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ON THE COLLATZ CONJECTURE

BY

SEBASTIAN HEBDA (Wojnicz)

Abstract. We propose two conjectures which imply the Collatz conjecture. We give
a numerical evidence for the second conjecture.

1. Introduction

1. For an odd integer n let

F (n) :=
3n+ 1

2v2(3n+1)

be the speeded-up Collatz function. Obviously, F (n) is also an odd integer,
and F (n) is positive iff n is positive.

For a positive odd integer n we define inductively the Collatz sequence
(a0, a1, . . .) as follows:

a0 = n, ak+1 = F (ak) for k ≥ 0,

and the corresponding sequence of exponents (r0, r1, . . .) by
rk = v2(3ak + 1) for k ≥ 0.

Since ak is odd, rk is a positive integer.
2. We have F (1) = 1. The Collatz conjecture says (see e.g. Lagarias [1])

that in every Collatz sequence (a0, a1, . . .) we have ak = 1 for every suffi-
ciently large k, i.e. Fm(a0) = 1 for some m.

We say that a positive odd integer n (or the Collatz sequence (a0, a1, . . .)
with a0 = n) has a finite stopping time if ak < a0 for some k ≥ 1 (see [2]).

Let U be the set of all positive odd integers with finite stopping times.
The Collatz conjecture is equivalent to the statement that every odd integer
n > 1 belongs to U .

3. In the present paper we change the order. First we fix an arbitrary se-
quence (r0, r1, . . .) of positive integers, and then ask whether it corresponds
to some Collatz sequence (a0, a1, . . .). Next we investigate under which condi-
tions on (r0, r1, . . .) the sequence (a0, a1, . . .) satisfies the Collatz conjecture,
or it has a finite stopping time.
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The set of all sequences of positive integers is not countable, and the set of
all Collatz sequences is countable, since every such sequence is determined by
its first element. Therefore there are uncountably many sequences of positive
integers which do not correspond to any Collatz sequence.

To overcome this difficulty we consider real Collatz sequences.

4. Real Collatz sequences. For a sequence (r0, r1, . . .) of positive
integers and a positive real number x we define inductively the sequence
(a0, a1, . . .) of real numbers by

(1.1) a0 = x, ak+1 =
3ak + 1

2rk
for k ≥ 0.

We ask under which conditions on (r0, r1, . . .) and on x the sequence
(a0, a1, . . .) has a finite stopping time.

First we give explicit formulas for elements of the sequence (a0, a1, . . .)
defined by (1.1).

2. Main results

Lemma 2.1. From (1.1) it follows that

(2.1) ak =
3kx+

∑k
i=1 3

k−i2
∑i−2

j=0 rj

2
∑k−1

j=0 rj
for k ≥ 0.

Conversely, the numbers defined by (2.1) satisfy (1.1).

Proof. The standard induction on k proves (2.1). To prove the second
statement it is sufficient to substitute (2.1) into (1.1).

The formula (2.1) can be rewritten in the form

(2.2) ak = Akx+Bk,

where

Ak =
3k

2
∑k−1

j=0 rj
, Bk =

∑k
i=1 3

k−i2
∑i−2

j=0 rj

2
∑k−1

j=0 rj
,

are positive rational numbers independent of x with a power of 2 in denom-
inators.

Lemma 2.2.

(i) If Ak < 1 for some k, i.e. if

(2.3) k log2 3 <

k−1∑
j=0

rj for some k,

then the sequence (a0, a1, . . .) defined by (1.1) has a finite stopping time
for every sufficiently large x; namely, ak<a0 for x>Bk/(1−Ak).
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(ii) If Ak > 1 for every k, then the sequence (a0, a1, . . .) defined by (1.1)
does not have a finite stopping time.

Proof. (i) If Ak < 1, then, by (2.2), we have

ak = Akx+Bk < x = a0 for x >
Bk

1−Ak
,

since Bk > 0 and 0 < Ak < 1.
(ii) If Ak > 1 for every k, then

ak = Akx+Bk > x = a0 for every k,

so the sequence (a0, a1, . . .) does not have a finite stopping time.

