ∗ u dτ = G ∗ u

where the Riemann integral is understood in the sense of S ′(Rn;Cm). It
follows that if u ∈ D(AE), then AEu = G ∗ u, and so G ∗ u ∈ E and
AEu = GEu, proving that AE ⊂ GE .
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Proof of (B). Since S(Rn;Cm) is continuously and densely imbedded
in F , it follows that every element of F ′ has a unique extension to a distri-
bution belonging to S ′(Rn;Cm), and E′ = ×mµ=1F

′
s is continuously imbedded

in S ′(Rn;Cm). Furthermore, the barrelledness of F implies the sequential
completeness of F ′. Indeed, suppose that Tν , ν = 1, 2, . . . , is a Cauchy se-
quence in F ′. Then, by the Banach–Steinhaus theorem, there is T ∈ F ′ such
that limν→∞〈Tν , u〉 = 〈T, u〉 for every u ∈ F . Let B be a bounded subset
of F . Since Tν , ν = 1, 2, . . . , is a Cauchy sequence uniformly on B, there is
a sequence ν1 < ν2 < · · · such that

sup
u∈B
|〈Tνk , u〉 − 〈Tνk+1

, u〉| ≤ 1/2k.

Since

〈Tνk , u〉 − 〈T, u〉 =
∞∑
l=k

(〈Tνl , u〉 − 〈Tνl+1
, u〉)

it follows that

sup
u∈B
|〈Tνk , u〉 − 〈T, u〉| ≤

∞∑
l=k

sup
u∈B
|〈Tνl , u〉 − 〈Tνl+1

, u〉| ≤ 1/2k−1.

From this and the fact that

lim
µ,ν→∞

sup
u∈B
|〈Tν , u〉 − 〈Tµ, u〉| = 0

it follows that
lim
k→∞

sup
u∈B
|〈Tνk , u〉 − 〈T, u〉| = 0.

Thanks to the already proved assertion (A), in order to complete the
proof of (B) we have to show that if E is strongly (Ǧ† ∗)-invariant, then:
(3.4) (G ∗)E′ ⊂ E′,
(3.5) (St ∗)E′ ⊂ E′ for every t ∈ [0,∞[,
(3.6) the mapping [0,∞[ × E′ 3 (t, u) 7→ St ∗ u ∈ E′ is continuous (so that

((St ∗)|E′)t≥0 ⊂ L(E′;E′) is an operator semigroup of class (C0)),
(3.7) if the semigroup ((Š†t ∗)|E)t≥0 ⊂ L(E;E) is equicontinuous, then so is

((St ∗)|E′)t≥0 ⊂ L(E′;E′),
(3.8) for every u ∈ E′ the mapping [0,∞[ 3 t 7→ St ∗ u ∈ E′ is continuously

differentiable (so that D(GE′) = E′ and hence GE′ = (G ∗)|E′ , by (A)).

For the proof of (3.4) observe that whenever T ∈ S ′(Rn;Cm) and u ∈
S(Rn;Cm), then

〈G ∗ T, u〉 = 〈T, Ǧ† ∗ u〉.
If T ∈ E′, then the right-hand side of this equality can be uniquely extended
to a linear functional of u continuous on E. This implies that G ∗ T ∈ E′.
An analogous argument proves (3.5).
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In order to prove (3.6) we have to show that whenever t0 ∈ [0,∞[ and
T0 ∈ E′, then for every neighbourhood U of St0 ∗ T0 in E′ there are a
neighbourhood V ⊂ [0,∞[ of t0 and a neighbourhood W of T0 in E′ such
that whenever t ∈ V and T ∈ W , then St ∗ T ∈ U . It is sufficient to prove
this for

(3.9) U =
{
X ∈ E′ : sup

u∈B
|〈X − St0 ∗ T0, u〉| < ε

}
where ε ∈ ]0,∞[ and B is a bounded subset of E. It will appear that if U
has the form (3.9), then one can take

(3.10) W =
{
T ∈ E′ : sup

v∈C
|〈T − T0, v〉| < ε/2

}
where

C = {Š†t ∗ u : t ∈ [0, t0 + 1], u ∈ B}.

The boundedness of C follows from [E2, Theorem 7.4.4] because whenever
u ∈ E is arbitrarily fixed, then {Š†t ∗ u : t ∈ [0, t0 + 1]} is a bounded subset
of E.

