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ON COUNTABLE FAMILIES OF SETS WITHOUT
THE BAIRE PROPERTY
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Abstract. We suggest a method of constructing decompositions of a topological
space X having an open subset homeomorphic to the space (R™, 7), where n is an integer
> 1 and 7 is any admissible extension of the Euclidean topology of R™ (in particular,
X can be a finite-dimensional separable metrizable manifold), into a countable family F
of sets (dense in X and zero-dimensional in the case of manifolds) such that the union of
each non-empty proper subfamily of F does not have the Baire property in X.

1. Introduction. Recall that a set A of a topological space X is said to
have the Baire property in X if A= (O\ M)UN, where O is an open set of
X and M, N are meager sets of X. Let 2% be the family of all subsets of X,
and Bp(X) the subfamily of 2X consisting of sets with the Baire property.
It is well known that the family B,(X) is a o-algebra of sets. However, in
the case when Bg(X) = 2%\ B,(X) # ), the union of two sets from BE(X)

does not need to belong to Bg(X).

In [Ch] (see also [ChN] for generalizations) it was shown that the
union of finitely many Vitali sets of the real line R (see [V]) contains
no set of type O \ M, where O is a non-empty open set and M a mea-
ger one. Since each Vitali set is not meager, this easily implies that such
unions do not have the Baire property. Let us note that these facts can-
not be extended to all countable unions of Vitali sets. It is easy to see
that a set A in R is the union of a (countable) family of Vitali sets iff
AN (z 4+ Q)| # 0 for each x € R, where Q is the set of rational num-
bers, i.e. A contains a Vitali set. Moreover, such a family can be chosen
infinite and disjoint iff |A N (z + Q)| = Vo for each « € R. This implies
that every element of B,(R) with non-empty interior (in particular, any
non-empty open set) is the union of an infinite countable disjoint family of
Vitali sets.
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In [Ch] the following result was proved:
If S is a Vitali set of R and A is any non-empty proper subset of Q then

U(S,A) = J{r+S:rec A} e BYR).

However, the set U(S, A) can contain the difference O \ M, where O is
a non-empty open subset of R and M is meager. This happens iff

Cle| {(r+9)":reQ\ A} #R

(we recall the operation (-)” in the next section).

Note that for a Vitali set S such that S is dense in R and S = §”
(see examples in [Ch]) we have Clg J{(r + S5)" : r € Q \ A} = R for each
non-empty proper subset A of Q. On the other hand for any Vitali set
Sc(—1,1) and A=QnN(-2,2) we have U(S, A) D (—1,1).

In this paper we suggest a method of constructing decompositions of
a topological space X having an open subset homeomorphic to the space
(R™,7), where n is an integer > 1 and 7 is any admissible extension (see
Section 3 for the definition) of the Euclidean topology of R™ (in partic-
ular, X can be a finite-dimensional separable metrizable manifold) into a
countable family F of sets (dense in X and zero-dimensional in the case of
manifolds) such that the union of each non-empty proper subfamily of F
does not have the Baire property in X.

For the notions we refer to [E1] and [Ku].

2. Auxiliary results. We will use some notations from [Ch].

For each non-meager set R of a topological space X, Or = Intx (Clx R),
R’ = {z € RN Og : there is an open neighborhood V of x such that VN R
is meager} and R = (RN Og) \ R'.

Let us observe that by ([Ku, Theorem 1, p. 87]) the set R’ is meager
in X. This implies, in particular, that the set R” is non-meager in X.

REMARK 2.1. Recall [Chl Theorem 2.1]:

Let X be a hereditarily Lindelof topological space, A be a non-empty set
with |A| <Rg and R(a) a non-meager subset of X for each o € A. Then
U=U{R(a) : a € A} € By(X) iff Opr) \ U is meager in X for each
a e A

Now we note that by the two sentences before this remark the equivalence
above holds in any topological space X . Moreover, one can see from the proof
that the necessity part is valid for any set A.

PROPOSITION 2.2. Let X be a topological space, A a set with |A| > 2
and for each a € A, X, a non-meager subset of X. Assume also that

(i) Xoy N Xa, =0 iff a1 # ag, and
(i) Ugea Oxr is connected.
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Then for any non-empty proper subset A" of A the setY =] ca Xa does
not have the Baire property.

Proof. We follow the idea of proof of [Chl, Theorem 4.1]. Assume that ¥’
has the Baire property. Then by Remark 2.1 the set Ox» \ Y is meager for
each a € A’. Further we will need the following statement.

CLAIM. For any a; € A" and as € A\ A" we have Oxy NOxy = 0.

