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Abstract. The Dynkin algebras are the hereditary artin algebras of finite represen-
tation type. The paper determines the number of complete exceptional sequences for any
Dynkin algebra. Since the complete exceptional sequences for a Dynkin algebra of Dynkin
type ∆ correspond bijectively to the maximal chains in the lattice of non-crossing parti-
tions of type ∆, the calculations presented here may also be considered as a categorification
of the corresponding result for non-crossing partitions.

1. Introduction. We consider Dynkin algebras Λ, that is, hereditary
artin algebras of finite representation type. Note that the indecomposable
Λ-modules correspond bijectively to the positive roots of a Dynkin diagram
∆(Λ); such a diagram is the disjoint union of connected diagrams and the
connected Dynkin diagrams are of the form An,Bn, . . . ,G2. Let us remark
that the vertices i of ∆(Λ) correspond bijectively to the simple Λ-modules,
there is an edge between two vertices if and only if there is a non-trivial
extension between the corresponding simple modules (in one of the two
possible directions), and the lacing (in the cases Bn,Cn,F4,G2) records the
relative size of the endomorphism rings of the simple modules (see [DR1]
or [DR2]). We call Λ a Dynkin algebra of type ∆(Λ), the number of simple
Λ-modules will be called the rank of Λ (let us stress that when we refer to
the number of modules of some kind or the number of sequences of modules,
we mean of course the number of isomorphism classes).

Given a Dynkin algebra Λ, an exceptional sequence for Λ is a sequence
(M1, . . . ,Mt) of indecomposable Λ-modules such that Hom(Mi,Mj) = 0 =

Ext1(Mi,Mj) for i > j. The cardinality of an exceptional sequence is bounded
by the rank n of Λ, and exceptional sequences of cardinality n are said to
be complete. Any exceptional sequence (M1, . . . ,Mt) can be extended to a
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complete exceptional sequence (M1, . . . ,Mn); in case t = n−1, the extension
is unique (for all these assertions, see [CB] and [R2]).

Let e(Λ) be the number of complete exceptional sequences for the Dynkin
algebra Λ. In case Λ is the path algebra of a quiver, the number e(Λ) has
been determined by Seidel [Se] in 2001. The aim of this note is to finalize
these investigations by dealing also with the Dynkin diagrams which are
not simply laced. There are direct connections between the representation
theory of a Dynkin algebra Λ and the lattice L of non-crossing partitions
of type ∆(Λ) which we will outline at the end of the introduction. In par-
ticular, the complete exceptional sequences for Λ correspond bijectively to
the maximal chains in L. Thus, our calculations may also be considered as
a categorification of the corresponding result for L.

As we will see, the number e(Λ) only depends on ∆ = ∆(Λ), thus we may
write e(∆) instead of e(Λ). Also, the shuffle lemma presented in Section 2
shows that it is sufficient to look at connected Dynkin diagrams ∆.

The following table exhibits the numbers e(∆) for any connected Dynkin
diagram ∆:

∆ An Bn,Cn Dn E6 E7 E8 F4 G2

e(∆) (n+1)n−1 nn 2(n−1)n 29 ·34 2·312 2·35 ·57 24 ·33 2·3

It seems to be of interest that the numbers e(∆) have few different prime
factors, all of them being rather small. Using the table, one easily verifies
the following remarkable formula:

e(∆) =
n!h(∆)n

|W (∆)|

where W (∆) is the Weyl group of type ∆, and h(∆) the corresponding
Coxeter number. Here are the numbers in question, as given, for example,
in the appendix of [B]:

∆ An Bn,Cn Dn E6 E7 E8 F4 G2

h(∆) n+1 2n 2(n−1) 22 ·3 2·32 2·3·5 22 ·3 2·3
|W (∆)| (n+1)! 2nn! 2n−1n! 27 ·34 ·5 210 ·34 ·5·7 214 ·35 ·52 ·7 27 ·32 22 ·3

Unfortunately, our proof does not provide any illumination of the formula
(and we should admit that the observation that the formula holds is stolen
from Chapoton [Ch], see the end of the introduction).