The construction of V is more complicated. Notice first that for every
t ∈ [0,∞[, T ∈ E′ and u ∈ E one has

〈St ∗ T − St0 ∗ T0, u〉 = 〈(St − St0) ∗ T0, u〉+ 〈St ∗ (T − T0), u〉

= 〈T0, (Š†t − Š
†
t0

) ∗ u〉+ 〈T − T0, Š†t ∗ u〉.

It follows that if U and W have the form (3.9) and (3.10), then St ∗ T ∈ U
if only T ∈W and

(3.11) sup
u∈B
|〈T0, (Š†t − Š

†
t0

) ∗ u〉| < ε/2 for every t ∈ V.

In order to construct V which satisfies (3.11) and has the form V = {t ∈
[0, t0 + 1[ : |t− t0| < δ}, observe that for every t ∈ [0, t0 + 1] and u ∈ E one
has

(Š†t − Š
†
t0

) ∗ u =

t�

t0

Š†τ ∗ Ǧ† ∗ u dτ,

so that whenever B is a bounded subset of E, then

sup
u∈B
|〈T0, (Š†t − Š

†
t0

) ∗ u〉| ≤ |t− t0| sup
v∈D
|〈T0, v〉|

where, by [E2, Theorem 7.4.4],

D = {Š†τ ∗ Ǧ† ∗ u : τ ∈ [0, t0 + 1], u ∈ B}

is a bounded subset of E. It follows that if δ = 1
2ε(1 + supv∈D |〈T0, v〉|)−1,

then (3.11) holds. This completes the proof of (3.6).
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In order to prove (3.7), take a neighbourhood U of zero in E′ of the form

U =
{
X ∈ E′ : sup

u∈B
|〈X,u〉| < ε

}
where ε ∈ ]0,∞[ and B is a bounded subset of E. Put

W =
{
T ∈ E′ : sup

v∈C
|〈T, v〉| < ε

}
where C = {Š†t ∗ u : t ∈ [0,∞[, u ∈ B}.

By [E2, Theorem 7.4.4], C is a bounded subset of E, because the equicontinu-
ity of the semigroup ((Š†t ∗)|E)t≥0 ⊂ L(E;E) implies that whenever u ∈ E,
then {Š†t ∗u : t ∈ [0,∞[} is a bounded subset of E. HenceW is a neighbhour-
hood of zero in E′. Since 〈St ∗ T, u〉 = 〈T, Š†t ∗ u〉, it follows that whenever
T ∈W , then St ∗ T ∈ U for every t ∈ [0,∞[.

Finally, notice that (3.8) means that whenever u ∈ E′, t0 ∈ ]0,∞[ and a
bounded set B ⊂ E are fixed, then the mappings

[0, t0] 3 t 7→ 〈St ∗ u, ϕ〉 ∈ C, ϕ ∈ B,
are continuously differentiable uniformly with respect to ϕ ranging over B.
To prove this, it is sufficient to observe that

sup
ϕ∈B, t∈[0,t0]

∣∣∣∣ d2dt2 〈St ∗ u, ϕ〉
∣∣∣∣ = sup

ϕ∈B, t∈[0,t0]

∣∣∣∣ d2dt2 〈u, Š†t ∗ ϕ〉
∣∣∣∣

= sup
ϕ∈B, t∈[0,t0]

|〈u, Š†t ∗ Ǧ† ∗ Ǧ† ∗ ϕ〉|

= sup
ψ∈C
|〈u, ψ〉| <∞

where
C = {Š†t ∗ Ǧ† ∗ Ǧ† ∗ ϕ : t ∈ [0, t0], ϕ ∈ B}

is a bounded subset of E. To prove the boundedness of C it is sufficient to
recall that E is strongly (Ǧ† ∗)-invariant, and to apply [E2, Theorem 7.4.4].

4. The strong (G ∗)-invariance and property (2.6) of the func-
tion spaces (2.1). By [E1, Sec. devoted to factors of class (S, S)] or [K1,
Theorem 2.1], one has

(4.1) O′C(Rn) = {T ∈ S ′(Rn) : (T ∗)|S(Rn) ∈ L(S(Rn);S(Rn))}.
Recall that by [K2, p. 53]

(4.2) the topology in O′C(Rn) is induced from Lb(S(Rn);S(Rn)) via the map-
ping

O′C(Rn) 3 T 7→ (T ∗)|S(Rn) ∈ L(S(Rn);S(Rn)).