Proof. Let V' = Oxy NOxy # 0. It follows from [Chl Corollary 2.1(iii)]
that the set V' N X[ is non-meager. Since X/, C X, and Xo, NY =0 by
the condition (i), we have VN X[, C Oxz. \'Y, where Oxy, \'Y is supposed
to be meager. We have a contradiction which proves the Claim.

Put Uy = Uyen Oxr and Us = UaeA\A’ Oxr. Note that the sets
Uy, Uy are non-empty, open and by the Claim they are disjoint. So the set
Uaea Oxr = Uy U Uy is disconnected. We have a contradiction with (ii). =

REMARK 2.3. We notice that the condition (ii) from Proposition
cannot be erased. On the other hand the condition is not necessary.

(i) Let X be the subspace {0,1} of the real line R and A = {1,2}. Set
X = {O} and Xy = {1} Note that OX{I = X1 and OXé’ = Xo.
Hence Oxy N Oxy = () and the sets X1, X5 are open in X.

(ii) Let X be the real line R, A = {1,2} and S a Vitali set of R such that
S C (0,1). Set X1 =S and Xy =2+ S. Note that Oxr N Oxy =0
and the sets X1, X5 do not have the Baire property.

Let H(X) be the group of homeomorphisms of the space X . The following
statement is trivial.

LEMMA 2.4. Let h € H(X) and A C X. Then

(i) A is meager iff h(A) is meager;
(ii) if A is non-meager then h(Oa) = Op(ay, h(A") = (h(A))" and h(A")
= (h(A))".

PROPOSITION 2.5. Let X be a topological space, H* a non-empty subset
of H(X) with |[H*| > 2 and A a non-meager subset of X. Assume also that

(i) for any elements hy # ha of H*, hi(A) Nha(A) =0, and
(i) Upens h(Oar) is connected.

Then for any non-empty proper subset H' of H* the set |Jjcqy h(A) does
not have the Baire property.

Proof. Since for each h € Hx the set h(A) is non-meager and h(Oar) =
O(n(ayy» by Lemma the statement follows from Proposition .



182 M. AIGNER ET AL.

PROPOSITION 2.6. Let X be a topological space of the second cathegory,
H* a non-empty countable subset of H(X) with |H*| > 2 and A a subset
of X. Assume also that

(i) for any elements hy # ha of H*, hi(A) N ha(A) =0,
(i) X\ Upep- h(A) is meager, and
(iil) Upeg M(Oar) is connected.

Then for any non-empty proper subset H' of H* the set |Jjcqp R(A) does
not have the Baire property.

Proof. Since X \ [Jpeqy+ h(A) is meager and the space X is of second
category, the set A is non-meager. Applying Proposition [2.5] we get the
statement. m

Let @@ be a countable dense subgroup of the additive group of the real
numbers. One can consider the Vitali construction (see [V]) with the group
@ instead of the group Q of rational numbers (cf. [K]). The analogue of a
Vitali set with the respect to @ will be called a Vitali Q-selector of R.

EXAMPLE 2.7 ([Ch, Theorem 4.1 for @ = Q]). Let X = R, H* be the
group of translations of R by numbers from @ and A a Vitali @Q-selector.
Note that

(i) for any elements hy # ho of H*, hi(A) N ha(A) = 0;
(i) R\ Upeyp- h(A) = 0;
(iii) Upep+ M(Oar) =R is connected. m
ExAMPLE 2.8 ([Chl Remark 4.2 for Q@ = Q]). Let X = R™, H* be the
group of translations of R™ by vectors with all coordinates from @ and A
a Vitali Q-selector of R, that is, A =[], A;, where A, is a Vitali Q-selec-
tor of R for each 7 < n. Note that

(i) for any elements hy # hy of H*, hi(A) N ha(A) = 0;

(i) R™\ Upep- A(A) = 0;
(iii) Upep M(Oar) = R™ is connected. =

3. A method of constructing countable families of sets without
the Baire property. Let 7 be a topology on a set X.

Recall [ChN|, Definition 3.1] that a topology 7o on X is said to be an
admissible extension of 11 if

(i) 71 C 72, and
(ii) 71 is a m-base for 7, i.e. for each non-empty element O of 7o there
is a non-empty element V' of 71 which is a subset of O.

Let us denote the closure (resp. the interior or the boundary) of a subset
A of the set X in the space (X, 7;) by Cl, A (resp. Int;, A or Bd,, A), where
i=1,2.
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LEMMA 3.1. Let X be a set, 1, and 1o topologies on X such that 1o is
an admissible extension of 11, and O a non-empty element of 7. Then the
set A = O\Int, O is nowhere dense in the space (X, 1) (in particular, A is
a meager set in (X, 11)).

Proof. Put V = Int,, O and note that V # 0.
Cram. Cl, V D O.

