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PROPERTIES OF EXTREMAL SEQUENCES FOR THE BELLMAN
FUNCTION OF THE DYADIC MAXIMAL OPERATOR

BY

ELEFTHERIOS N. NIKOLIDAKIS (Athens)

Abstract. We prove a necessary condition that has every extremal sequence for the
Bellman function of the dyadic maximal operator. This implies the weak-L? uniqueness
for such a sequence.

1. Introduction. The dyadic maximal operator on R” is defined by

(1.1) Mgop(x) = sup{ml2| S lp(u)| du : z € Q, Q C R is a dyadic cube}
Q

for every ¢ € L (R¥), where | -| is the Lebesgue measure on R¥ and the

loc

dyadic cubes are those formed by the grids 2=NZ*, N =0,1,2,....
It is well known that M satisfies the following weak type (1, 1) inequal-
ity:

(1.2) {z € R : Myp(z) > A} < | lo(u)du

{Mgp>A}

>| =

for every ¢ € L'(R¥) and A > 0.
From ([1.2)) it is easy to deduce the LP-inequality

(1.3) 1Mol < p%nsbnp-

It is easy to see that ((1.2)) is best possible, and (|1.3]) is also best possible as
can be seen in [W]. (See also [B1] and [B2] for general martingales.)

A way of studying the dyadic maximal operator is to find certain re-
finements of the above inequalities. Concerning , refinements have been
studied in [MN2], [NTI] and [N2], while for the Bellman function of two
variables for p > 1 has been introduced in the following way:
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L) T F) =sun i JMaop 62 0. 5§ olu)du =,
Q Q

1 S o (u) du = F},
al)
where @ is a fixed dyadic cube on R* and 0 < fP < F.

The function given in has been explicitly computed. Actually, this
is done in a much more general setting of a non-atomic probability measure
space (X, 1) where the dyadic sets are now given in a family 7 of sets, called
a tree, which satisfies conditions similar to those that are satisfied by the
dyadic cubes on [0, 1]*.

The associated dyadic maximal operator M is defined by

(1.5) Mro(x) zsup{lg|gb| d,u::nGIGT},
I

p(I)
where ¢ € L*(X, ).
The Bellman function (for a given p > 1) of two variables associated to
M is given by

16) S, F) =sup [ (MroP dus 620, odu=£. | du=r .
X X X
where 0 < fP < F.

In [M], has been found to be S,(f, F) = Fuwy(f?/F)P where w), :
[0,1] — [1,p/(p—1)] is the inverse function Hp_]L of Hy, defined on [1,p/(p—1)]
by Hy(z) = —(p — 1)2P + pzP~L.

As a result the Bellman function is independent of the measure space
(X, 1) and the underlying tree 7. Other approaches to the computation of
(1.4) can be seen in [NM] and [SSV].

In this paper we study those sequences of functions, (¢,),, that are
extremal for the Bellman function . That is, ¢, : (X,u) = R, n =
1,2,..., satisfy { ¢ndpu = f, { éhdp=F and

(1.7) lim | (M7 ) dp = Fup(f7/F)P.
X
In Section 3 we prove the following

THEOREM 1.1. Let ¢y, : (X, u) — R be as above. Then for every I € T,

1 B 1 B
(1.8) hrILn,u(I)§¢nd'u_f and 11$M§¢fldu—F.
Additionally, )

i | (Mron)? do = P17 Y

for every I € T. m
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An immediate consequence is that extremal functions do not exist for
the Bellman function. Another corollary is the weak-LP uniqueness of such a
sequence in all interesting cases. In other words if (¢, )n, (¢n), are extremal

sequences for 1) then lim,, SQ(qZ)n — p)hdp = 0, for every h € LP(Q),
where 1/p 4+ 1/g = 1. We also need to mention that related results in con-

nection with Kolmogorov’s inequality have been treated in [MNI], while in
[N3] a characterization of such extremal sequences is given. More precisely it
is proved there that they actually behave approximately like eigenfunctions
of the dyadic maximal operator for a specific eigenvalue.

2. Extremal sequences. Let (X, 1) be a non-atomic probability mea-
sure space.

DEFINITION 2.1. A set T of measurable subsets of X will be called a
tree if the following are satisfied:

(i) X € T and p(I) > 0 for every I € T.
(ii) To every I € T there corresponds a finite or countable subset C(I)
of T containing at least two elements such that

(a) the elements of C'(I) are disjoint subsets of I,
(b) I =UC).
(iii) 7 = U,u>0 T(m), where Tg) = {X} and
Ty = |J C).
IE'T(m)

(iv) lim sup pu(l)=0.m
m—0o0 167—(m)
DEFINITION 2.2. Given a tree T we define the associated mazimal op-

erator by

1
Myo(z) = sup{lu(l) § lpldp:zele T}
for every ¢ € LY(X,p). =
From [M] we obtain

THEOREM 2.3.
sup{ | (Mro)dpu: 6 >0, §odu=f, | ¢ du=F} = Fu,(f7/F)"
X X
forO< fP<F.m
Finally, we give

DEFINITION 2.4. Let (¢,)n be a sequence of non-negative measurable
functions defined on X and 0 < fP < F, p > 1. Then (¢n), is called
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(p, f, F) extremal, or simply extremal, if

ngﬁnd,u:f, qufld,u:F for every n =1,2,...,
X X

lim | (Mrop)Pdu = Fup(fP/F)".
X

3. Main theorem

THEOREM 3.1. Let (¢n)n be an extremal sequence. Then for every I € T :

. 1
(i) hqunu()ybnd,u—f,
1
(ii) hrILnM(I)§¢€LdM_F’
1 o .
(iii) hm,u(l)§(./\/l7~¢)n) dp = Fuw,(fP/F)P.