From (4.1) and (4.2), by the Banach–Steinhaus theorem, it follows that if
(St)t≥0 ⊂ O′C(Rn;Mm×m) is an i.d.c.s., then for every t0 ∈ ]0,∞[ the set
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of operators {(St ∗)|S(Rn;Cm) : t ∈ [0, t0]} ⊂ L(S(Rn;Cm);S(Rn;Cm)) is
equicontinuous. This implies that for E = S(Rn;Cm) the conditions (3.1)
and (3.2) are satisfied.

Furthermore, if (St)t≥0 ⊂ O′C(Rn;Mm×m) is an i.d.c.s., then for every
ϕ ∈ S(Rn;Cm) the mapping [0,∞[ 3 t 7→ St ∗ ϕ ∈ S(Rn;Cm) is infinitely
differentiable, so that the domain of the infinitesimal generator A of the
operator semigroup ((St ∗)|S(Rn;Cm))t≥0 ⊂ L(S(Rn;Cm);S(Rn;Cm)) is equal
to the whole S(Rn;Cm).

By Theorem 3(A), it follows that A = (G ∗)|S(Rn;Cm) where G ∈ O′C(Rn;
Mm×m) is the generating distribution of the i.d.c.s. Thus for E = S(Rn;Cm)
the condition (3.3) is satisfied with GE = (G ∗)|E . Altogether, this means
that S(Rn;Cm) is strongly (G ∗)-invariant. A direct consequence of [K2,
Theorem 2.2] is that (2.6) holds for E = S(Rn;Cm).

In order to establish analogous facts for E = DLp(Rn;Cm), p ∈ [1,∞],
and E = (Oa)(Rn;Cm), a ∈ ]0,∞[, we shall use the following four lemmas.
For every k ∈ ]0,∞[ let

Bk(Rn;Mm×m) =
{
f ∈ C(Rn;Mm×m) : sup

x∈Rn
|x|k‖f(x)‖Mm×m <∞

}
.

Equipped with the norm ‖f‖Bk
= supx∈Rn(1 + |x|)k‖f(x)‖Mm×m , the space

Bk(Rn;Mm×m) is a Banach space.

Lemma 4.1. Suppose that the distribution G ∈ O′C(Rn;Mm×m) satisfies
(1.3), and let (St)t≥0 ⊂ O′C(Rn;Mm×m) be the i.d.c.s. with generating dis-
tribution G. Then for every t0 ∈ ]0,∞[ and k ∈ N there are j0 ∈ N and a
continuously differentiable mapping [0, t0] 3 t 7→ ft ∈ B2k(Rn;Mm×m) such
that whenever t ∈ [0, t0], then

(4.3) ft ∈ B2k(Rn;Mm×m) ∩ O′C(Rn;Mm×m)

and

(4.4) St = (1−∆)j0ft.

If in addition s(G) := supξ∈Rn Reσ(Ĝ(ξ)) < ∞, then for every k ∈ N there
are j0 ∈ N and a continuously differentiable mapping [0,∞[ 3 t 7→ ft ∈
B2k(Rn;Mm×m) such that (4.3) and (4.4) hold for every t ∈ [0,∞[, and
moreover

(4.5) sup
t∈[0,∞[

e−ωt‖ft‖B2k
<∞ for every ω ∈ ]s(G),∞[.

It is instructive to compare Lemma 4.1 with [S1, Sec. VII.5, Theorem
IX, 10] which implies that an Mm×m-valued distribution T on Rn belongs to
O′C(Rn;Mm×m) (i.e. is rapidly decreasing) if and only if for every k ∈ ]0,∞[
there is mk ∈ N and a finite collection {fk,α : α ∈ Nn0 , |α| ≤ mk} ⊂
Bk(Rn;Mm×m) such that T =

∑
|α|≤mk

∂αfk,α. The argument of the proof
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of Lemma 4.1 (applied to a single T ∈ O′C(Rn;Mm×m)) yields a new proof
of Theorem IX, 10 of [S1]. This new proof depends on the Fourier transfor-
mation but is independent of the knowledge about fundamental solutions of
iterated laplacians.

Lemma 4.2. Suppose that a > 0 and k > a+ n. Then

Bk(Rn;Mm×m) ∗ (Oa)(Rn;Cm) ⊂ (Oa)(Rn;Cm)

where ∗ denotes convolution of functions. Moreover, the mapping

Bk(Rn;Mm×m)× (Oa)(Rn;Cm) 3 (f, u) 7→ f ∗ u ∈ (Oa)(Rn;Cm)

is continuous.