Proof. Assume that W = O\ Cl, V # (). Since 72 is an admissible
extension of 71 and W € 1o, there is ) # U € 7y such that U ¢ W C O. It
is easy to see that U must be a subset of V. We have a contradiction which
proves the Claim. m

It follows from the Claim that Bd, V O A. Hence, the set A is nowhere
dense in the space (X,71). m

LEMMA 3.2. Let X be a set, 71 and 1 topologies on X such that T2 is an
admissible extension of 71, and A C X. Assume also that A has the Baire
property in the space (X, 12). Then A has the Baire property in (X, ).

Proof. Suppose that A = (O \ M) U N, where O is open in (X, 72) and
M, N are meager in (X, 7). Note that by [ChN|, Proposition 3.4] the sets
M, N are also meager in (X, 71). Moreover, by Lemma 3.1 the set O\ Int,, O
is meager in (X, 71). Observe that

A= (Int;, O\ M)U(((O\ Int;, O)\ M)UN).
Hence, A has the Baire property in the space (X, 71). =

Let n be a positive integer. Denote by 7g (resp. 79) the Sorgenfrey topol-
ogy (resp. the Euclidean topology) on the set R of real numbers and by 77
(resp. 7¢) the product []1(7s): (vesp. [ (70)i), where (75); = Ts (resp.
(10)i = 70) for each i <n.

Let now k, m be non-negative integers. Note that the topology 7"5? X 15"
on the set R¥*™ is an admissible extension of the Euclidean topology T(I]H_m
on RFF™. Let us also observe that if k& > 1 then (RFt™ 7% x 7/") is discon-
nected and if ¥ > 2 then (R*™, 7% x 7J") is not normal.

Applying Example and Lemma [3.2| we get the following statement.

PRrOPOSITION 3.3. Let Q be a countable dense subgroup of the additive
group of real numbers. If S is a Vitali Q-selector of R™ for some integer
n > 1 and A is any non-empty proper subset of Q" then | J{T+S:7 € A} €
BS((R”, 7)), where T is any admissible extension of T('.

REMARK 3.4. For the case n =1, 7 = 79 and Q = Q the statement was
proved in [Chl, Corollary 4.1].
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LEMMA 3.5. Let Y be a non-empty open subset of a space X. Then

(i) if M is a nowhere dense subset of X then M NY is a nowhere dense
subset of Y;
(ii) if M is a meager subset of X then M NY is a meager subset of Y.

Proof. (i) Let V = Inty Cly (M NY) # 0. Note that V' C Inty (Cly M
NY) CIntx(Clx M NY) C Intx Clx M. Hence, Intx Clx M # (.
(ii) follows evidently from (i). m

LEMMA 3.6. Let X be a space, Y a non-empty open subset of X and
A C X. Assume also that A has the Baire property in X. Then ANY has
the Baire property in'Y .

Proof. Let A= (O\M)UN, where O is open in X and M, N are meager
in X. Note that ANY = ((ONY)\(MNY))U(NNY) and ONY is open
inY and M NY,NNY are meager in Y (by Lemma [3.5)). m

REMARK 3.7. Let us note that the openness of the set Y in the space
X in the lemmas is essential. Indeed, let X be the Euclidean plane with
the z, y-axes, Y the z-axis and A a Vitali set of Y. Note that Y is nowhere
dense in X. This implies that A is also nowhere dense in X. But A does not
have the Baire property in Y.

THEOREM 3.8. Let X be a space and Y an open subset of X which is
homeomorphic to the space (R™, ) for some admissible extension T of the
Euclidean topology 13, where n is a positive integer. Then there is an infinite
disjoint countable family F of sets in X such that

(i) UF=X, and
(ii) for each non-empty proper subfamily F' of F the set |JF' does not
have the Baire property in X.

Moreover:

(a) if the setY is dense in the space X or Z = X\ Clx Y # () and there
is a countable infinite disjoint family H = {H;}2, of sets dense in
Z then each element of F can be chosen dense in X ;

(b) if the space X is separable metrizable, T = 7 and the set X \'Y is
countable-dimensional then each element of F can be chosen zero-
dimensional.

Proof. By Proposition [3.3] there exists an infinite disjoint countable fam-
ily G = {Y;}2, of sets such that (JG =Y, and for each non-empty proper
subfamily G’ of G the set | JG’ does not have the Baire property in Y. Then
put X; =Y1U(X\Y) and X; =Y}, i > 2. Let us notice that the countable
family F = {X;}32, of sets is also disjoint and |JF = X. Since for each
non-empty proper subfamily 7’ of F there is a non-empty proper subfamily



COUNTABLE FAMILIES OF SETS 185

G’ of G such that (JF)NY =J&', it follows from Lemma[3.6] that the set
JF’ does not have the Baire property in X.