As already mentioned, for Λ the path algebra of a quiver (thus for typi-
cal Dynkin algebras of type An,Dn,En), the numbers e(Λ) have been deter-



EXCEPTIONAL SEQUENCES FOR A DYNKIN ALGEBRA 199

mined by Seidel [Se]. The essential cases which were missing are the Dynkin
algebras of type Bn. The inductive strategy of proof works for all types. How-
ever, we will also show a direct relationship between the cases Bn and An−1,
and this could be used directly in order to complete Seidel’s considerations.
Clearly, for n = 2, the number e(Λ) is just the number of indecomposable
modules, in particular e(G2) = 6.

Here is an outline of the proof. We will use induction on the rank n of Λ. If
M is an indecomposable Λ-module, let M⊥ be the full subcategory of modΛ
consisting of all modules N such that Hom(M,N) = 0 = Ext1(M,N).
Since M is exceptional, one knows that M⊥ is (equivalent to) the module
category of a hereditary artin algebra of rank n − 1 (see [GL] or [S2]),
thus by induction we may assume to know e(M⊥). Obviously, the complete
exceptional sequences (M1, . . . ,Mn) with Mn = M correspond bijectively
to the complete exceptional sequences in M⊥, thus e(M⊥) is the number of
complete exceptional sequences in modΛ whose last entry is M . In Section 3
we will see that there is a vertex iM of ∆ such that e(M⊥) = e(∆(iM )),
where ∆(i) is obtained from ∆ = ∆(Λ) by deleting the vertex i and all the
edges involving i. Thus

e(∆) =
∑
M

e(∆(iM )),

and therefore, for ∆ connected, we have the reduction formula

e(∆) =
h

2

∑
i∈∆0

e(∆(i))

where h is the Coxeter number for ∆ (see Section 4). In Section 5 we will use
the reduction formula to obtain the entries of the table, proceeding case by
case. The proof of cases An,Bn,Cn,Dn relies on some well-known recursion
formulas which go back to Abel [Ab] (see the Appendix). Conversely, one
may observe that the interpretation using complete exceptional sequences
provides a categorification of these formulas.

Since we deal with artin algebras (and not more generally with artinian
rings), the diagrams which arise are the Dynkin diagrams An, . . . ,G2. If one
is interested in all the finite Coxeter diagrams (thus also in I2(m),H3,H4),
one may consider in the same way corresponding artinian rings (they are
known to exist for I2(5),H3,H4, see [S1] as well [DRS] and [O]); this will be
done in [FR].

The general frame. The calculations presented here can be seen in a
broader frame, since the representation theory of hereditary artinian rings
has turned out to be an intriguing tool for dealing with various questions in
different parts of mathematics. In particular, there is a strong relationship
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to the theory of (generalized) non-crossing partitions (see for example [Ag])
as observed first by Fomin and Zelevinsky.

As Ingalls and Thomas [IT] have shown, given the path algebra Λ of a
finite directed quiver of type ∆, there is a poset isomorphism between the
poset of thick subcategories of modΛ with generators and the poset NC(∆)
of non-crossing partitions of type ∆ (and this result can easily be extended
to arbitrary hereditary artin algebras Λ); we recall that a full subcategory
is said to be thick (or “wide”) provided it is closed under kernels, cokernels
and extensions. Of course, in case Λ is of finite representation type, any
thick subcategory has a generator.

Hubery and Krause [HK] have pointed out that the Ingalls–Thomas bi-
jection yields a bijection between the complete exceptional sequences for
Λ and the maximal chains in the poset NC(∆). Namely, given a complete
exceptional sequence (M1, . . . ,Mn) for Λ let Ui = (Mi+1 ⊕ · · · ⊕Mn)⊥ for
0 ≤ i ≤ n. Then 0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = modΛ is a maximal chain
of thick subcategories of modΛ with generators. Conversely, let us assume
that 0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = modΛ is a maximal chain of thick sub-
categories of modΛ with generators. Then Un−1 is the module category
of a hereditary artin algebra of rank n − 1, thus by induction the chain
0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 corresponds to a complete exceptional sequence
(M1, . . . ,Mn−1) in Un−1, and this is an exceptional sequence for Λ of cardi-
nality n−1. As already mentioned, there is a uniquely determined Λ-module
Mn such that (M1, . . . ,Mn) is a complete exceptional sequence for Λ. We
see that there is a canonical bijection between the complete exceptional se-
quences for Λ and the set of maximal chains of thick subcategories of modΛ
with generators, thus with the maximal chains in NC(∆).