Lemma 4.3. Suppose that 0 < h < k < ∞, and let (ϕν)ν∈N ⊂ D(Rn)
be a non-negative sequence such that suppϕν ⊂ {x ∈ Rn : |x| ≤ 1/ν} and	
Rn ϕν(x) dx = 1 for every ν ∈ N. Let B be a bounded subset of Bk(Rn)
consisting of equicontinuous functions. Then

lim
ν→∞

sup
f∈B
‖f ∗ ϕν − f‖Bh

= 0.

Lemma 4.4. Whenever a > 0, k > a + n, f ∈ Bk(Rn) ∩ O′C(Rn)
and u ∈ (Oa)(Rn), the distribution-theoretical convolution (defined via the
duality between distributions and sample functions) of f ∈ O′C(Rn) and
u ∈ S ′(Rn) coincides with the convolution of the functions f ∈ Bk(Rn)
and u ∈ (Oa)(Rn).

Before proving the above lemmas, let us show how they imply that
whenever G ∈ O′C(Rn;Mm×m) satisfies (1.3) and either E = DLp(Rn;Cm),
p ∈ [1,∞] or E = (Oa)(Rn;Cm), a ∈ ]0,∞[, then E is a strongly (G ∗)-
invariant l.c.v.s. such that (2.6) holds if s(G) < ∞. To this end fix a and
k ∈ N such that a > 0 and 2k > a + n. Then, by Lemmas 4.1 and 4.2, for
every t0 ∈ ]0,∞[ there are j0 ∈ N and a continuously differentiable mapping
[0, t0] 3 t 7→ ft ∈ B2k(Rn;Mm×m) such that (4.3) and (4.4) hold, so that

(4.6) St ∗ u = ((1−∆)j0ft) ∗ u = ft ∗ ((1−∆)j0u)

for every t ∈ [0, t0] and u ∈ (Oa)(Rn;Mm×m).

In (4.6) the symbols ∗ denote the distribution-theoretical convolution of an
element (1−∆)j0ft or ft of O′C(Rn;Mm×m) with an element u or (1−∆)j0u
of S ′(Rn;Cm). By Lemma 4.4, for every fixed t ∈ [0, t0] the last term in (4.6)
is equal to the elementary convolution of the Mm×m-valued function ft ∈
B2k(Rn;Mm×m) with the Cm-valued function (1 − ∆)j0u ∈ (Oa)(Rn;Cm).
If E = (Oa)(Rn;Cm), then, by Lemma 4.2, the mapping

(4.7) [0, t0]× E 3 (t, u) 7→ St ∗ u = ft ∗ ((1−∆)j0u) ∈ E
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is continuous, and for every fixed u ∈ E the mapping
(4.8) [0, t0] 3 t 7→ St ∗ u = ft ∗ ((1−∆)j0u) ∈ E
is continuously differentiable. The statements (4.7) and (4.8) remain valid
for E = DLp(Rn;Cm) because if 2k > n, then B2k(Rn;Mm×m) is con-
tinuously imbedded in L1(Rn;Mm×m), and the mapping L1(Rn;Mm×m) ×
DLp(Rn;Cm) 3 (f, u) 7→ f ∗ u ∈ DLp(Rn;Cm) is continuous by the Young
inequality. From (4.7) it follows that if either E = DLp(Rn;Cm), p ∈ [1,∞],
or E = (Oa)(Rn;Cm), a ∈ ]0,∞[, then the conditions (3.1) and (3.2) are
satisfied. From (4.8) it follows that GE = (G ∗)|E , so that G ∗E ⊂ E. Hence
if either E = DLp(Rn;Cm), p ∈ [1,∞], or E = (Oa)(Rn;Cm), a ∈ ]0,∞[,
then E is a strongly (G ∗)-invariant l.c.v.s.