From Lemma 2.1 it follows that the exponents (r0, r1, . . .) of a Collatz
sequence (a0, a1, . . .) cannot be very small. More precisely:

Proposition 2.3. Let (a0, a1, . . .) be the Collatz sequence with the se-
quence of exponents (r0, r1, . . .). Then rj > 1 for infinitely many j ≥ 0.

Proof. Assume that rj = 1 for every j ≥ j0 for some j0 ≥ 0. Omitting
the first j0 terms of the Collatz sequence we may assume that rj = 1 for
every j ≥ 0. Then (2.1) takes the form

ak =
3kx+ (3k − 2k)

2k
=

3k(x+ 1)

2k
− 1,

where x = a0 is a positive integer. It follows that ak is not an integer for k
satisfying 2k > x+ 1. We get a contradiction, since all terms of the Collatz
sequence are integers.

In view of Lemma 2.2 it is natural to assume that (2.3) holds. This is
stated in the following

Conjecture 2.4. For every positive odd integer n there exists k ∈ N
such that

(2.4) dk log2 3e ≤
k−1∑
j=0

rj ,

where (r0, r1, . . .) is the sequence of exponents of the Collatz sequence
(a0, a1, . . .), with a0 = n.

Remark. Conjecture 2.4 follows from the Collatz conjecture. Namely,
by the Collatz conjecture we have rj = 2 for every sufficiently large j, and
log2 3 < 2. This implies (2.4) for large k.

Our second conjecture concerns solutions of linear Diophantine equations,
but it gives some information on the stopping time of the Collatz sequence.



192 S. HEBDA

Conjecture 2.5. Assume that a sequence (r′0, r
′
1, . . . , r

′
k−1) of positive

integers, where k ≥ 1, satisfies
l−1∑
j=0

r′j < dl log2 3e for every l, 1 ≤ l ≤ k − 1,(2.5)

k−1∑
j=0

r′j = dk log2 3e.(2.6)

Then the minimal solution (x′0, y
′
0) of the equation

(2.7) 2
∑k−1

j=0 r′j · y′ − 3k x′ =
k∑

i=1

3k−i2
∑i−2

j=0 r
′
j

in positive integers satisfies y′0 < x′0 or x′0 = 1.

Theorem 2.6. Conjectures 2.4 and 2.5 imply the Collatz conjecture.
More precisely, the stopping time of the Collatz sequence (a0, a1, . . .) with
a0 > 1 is at the term ak (i.e. ak < a0) where k is the minimal positive
integer satisfying (2.4).

Proof. Let n be a positive odd integer, and let (a0, a1, . . .) be the Collatz
sequence with a0 = n and the sequence of exponents (r0, r1, . . .). Take the
minimal positive integer k satisfying the condition (2.4) in Conjecture 2.4,
and put

r′j :=


rj for j = 0, 1, . . . , k − 2,

dk log2 3e −
k−2∑
j=0

rj for j = k − 1.

Then (2.5) holds, by the minimality of k, and (2.6) holds by the above
definition of r′k−1.

Let us observe that, by (2.5),

dk log2 3e −
k−2∑
j=0

r′j > dk log2 3e − d(k − 1) log2 3e ≥ 1,

since log2 3 > 1. Thus r′k−1 defined above is a positive integer, as it should
be. So the assumptions of Conjecture 2.5 are satisfied.

Moreover, by (2.4),

rk−1 ≥ dk log2 3e −
k−2∑
j=0

rj = r′k−1.

From Lemma 2.1 it follows that (x, y) = (a0, ak) satisfies the Diophantine
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equation

2
∑k−1

j=0 rj · y − 3k x =
k∑

i=1

3k−i2
∑i−2

j=0 rj ,

which can be rewritten in the form

2
∑k−1

j=0 r′j · 2rk−1−r′k−1 · y − 3k x =

k∑
i=1

3k−i2
∑i−2

j=0 rj .

In other words,

(2.8) (x′, y′) = (x, 2rk−1−r′k−1y) = (a0, 2
rk−1−r′k−1ak)

satisfies (2.7).
All solutions of (2.7) in positive integers are given by

(x′t, y
′
t) =

(
x′0 + t · 2

∑k−1
j=0 r′j , y′0 + 3kt

)
, where t ≥ 0, t ∈ Z.