Let us now prove (a). Observe that there is a Vitali set of R which is
dense in R (see [Chl Proposition 3.3]), which implies the existense of a Vitali
set of R™ (see Example 2.8 for the definition) which is dense in R". So each
set of the family G can be chosen dense in the subspace Y of X. Further-
more, if Y is dense in X then each element of the family F defined above
will be dense in X. Assume now that Z = X \ Clx Y # () and there is a
countable infinite disjoint family H = {H;}2; of sets dense in Z. In this
case put X1 = Y1U((X\Y)\U;2, Hi) and X; = Y;UH;, i > 2. Let us notice
that the countable family F = {X;}°, of sets is disjoint and dense in X.
Moreover, | JF = X. Since for each non-empty proper subfamily F' of F
there is a non-empty proper subfamily G’ of G such that (JF)NY =7/,
it follows from Lemma that J 7’ does not have the Baire property in X.

To prove (b), recall (cf. [E2]) that X \ Y = [J;2, Z;, where the sets
Z1,Zo, ... are disjoint and dim Z; = 0 for each i. Put X; = Y; U Z; for each
1 > 1. Since every set of the family G is also zero-dimensional it follows
from the sum theorem for the dimension dim that the sets X;, X5,... are
zero-dimensional. m

REMARK 3.9. Note that in each separable metrizable space each of
whose open non-empty subsets is uncountable there is an infinite count-
able disjoint family consisting of dense sets. In fact, let B = {U;}2, be a
countable base for the space. For each integer ¢ > 1 choose in U; a count-
able infinite set A; = {a} : j > 1} such that A; N Uj<; 45 = 0. Put now
H; = {a;- 14> 1}, j > 1, and note that the sets H;, j > 1, are dense in the
space and disjoint.

COROLLARY 3.10. Let X be an n-dimensional separable metrizable man-
ifold for some positive integer n. Then there exists an infinite disjoint count-
able family F of zero-dimensional, dense in X sets such that

(i) UF=X, and
(ii) for each non-empty proper subfamily F' of F the set |JF' does not
have the Baire property in X.

Proof. Let Y be a subset of X which is homeomorphic to R, and let Yj,
i > 1, be a family of dense zero-dimensional subsets of Y, which can be
obtained from Example (see also the proof of Theorem [3.8(a)). Set B =
BdxY and V = X \ Clx Y.

Assume first that V' = (), and note that dim B = k < n. Let us decompose
the set B into k4 1 disjoint zero-dimensional subsets B;, i < k4 1. Put now
X, =Y, UB;,i1<k+1,and X; =Y}, 1 > k + 2. Observe that the sets X,
1 > 1, satisfy the corollary.
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Assume now that V.= X \ Clx Y # (. Observe that for each point
x € V there is an open neighborhood O,, of x which is homeomorphic to R".
Choose in V' a countable base B = {B; : i > 1} for open sets with (n — 1)-
dimensional boundaries. Set Vy = V'\ ;2 Bdy (B;). Notice that dim V = 0
and each open non-empty subset of Vj is uncountable. Decompose the set
U2, Bdy(B;) into n zero-dimensional disjoint sets Vi,..., V. Note that
Vo,...,V, are dense in V. By Remark we can decompose Vj into sets
Voi, 1 > 1, dense in Vj. Observe that Vbi, i > 1, are dense in V' and zero-
dimensional. Now the argument can be finished as in the first case. =

4. Concluding remarks. It is known that no Bernstein set of R has
the Baire property. We will show this fact with the help of Proposition

Recall that a subset A of the real line R is called a Bernstein set if for
each Cantor set C' C R we have ANC # () and (R\ A)NC # 0.

LEMMA 4.1. For each meager subset M of R there exists a Cantor set C

such that MNC = (. In particular, each Bernstein set B of R is non-meager
and OB// =R.

Proof. We can suppose that M = |J,_, M;, where M; is nowhere dense
and closed in R for each i. Hence, the set N = R\ M is topologically
complete.

If N contains a non-degenerate interval [a,b] then N contains a Cantor
set. Otherwise, IV is zero-dimensional and nowhere locally compact. This im-
plies that N is homeomorphic to the space P of irrational numbers (cf. [vM]).
Hence, N must also contain a Cantor set.

Since B\ B” is meager (see [Chl Proposition 2.1]) and B” C B, the set B”
must be dense in R by the main statement of this lemma. Hence Ogr = R. u

PROPOSITION 4.2. No Bernstein set of R has the Baire property.

Proof. Let M be a Bernstein set of R. Note that R\ M is also a Bern-
stein set and the sets M, R\ M are disjoint and non-meager. Moreover,
Onr = Ow\aryr = R. By Proposition the set M does not have the Baire
property. =m
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