Suppose now that s(G) < ∞ and either E = DLp(Rn;Cm), p ∈ [1,∞],
or E = (Oa)(Rn;Cm), a ∈ ]0,∞[. The topology in E is determined by the
system of seminorms pα, α ∈ Nn0 , where either pα(u) = ‖∂αu‖Lp(Rn;Cm) or
pα(u) = supx∈Rn(1 + |x|)−a‖∂αu(x)‖Cm . If s(G) < ∞, then (4.6) holds for
every t ∈ [0,∞[ and u ∈ E, so that whenever ω > s(G), then, by (4.5),
Lemma 4.2, continuity of the imbedding B2k(Rn;Mm×m) ⊂ L1(Rn;Mm×m)
and the Young inequality,
pα(e−ωtSt ∗ u) = pα(e−ωtft ∗ ((1−∆)j0u)) = e−ωtpα(ft ∗ ((1−∆)j0u))

≤ Cωpα((1−∆)j0u)

for every t ∈ [0,∞[ and u ∈ E, with some constant Cω ∈ ]0,∞[. This proves
that for every ω > s(G) the operator semigroup ((e−ωtSt ∗)|E)t≥0 ⊂ L(E;E)
is equicontinuous, so that (2.6) holds.

Proof of Lemma 4.1. Suppose that (St)t≥0 ⊂ O′C(Rn;Mm×m) is an
i.d.c.s. with generating distribution G. Fix k ∈ ]0,∞[. Take j0 ∈ N whose
value will be determined later. For every t ∈ [0,∞[ the formula
(4.9) gt(ξ) = (1 + |ξ|2)−j0 exp(tĜ(ξ)), ξ ∈ Rn,
defines an element gt of OM (Rn;Mm×m). Let
(4.10) ft = F−1gt.

Then
ft ∈ O′C(Rn;Mm×m) and (1−∆)j0ft = F−1(exp tĜ) = St.

Lemma 4.1 follows once it is proved that
(4.11) whenever t0 ∈ ]0,∞[, there is j0 ∈ N such that ft ∈ B2k(Rn;Mm×m)

for every t ∈ [0, t0] and the mapping [0, t0] 3 t 7→ ft ∈ B2k(Rn;Mm×m)
is continuously differentiable,

(4.12) whenever s(G) < ∞, there is j0 ∈ N such that ft ∈ B2k(Rn;Mm×m)
for every t ∈ [0,∞[, the mapping [0,∞[ 3 t 7→ ft ∈ B2k(Rn;Mm×m)
is continuously differentiable and (4.5) holds.
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The condition (4.11) is satisfied if for every t0 ∈ ]0,∞[ there is j0 ∈ N such
that

(4.13) {(d/dt)l(1 − ∆)kgt : t ∈ [0, t0], l = 0, 1, 2} is a bounded subset of
L1(Rn;Mm×m).

Notice that(
d

dt

)l
∂κξ gt(ξ) =

∑
|α|+|β|+|γ|=|κ|

κ!

α!β!γ!
[∂αξ (1+|ξ|2)−j0 ][∂βξ Ĝ(ξ)l][∂γξ exp(tĜ(ξ))]

where the first bracketed factor is a scalar function, and the second and third
factors are Mm×m-valued functions. Since

∂αξ (1 + |ξ|2)−j0 = (1 + |ξ|2)−j0−αPα(ξ)

where Pα is a polynomial of degree |α|, the function Rn 3 ξ 7→ (1+ |ξ|2)−j0 ∈
R belongs to (O−2j0)(Rn). Moreover the function Rn 3 ξ 7→ Ĝ(ξ)l ∈Mm×m
belongs to OM (Rn;Mm×m), and by [K2, Proposition 3.2], {exp(tĜ) : t ∈
[0, t0]} is a set of uniformly slowly increasing C∞-functions on Rn. It follows
that whenever j0 ∈ N is sufficiently large, then {(d/dt)l∂κξ gt : t ∈ [0, t0], l=
0, 1, 2, |κ|≤2k} is a bounded subset of L1(Rn;Mm×m), which implies (4.13).

The proof of (4.12) is similar to that of (4.11), but this time we make
use of the fact that whenever ω > s(G) then, by [K2, Proposition 3.3],
{e−ωt exp(tĜ) : t ∈ [0,∞]} ⊂ OM (Rn;Mm×m) is a set of uniformly slowly in-
creasing C∞-functions on Rn. This implies that whenever ω > s(G) and j0 ∈
N is sufficiently large, then {e−ωt(d/dt)l(1 −∆ξ)

kgt : t ∈ [0,∞[, l = 0, 1, 2}
is a bounded subset of L1(Rn;Mm×m). Consequently, the mapping [0,∞[ 3
t 7→ ft ∈ B2k(Rn;Mm×m) is continuously differentiable and (4.5) holds.