This shows that the numbers e(∆) calculated here for the Dynkin di-
agrams ∆ via representation theory are nothing else than the numbers of
maximal chains in NC(∆) (in the Dynkin case, this poset is even a lattice)
or, equivalently, the numbers of factorizations of a fixed Coxeter element
as a product of n reflections. The latter numbers for ∆ = An,Bn,Dn have
been determined in a famous letter [D] of Deligne to Looijenga. The num-
bers of maximal chains in NC(∆) have been calculated for the cases An,
Bn and Dn by Kreweras [K], Reiner [Rn] and Athanasiadis–Reiner [AR],
respectively, and in general by Chapoton [Ch] and Reading [Rd] (see also
Chapuy–Stump [CS]). It seems that the term n!hn/|W | is first mentioned
by Chapoton [Ch].

The present paper only relies on well-known properties of the module
category of an artin algebra. On the other hand, the result presented here,
and indeed also the main steps of our proof, may be considered as a cate-
gorification of the considerations of Deligne and Reading.
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2. The shuffle lemma

Lemma 1 (Shuffle Lemma). Let Λ,Λ′ be representation-finite hereditary
artin algebras of ranks n, n′ respectively. Then

e(Λ× Λ′) =

(
n+ n′

n

)
e(Λ)e(Λ′).

Proof. Let (E1, . . . , En) be a (complete) exceptional sequence in modΛ
and let (E′1, . . . , E

′
n′) be a (complete) exceptional sequence in modΛ′. Let

I be a subset of {1, . . . , n + n′} of cardinality n, say I = {i1 < · · · < in},
and let {j1 < · · · < jn′} be its complement. Let (M1, . . . ,Mn+n′) be defined
by Mit = Et for 1 ≤ t ≤ n and Mjt = E′t for 1 ≤ t ≤ n′. Then clearly
(M1, . . . ,Mn+n′) is a complete exceptional sequence in mod(Λ × Λ′), and
every complete exceptional sequence in mod(Λ×Λ′) is obtained in this way.
Thus, fixing a subset I of cardinality n, the number of complete exceptional
sequences (M1, . . . ,Mn+n′) in mod(Λ × Λ′) with Mi in modΛ for all i ∈ I
is equal to e(Λ)e(Λ′), and the number of such subsets I is just

(
n+n′

n

)
. This

completes the proof.

3. The category M⊥. Let Λ be a representation-finite hereditary artin
algebra of rank n. Let ∆ = ∆(Λ). Given a vertex i of ∆, let ∆(i) be obtained
from ∆ by deleting the vertex i and the edges involving i (it is of course
again a Dynkin diagram).

Let τ be the Auslander–Reiten translation for Λ. For every indecompos-
able Λ-module M , there is a natural number t such that τ tM is indecom-
posable projective, thus τ tM = P (iM ) for a (uniquely determined) vertex
iM of ∆.

Let M be an indecomposable module. It is known that the category M⊥

is equivalent to a module category modΛ′ where Λ′ is a representation-finite
hereditary artin algebra of rank n− 1.

Lemma 2. Let M be an indecomposable module and assume that M⊥ is
equivalent to the module category modΛ′. Then Λ′ has type ∆(iM ).

Proof. First, assume that M = P (i) is indecomposable projective, thus
i = iM . Let εi be an idempotent of Λ such that P (i) = Λεi. Then M⊥ is the
set of Λ-modulesN with Hom(P (i), N) = 0, thus the set of Λ/ΛεiΛ-modules.
On the other hand, we have ∆(Λ/ΛεiΛ) = ∆(i).