Proof. We recall that Ty = {X} and T = U,,5¢ T(m)- We prove the
assertion for I € 7(1). Then inductively it holds for every I € T,,), m > 1.
Suppose then that 7y = {l : k=1,2,...} and I = I;. We now set

1 1
fn,l = ——— \ ¢ndpu, fn,2 R —— On dp,
(1) ISI p(X N ) x§11
1 1
3.1) Fhi1= Pdu, Fpo=——"< Pdu forn=1,2,....
(3.1) Fna () Iﬂlqbp Ho oo =0 X§h¢p 1

The above sequences are obviously bounded, so passing to a subsequence
we may suppose that

limf,; =f; and limF,;=F;, fori=1,2.
n n

For any J € T define
1
Myop(t) = sup{ |p|du:t e K € 7}} for t € J,
M(K),S( |

where 77 is defined by
Tr={KeT:KCJ}

Consider the measure space (J, u(-)/u(J)), the tree Ty and the associated
maximal operator M ;. Then using Theorem we have

(ﬁ Sj¢d'“)p>p
oy Vg P du

1 N S
B2 g ey s oy o o



DYADIC MAXIMAL OPERATORS

277

for every ¢ € LP(J), where wy, : [0,1] = [1,p/(p — 1)] is H, !, with

Hp(z) = _(p - 1)Zp +pzp_1a z € [17p/(p - 1)]
Since H,, is decreasing we conclude from (3.2) that

§, (M) dpu) 1§, ¢dp?
([ ] ) = 1(

H
§; P du Jyp=t § ordu

p

which gives

(33)  —(p—1) |(Mse)du+ p( | o du>1/p : (S(MJ¢)p du) v
J J J
1

P
= s (Joa)"+ b
for some constant ¢4 ; > 0 depending on ¢ and J.
For ¢ = ¢, and J =1I;,i=1,2,..., from (3.3)) we obtain
1/p 1-1/p
34)  —(p—1) {(Mpen)"du +p( | on d#) : ( f (M pn) du)
I I I

1 P
= —— QZ)nd/j] +6’I’L,i fOl“n,iZLQ,....
p(li)p=1 <IS )

Summing (3.4]) over ¢ > 2 we obtain

(3.5) N )
~p- DY jMy, ¢n>Pdu+pZ (§onan)” (Y Mugupan) "
1=21; I; i
o 1 o
= Z; M(Iz)p_l (ISZ ®n dﬂ) + ZZZ; 5n,z

In view now of Hélder’s inequality
1/ 1/
WTE (z D)
for a;,b; > 0 and ¢ :p/(p — 1), (3.5) gives

(36)  —~(p— 1) As(n) +p( | ¢zdﬂ>””.[,42(n)]1f1/p

X1
9 1 » [eS)
-5 (o) S

%
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where
(3.7) Ap(n) =Y [ (M én)P dp.
i=2 I;

(In the last inequality we used the fact that X ~ I = |J;2, I;.)
We now use now Holder’s inequality in the following form:

A+ AP A T pYA
(o144 om)P 1 _011771 O'ml,
where ai,)\' >0foralli=1,2,..., and obtain
1 p
. >
(3 8) ZZ <S¢nd,u'> - M(X\Il)p_1<XSI (bnd:u)
NA1

= (X N 1) fno-

We also set

(3.9) As(n) = S (Mrop)Pdu  forn=1,2,....
X\
Then by definition of M, we have

From the above we then deduce that
(3.11)  —(p—1)Az(n) + pu(X ~\ [1) /P (Fp2) /P [Ag(n)] /P
= (X N D) (fa2) + 08,

where 5 > > O
By passing to a subsequence we may suppose that lim, As(n) = As. =

We will now use the following lemma, the proof of which will be given
at the end of this section.

LEMMA 3.2. If (¢n)n is extremal then
lim p({ M7én = f}) = 0.

From this lemma and the definitions (3.7) and (3.9) we easily see that
lim,, A2(n) = lim, A3(n) = As, in view of the fact that I; € Ty for i =
2,3,.... Then from (3.11]) we conclude that

(3.12)
~(p=1) | (M) du+pu(X ~ 1) (Fa2) (| (Mron)? dp)

X1 X\ 11
= (X N L) (fa2)? + 05,

1-1/p

where 0]} > ¢!, for every n € N.



DYADIC MAXIMAL OPERATORS 279

In the same way we obtain

(3.13)

1-1/p
(= 1) § Mo 1)) § (7o, dn )
I I

= p(I)(fn,1)? + €0,
where €]/ is such that €], > 6,1 for every n € N.