Proof of Lemma 4.2. Suppose that a > 0 and k > a + n. Let f ∈
Bk(Rn;Mm×m) and u ∈ (Oa)(Rn;Cm). Then, for every α ∈ Nn0 ,�

Rn

‖f(y)∂αu(x− y)‖Cm dy ≤ ‖f‖Bk
pα(u)

�

Rn

(1 + |y|)−k(1 + |x− y|)a dy

≤ ‖f‖Bk
pα(u)

�

Rn

(1 + |y|)−k(1 + |x|+ |y|)a dy

≤ ‖f‖Bk
pα(u)

( �

Rn

(1 + |y|)a−k dy
)

(1 + |x|)a,

where
	
Rn(1 + |y|)a−k dy = C < ∞ because a − k < −n. This implies that

f ∗ u ∈ (Oa)(Rn;Cm) and pα(f ∗ u) ≤ C‖f‖ pα(u) for every α ∈ Nn0 . Hence
it is easy to deduce the continuity of the mapping

Bk(Rn;Mm×m)× (Oa)(Rn;Cm) 3 (f, u) 7→ f ∗ u ∈ (Oa)(Rn;Cm).

Proof of Lemma 4.3. Denote by ω the common modulus of continuity of
functions belonging to B. Whenever f ∈ B and ν ≥ 2, then for every m > 0
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one has

‖f ∗ ϕν − f‖Bh
= sup

x∈Rn
(1 + |x|)h

∣∣∣ �

Rn

(f(x− y)− f(x))ϕν(y) dy
∣∣∣

≤ (1 +m)hω(1/ν) + sup
|x|≥m

(1 + |x|)h(1+|x|−1/ν)−k2‖f‖Bk

≤ (1 +m)hω(1/ν) + sup
|x|≥m

(1 + |x|)h(12 + 1
2 |x|)

−k2‖f‖Bk

≤ (1 +m)hω(1/ν) + (1 +m)h−k2k+1 sup
f∈B
‖f‖Bk

,

whence
lim
ν→∞

sup
f∈B
‖f ∗ ϕν − f‖Bh

= 0.

Proof of Lemma 4.4. In the present proof, denote by ∗ the general dist-
ribution-theoretical convolution, and by ∗0 convolution of functions. Fix a
sequence (ϕν)ν∈N ⊂ D(Rn) of non-negative functions such that suppϕν ⊂
{x ∈ Rn : |x| ≤ 1/ν} and

	
Rn ϕν(x) dx = 1 for every ν ∈ N. Then, by Lemma

4.3, for every φ ∈ S(Rn) the sequence (ϕν ∗ φ)ν∈N = (ϕν ∗0 φ)ν∈N ⊂ S(Rn)
converges to φ in S(Rn), and this convergence is uniform with respect to φ
ranging over any bounded subset of S(Rn). By (4.1) it follows that whenever
f ∈ O′C(Rn) and φ ∈ S(Rn), then the distributions (f ∗ϕν)∗φ = f ∗(ϕν ∗φ),
ν ∈ N, are functions belonging to S(Rn), and the sequence ((f ∗ϕν) ∗ φ)ν∈N
converges to f ∗ φ in the topology of S(Rn), uniformly with respect to φ
ranging over any bounded subset of S(Rn). This means that the sequence
(f ∗ ϕν)ν∈N ⊂ S(Rn) ⊂ O′C(Rn) converges to f ∈ O′C(Rn) in the topology
of O′C(Rn). (In this way we have proved that S(Rn) is sequentially dense
in O′C(Rn).) Since for every fixed u ∈ (Oa)(Rn) ⊂ S ′(Rn) the mapping
O′C(Rn) 3 f 7→ f ∗ u ∈ S ′(Rn) is continuous (in the strong dual topology of
S ′(Rn)), it follows that

(4.14) whenever f ∈ O′C(Rn) and u ∈ (Oa)(Rn), then the sequence of distri-
butions ((f ∗ϕν) ∗ u)ν∈N ⊂ S ′(Rn) converges to the distribution f ∗ u
in the strong dual topology of S ′(Rn).