Now assume that M is indecomposable and not projective. There is a
slice S (in the sense of [R2]) in the Auslander–Reiten quiver of Λ such that
M is a sink for S. Let M1, . . . ,Mn be the indecomposable modules in S, one
from each isomorphism class, and assume that Mn = M. Since M is a sink
of S, we know that Hom(M,Mi) = 0 for 1 ≤ i ≤ n − 1, thus the modules
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M1, . . . ,Mn−1 belong to M⊥. Let

T =
n−1⊕
i=1

Mi;

then T is a tilting module for M⊥ = modΛ′ (it has no self-extensions and
enough indecomposable direct summands). Since S is a slice, we know that
the endomorphism ring of

⊕n
i=1Mi is hereditary, thus also End(T )op is

hereditary and the Dynkin diagram ∆(End(T )op) is just ∆(iM ). A tilting
module with hereditary endomorphism ring is a slice module (see for exam-
ple [R3, Section 1.2]). Thus T is a slice module for modΛ′ and therefore Λ′

and End(T )op have the same Dynkin type. This shows that the Dynkin type
of Λ′ is ∆(iM ).

4. The reduction formula. We assume by induction that e(Λ′) only
depends on ∆(Λ′) for any representation-finite hereditary artin algebra Λ′

of rank n′ < n.

Proposition. Let Λ be a connected representation-finite hereditary
artin algebra of rank n and type ∆. Then

e(Λ) =
h

2

∑
i∈∆0

e(∆(i))

where h is the Coxeter number for ∆.

This reduction formula shows that e(Λ) only depends on ∆ = ∆(Λ).

Proof. If M is an indecomposable Λ-module, then we have seen in Sec-
tion 3 that M⊥ is equivalent to the module category modΛ′, where Λ′ is of
type ∆(iM ). Thus

e(M⊥) = e(∆(iM )).

For any vertex i of ∆, let m(i) be the length of the τ -orbit of P (i),
thus there are precisely m(i) indecomposable modules M such that iM = i.
Therefore

e(Λ) =
∑
M

e(M⊥) =
∑
M

e(∆(iM )) =
∑
i

m(i)e(∆(i)).

We have to distinguish two cases. First, assume that ∆ is not of the
form An, D2m+1 or E6. In this case, we have m(i) = h/2 for any vertex i of
∆. Therefore ∑

i

m(i)e(∆(i)) =
∑
i

h

2
e(∆(i)).

Second, assume that ∆ is equal to An, D2m+1 or E6. Thus, there is a
(unique) automorphism ρ of∆ of order 2. One knows thatm(i)+m(ρ(i)) = h
for all vertices i of ∆. The automorphism ρ shows that e(∆(ρ(i))) = e(∆(i)),
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thus

2
∑
i

m(i)e(∆(i)) =
∑
i

m(i)e(∆(i)) +
∑
i

m(ρ(i))e(∆(ρ(i)))

=
∑
i

(
m(i) +m(ρ(i))

)
e(∆(i)) =

∑
i

h · e(∆(i)).

Dividing by 2 we obtain the required formula.

5. The different cases

Type An. This concerns the diagram

◦ ◦ ◦ ◦· · ·......................................................... ......................................................... .................................... ....................................

0 1 2 n− 1

We have ∆(i) = AitAn−i−1, therefore, by the shuffle lemma and induction,

e(∆(i)) =

(
n− 1

i

)
e(Ai)e(An−i−1) =

(
n− 1

i

)
(i+ 1)i−1(n− i)n−i−2.

Thus we have to calculate
n−1∑
i=0

e(∆(i)) =
n−1∑
i=0

(
n− 1

i

)
(i+ 1)i−1(n− i)n−i−2,

but this is the coefficient F (n − 1) of the power series F = A ∗ A (see the
Appendix), and the formula (1) asserts that F (n− 1) = 2(n+ 1)n−2.

Now h = n+ 1, thus

h

2

n∑
i=1

e(∆(i)) =
n+ 1

2
2(n+ 1)n−2 = (n+ 1)n−1.