From (2.6) it follows that 3k < 2
∑k−1

j=0 r′j . By Conjecture (2.5), we have y′0 <
x′0 or x′0 = 1. Therefore in the first case

(2.9) y′t = y′0 + 3kt < x′0 + 2
∑k−1

j=0 r′j t = x′t

for every t ≥ 0. In particular, (x′, y′) defined in (2.8) satisfies (2.7), therefore
(x′, y′) = (x′t, y

′
t) for some t ≥ 0. Hence

y′t = y′ = 2rk−1−r′k−1y = 2rk−1−r′k−1ak,

by (2.9), is less than x′t = x′ = x = a0. Then from rk−1 ≥ r′k−1 we conclude
that ak < a0.

There remains the case x′0 = 1 in Conjecture 2.5. Then, by (2.8), a0 =
x′ = x′0 = 1, and the Collatz sequence with a0 = 1 has all its terms equal 1,
so it does not have a finite stopping time! Fortunately, the case a0 = 1 has
been excluded in the statement of the theorem.

Remark. For a fixed positive integer k there are only a finite number
of sequences (r′0, r′1, . . . , r′k−1) satisfying the assumptions of Conjecture 2.5,
i.e. (2.5) and (2.6). Thus to verify Conjecture 2.5 for a given k it is sufficient
to determine minimal solutions of a finite number of linear Diophantine
equations (2.7). We have done this for all k ≤ 6: see Table 1.

In the table, we give the value of k, the sequence of positive integers
(r′0, r

′
1, . . . , r

′
k−1) satisfying (2.5) and (2.6), the coefficients

A := 2
∑k−1

j=0 r′j , B := 3k, C :=

k∑
i=1

3k−i2
∑i−2

j=0 r
′
j

of the linear equation (2.7), and the minimal solution (x′0, y
′
0) of (2.7).
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Table 1

k (r′0, r
′
1, . . . , r

′
k−1) (A,B,C) (x′0, y

′
0)

1 (2) (4, 3, 1) (1, 1)

2 (1, 3) (16, 9, 5) (3, 2)

3 (1, 1, 3) (32, 27, 19) (23, 20)

3 (1, 2, 2) (32, 27, 23) (11, 10)

4 (1, 1, 1, 4) (128, 81, 65) (15, 10)

4 (1, 1, 2, 3) (128, 81, 73) (7, 5)

4 (1, 2, 1, 3) (128, 81, 85) (59, 38)

5 (1, 1, 1, 1, 4) (256, 243, 211) (95, 91)

5 (1, 1, 1, 2, 3) (256, 243, 227) (175, 167)

5 (1, 1, 1, 3, 2) (256, 243, 259) (79, 76)

5 (1, 1, 2, 1, 3) (256, 243, 251) (39, 38)

5 (1, 1, 2, 2, 2) (256, 243, 283) (199, 190)

5 (1, 2, 1, 1, 3) (256, 243, 287) (219, 209)

5 (1, 2, 1, 2, 2) (256, 243, 319) (123, 118)

6 (1, 1, 1, 1, 1, 5) (1024, 729, 665) (575, 410)

6 (1, 1, 1, 1, 2, 4) (1024, 729, 697) (287, 205)

6 (1, 1, 1, 1, 3, 3) (1024, 729, 761) (735, 524)

6 (1, 1, 1, 2, 1, 4) (1024, 729, 745) (367, 262)

6 (1, 1, 1, 2, 2, 3) (1024, 729, 809) (815, 581)

6 (1, 1, 1, 3, 1, 3) (1024, 729, 905) (975, 695)

6 (1, 1, 2, 1, 1, 4) (1024, 729, 817) (999, 712)

6 (1, 1, 2, 1, 2, 3) (1024, 729, 881) (423, 302)

6 (1, 1, 2, 2, 1, 3) (1024, 729, 977) (583, 416)

6 (1, 2, 1, 1, 1, 4) (1024, 729, 925) (923, 658)

6 (1, 2, 1, 1, 2, 3) (1024, 729, 989) (347, 248)

6 (1, 2, 1, 2, 1, 3) (1024, 729, 1085) (507, 362)
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