Suppose now that a > 0, k > a + n, f ∈ O′C(Rn) ∩ Bk(Rn) and
u ∈ (Oa)(Rn). Then, by (4.1), f ∗ϕν ∈ S(Rn) ⊂ Bk(Rn) for every ν ∈ N, so
that, by Lemma 4.2, the distribution (f∗ϕν)∗u ∈ S ′(Rn) is equal to the func-
tion (f ∗ϕν)∗0u ∈ (Oa)(Rn) (because the distribution u is a slowly increasing
continuous function). Fix now h ∈ ]a + n, k[. Then Bk(Rn) ⊂ Bh(Rn) and
whenever f ∈ Bk(Rn) (so that f ∈ L1(Rn)), then Lemma 4.3 applied to the
singleton B = {f} implies that the sequence of functions (f ∗ ϕν)ν∈N con-
verges to the function f in the norm of Bh(Rn). By Lemma 4.2 it follows that
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(4.15) whenever f ∈ Bk(Rn)∩O′C(Rn) and u ∈ (Oa)(Rn), then the distribu-
tions (f ∗ϕν) ∗u, ν ∈ N, are functions belonging to (Oa)(Rn) and the
sequence ((f ∗ϕν)∗u)ν∈N converges to the function f ∗0u in (Oa)(Rn).

From (4.14) and (4.15) it follows that the distribution f ∗ u is equal to the
function f ∗0 u.

5. The strong (G ∗)-invariance and property (2.6) of the dis-
tribution spaces (2.2). Suppose that the matrix-valued distribution G ∈
O′C(Rn;Mm×m) satisfies the condition (1.3). Then also Ǧ†∈O′C(Rn;Mm×m),
and Ǧ† satisfies (1.3). Moreover, s(Ǧ†) = s(G). In Section 4 it was proved
that S(Rn;Cm) is strongly (G ∗)-invariant and satisfies (2.6). Similarly,
S(Rn;Cm) is strongly (Ǧ† ∗)-invariant. Hence, by Theorem 3(B), S ′(Rn;Cm)
is strongly (G ∗)-invariant. (The strong (G ∗)-invariance of S ′(Rn;Cm) also
follows directly from condition (1.1) of Theorem 1.) Moreover, since the pair
S(Rn), S ′(Rn) is reflexive (S ′(Rn) being equipped with the strong dual topol-
ogy), from Theorem 3(B) it follows that for every ω ∈ Rn the equicontinuity
of the semigroup (e−ωtŤ †t |S(Rn;Cm))t≥0 ⊂ L(S(Rn;Cm);S(Rn;Cm)) is equiv-
alent to the equicontinuity of the semigroup (e−ωtTt)t≥0 ⊂ L(S ′(Rn;Cm);
S ′(Rn;Cm)). Therefore ωS′(Rn;Cm) = ωS(Rn;Cm) = s(Ǧ†) = s(G).

Similar reasonings, based on Theorem 3(B) and the results of Section 4,
prove that each of the distribution spaces D′Lq(Rn;Cm) = ×mµ=1(DLp(Rn))′,
q ∈ ]1,∞], p = q/(q − 1), and (O′a)(Rn;Cm), a ∈ ]0,∞[, is strongly (G ∗)-
invariant and satisfies (2.6).

The strong (G ∗)-invariance and property (2.6) of the distribution space
O′C(Rn;Cm) follow directly from the properties of the convolution semigroup
(St)t≥0 ⊂ O′C(Rn;Cm) with generating distribution G.

6. Proof of Theorem 2. Assume that the matrix-valued distribu-
tion G ∈ O′C(Rn;Mm×m) satisfies (1.3). By Theorem 1 (or by the strong
(G ∗)-invariance of S ′(Rn;Cm) proved in Section 5), the assertion (1.1) is
true. Moreover, S ′(Rn;Cm) = ×mµ=1S ′(Rn) where S ′(Rn) is equipped with
the strong dual topology, so that S ′(Rn) is reflexive and hence barrelled.
Therefore S ′(Rn;Cm) is barrelled, and the uniqueness in the class C1([0,∞[;
S ′(Rn;Cm)) of a solution of the Cauchy problem (2.5) can be proved by an
argument analogous to the one used in the proof of [H-P, Theorem 23.8.1].
See also [E-N, Sec. II.6, Proposition 6.4], [Go, Sec. 1.2, Remark 2.14], [Pa,
Sec. 1.2, Theorem 2.6].