Summing now (3.12)) and (3.13)) and using Hoélder’s inequality in both
previously mentioned forms we obtain

B1) —- 1) | My du+pP (S Mroran)
X X

> () (fr, )P + (X N ) (fn2)? + 0y + ey > fP 40y + ey

which gives

(315) —(p— 1) {(Mron?du+ pE( (Mropan) " = 740,
X X

where ¢, > 0! + el ' n=1,2,....
The hypothesis on (¢,,) is now that

lim § (M7n)? du = Fup(f7/F)".
X

This gives ¥, — 0 in (3.15)) and so
=0, er—0.

n

As a consequence,

p()(f1)" + (X N 1)(f2)" = f*
because of equality in as n — oo.
Since now pu(I1)f1 + (X N I1)fa = f and ¢t — P is strictly convex on
(0,00) we have f; = fo = f.
Additionally 4!/ — 0, so because of and the fact that fo = f we
immediately see that

. 1
(3.16) lim (X <11 X§II(MT¢n)p dp = Fowp(f7/F2)P.
Similarly
) 1
(3.17) lim - I§1<M7¢n>p dp = Frp(fP/F1)P.

Since (¢n)n is extremal, the last two equations give

(318)  pu(l) - Frwp(fP/F1)" + (X N Ih) - Fawp(fP/F2)" = Fw(fP/F).
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But as we shall prove in Lemma below, the function t — tw,(f?/t)P,
t € (fP,00) is strictly concave. So since p(l1)F1+ (X \11)Fy = F we see
from (3.18]) that F} = F» = F. Then since (3.17)) holds we conclude that

1
lim —— \ (M7¢n)P du = Fw,(fP/F)?,
and Theorem [3.1] is proved. =

We now prove the following

LEMMA 3.3. Let G : (1,00) — R be defined by G(t) = twy(1/t)P. Then
G is strictly concave.

Proof. 1t is known from [M] that w, satisfies

d b 1 wp(x)
%[wp(w)] = -

1.
e

So we can easily see that
L1 wy(l/t)
p—1twy(l/t)—1
11 IR}
G”(t) _ 4 g9(t) :
p—1 t\g(t)—1

where g is defined on (1, 00) by g(t) = wp(1/t). Since ¢'(t) > 0 for all ¢t > 1,
we have G”(t) < 0 for all ¢ > 1, and Lemma [3.3|is proved. =

G'(t) = wp(1/1)" +

We continue now with

Proof of Lemma 8.2. Suppose first that all ¢, are T-simple functions,
that is, for every n, there exists an m, such that ¢, is constant on each
I € Ti;n,)- As a consequence, ¢, is T-good in the sense of [M], for every n.
If we look at the proof of Lemma 9 in [M| pp. 324-326] we see that in
inequalities (4.20), (4.22), (4.23), (4.24) there we should have equality in
the limit. So as a result we must have

1 (p—1)Bp% 1 o
RS CESIE —>(5+1)p_1 for = w,(fP/F) —1,
where p% = a%/u(X) = a’% with a% = p({M7¢, = f}). But this can
happen only if a’ — 0. So the proof is complete in the case of 7T-simple

functions.

As for the general case, it is not difficult to see that if (¢y,),, is an extremal
sequence of measurable functions, then we can construct a sequence (1, )
of T-simple functions such that §y ¥, dpu = f, {5 dp < F and

lim \ v dp=F, lim | (Myepn)P dp = Fuo(f7/F)P.
X X
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Additionally, we can arrange everything in such a way that {Mry¢, = f} C
{MTwn =f }

The same arguments used for (¢,), give lim, u({Ms, = f}) = 0. So
lim,, p({M7¢, = f}) =0 and Lemma [3.2]is proved. =

We now give some applications of the above.
First we prove

COROLLARY 3.4. If 0 < fP < F then there do not exist extremal func-
tions for the Bellman function Ty(f, F') described in (1.4]).

Proof. Let ¢ be an extremal function for (1.4). Applying Theorem

we see that )

1
—— \¢du=f and —=\¢’du=TF,
) )
for every dyadic subcube I of Q.
As we can see in |G], inequality ([1.2]) implies that the base of dyadic sets
of the tree 7 differentiates L!(Q). That is,

¢(z)=f ae and ¢P(x)=F ae.
This gives fP = F, which is a contradiction. m

COROLLARY 3.5. Let T),(f, F') be described by (L.4). Then if (¢n)n, (¥n)n

. . w(LP
are extremal sequences for this function, we have ¢p—1p —L—)—> 0 asn — oo.

Proof. Of course
1
So lim,, SQ(gZ)n — n)ér(u) du = 0, for every dyadic subcube I C Q.

Since linear combinations of the characteristic functions of the dyadic
subcubes of @) are dense in L?(Q) we should have lim,, SQ(qbn —1p)h =0 for

every h € L1(Q), where ¢ = p/(p — 1), that is, ¢, — ¢y, RUCON Dasn — 00. m

1
lim i S ¢n(u) du = lim
I
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