Thanks to the results of Sections 4 and 5, in order to complete the proof
of Theorem 2, it remains to prove the existence of solutions of the Cauchy
problem (2.5) and the Duhamel formula representing them. So, it remains
to show that whenever E is a strongly (G ∗)-invariant l.c.v.s., u0 ∈ E, f ∈
Ck([0,∞[;E) where k ∈ N, and (St)t≥0 ⊂ O′C(Rn;Mm×m) is the i.d.c.s. with
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generating distribution G, then the formula

(6.1) u(t) = St ∗ u0 +

t�

0

Sτ ∗ f(t− τ) dτ, t ∈ [0,∞[,

represents a solution of the Cauchy problem (2.5) belonging to Ck([0,∞[;E).
To this end we shall consider separately the cases of f ≡ 0 and of u0 = 0.

If f ≡ 0 and u0 ∈ E, then, by (2.3), the formula (6.1) takes the form
u(t) = (Tt|E)u0. Hence, again by (2.3), u(·) ∈ C∞([0,∞[;E) and (d/dt)ku(t)
= (G ∗)ku(t) for t ∈ [0,∞[.

If u0 = 0 and f ∈ C1([0,∞[;E), then (6.1) takes the form u(t) = νf (t)
where

(6.2) νf (t) =

t�

0

Sτ ∗ f(t− τ) dτ

or equivalently

(6.3) νf (t) =

t�

0

St−τ ∗ f(τ) dτ.

By (3.2), the mapping [0,∞[ × E 3 (t, u) 7→ St ∗ u ∈ E is continuous, so
the integrands in (6.2) and (6.3) are E-valued functions of (τ, t) continuous
in the topology of E on the set {(τ, t) ∈ R2 : 0 ≤ τ ≤ t < ∞}. Since E is
sequentially complete, the Riemann integrals in (6.2) and (6.3) make sense,
and so is the case for all integrands and integrals in the subsequent formulas.

We shall follow [Ph], [Kr, Sec. I.6.2], [Go, Sec. II.1.3] and [Pa, Sec. 4.2].
From (6.2) and (6.3) we infer that whenever h 6= 0 and t, t+h ∈ [0,∞[, then

(6.4)
1

h
(vf (t+ h)− vf (t))

=
1

h

t+h�

t

Sτ ∗ f(t+ h− τ) dτ +

t�

0

Sτ ∗
1

h
(f(t+ h− τ)− f(t− τ)) dτ

and

(6.5)
1

h
(Sh − δ) ∗ vf (t) =

1

h
(vf (t+ h)− vf (t))− 1

h

t+h�

t

St+h−τ ∗ f(τ) dτ.

By continuity of [0,∞[ × E 3 (t, u) 7→ St ∗ u ∈ E, from (6.2) and (6.3)
one concludes that vf , vf ′ ∈ C([0,∞[;E), and (6.4) and (6.5) imply that the
derivative d

dtvf (t) exists in the topology of E for every t ∈ [0,∞[, and

d

dt
vf (t) = St ∗ f(0) + vf ′(t) = G ∗ vf (t) + f(t).

From the left equality it follows that if f ∈ Ck([0,∞[;E) where k ∈ N, then
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for every l = 1, . . . , k the expression
vf (l)(t) + St ∗ (f (l−1)(0) +G ∗ f (l−2)(0) + · · ·+ (G ∗)l−1f(0))

is equal to (d/dt)lvf (t), so that vf ∈ Ck([0,∞[;E).

REFERENCES

[B] H. Bremermann, Distributions, Complex Variables, and Fourier Transforms,
Addison-Wesley, 1965.

[E1] R. E. Edwards, On factor functions, Pacific J. Math. 5 (1955), 367–378.
[E2] R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and

Winston, 1965.
[E-N] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equa-

tions, Springer, 2000.
[G] L. Gårding, Linear hyperbolic partial differential equations with constant coeffi-

cients, Acta Math. 85 (1951), 1–62.
[Go] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ.

Press, Clarendon Press, 1985.
[H-P] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math.

Soc., Providence, 1957.
[H1] L. Hörmander, On the theory of general partial differential operators, Acta Math.

94 (1955), 161–284.
[H2] L. Hörmander, Linear Partial Differential Operators, Springer, 1963.
[H3] L. Hörmander, The Analysis of Partial Differential Operators, Vol. II, Differential

Operators with Constant Coefficients, Springer, 1983.
[K1] J. Kisyński, Equicontinuity and convergent sequences in the spaces O′C and OM ,

Bull. Polish Acad. Sci. Math. 59 (2011), 223–235.
[K2] J. Kisyński, One-parameter semigroups in the convolution algebra of rapidly de-

creasing distributions, Colloq. Math. 128 (2012), 49–68.
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