Type Bn: The relationship between Bn and An−1. Let us directly
show the relationship

e(Bn) = n2 · e(An−1).
Proof. Let Λ be a hereditary artin algebra of type Bn. Let P be the

indecomposable projective Λ-module such that dimP is a short root.
If (M1, . . . ,Mn) is an exceptional sequence in modΛ, then there is pre-
cisely one index i such that dimMi is a short root (see [R2]). Thus, let
Ei(modΛ) be the set of exceptional sequences in modΛ such that dimMi is
a short root, and let ei(modΛ) be the cardinality of Ei(modΛ). If i < n, and
(M1, . . . ,Mn) belongs to Ei(modΛ), then there is a uniquely determined el-
ement (M1, . . . ,Mi−1,Mi+1,M

∗
i ,Mi+2, . . . ,Mn) in Ei+1(modΛ), and every

element of Ei+1(modΛ) is obtained in this way (again, see [R2]). This shows
that ei(modΛ) = ei+1(modΛ) and therefore

e(Λ) =

n∑
i=1

ei(Λ) = n · en(Λ).
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There are precisely n indecomposable modulesM such that dimM is a short
root, namely the modules in the τ -orbit O(P ) of P . For any module M in
O(P ), the exceptional sequences (M1, . . . ,Mn) with Mn = M correspond
bijectively to the exceptional sequences in M⊥, and M⊥ is equivalent to the
module category modΛM with ΛM a hereditary artin algebra of type An−1.
This shows that

en (mod Λ) =
∑

M∈O(P )

e(M⊥) = n · e(An−1).

This completes the proof.

Type Cn. There is the corresponding formula

e(Cn) = n2 · e(An−1)
(with a similar proof).

Type Dn. This concerns the diagram
◦

◦
◦ ◦ ◦· · ·

...................................................................

.............
.............
.............
.............
.............
.. ......................................................... .................................... ....................................

1

2
3 4 n

with n ≥ 4. Actually, also the cases n = 3 and n = 2 are of interest: for
n = 3, we have D3 = A3, for n = 2 we deal with D2 = A1 t A1.

Before we proceed, let us mention the following notation (see the Ap-
pendix): For any n ≥ 0, let A(n) = (n+ 1)n−1 and D(n) = (n− 1)n.

For k ≥ 4, we have ∆(k) = Dk−1tAn−k, thus the shuffling lemma yields

e(∆(k)) =

(
n− 1

k − 1

)
e(Dk−1) · e(An−k)

=

(
n− 1

k − 1

)
2(k − 1)k · (n− k + 1)n−k−1

=

(
n− 1

k − 1

)
2D(k − 1)A(n− k).

For k = 3, we have ∆(3) = A1 t A1 t An−3, and D(2) = 1, thus

e(∆(3)) =
(n− 1)!

1!1!(n− 3)!
e(An−3) =

(
n− 1

2

)
· 2 · (n− 2)n−4

=

(
n− 1

2

)
· 2D(2)A(n− 3).

For k = 1 and k = 2, we have ∆(k) = An−1, therefore

e(∆(k)) = e(An−1) = nn−2 = A(n− 1),

thus

e(∆(1)) + e(∆(2)) =

(
n− 1

0

)
2D(0)A(n− 1)

(since D(0) = 1).
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Taking into account that D(1) = 0, we see that
n∑
k=1

e(∆(k)) = e(∆(1)) + e(∆(2)) +
n∑
k=3

e(∆(k))

=

n∑
k=1

(
n− 1

k − 1

)
2D(k − 1)A(n− k)

but this is the coefficient G(n − 1) of the power series G = D ∗ A (see
the Appendix). The formula (3) in the Appendix asserts that G(n − 1) =
(n− 1)n−1.

Since the Coxeter number for Dn is h = 2(n− 1), we have

h

2

n∑
k=1

e(∆(k)) = (n− 1) · 2 · (n− 1)n−1 = 2(n− 1)n,

as we wanted to show.

Type En. This concerns the diagrams

◦ ◦ ◦ ◦

◦

◦· · ·.......
.......
.......
.......
.......
.....

......................................................... ......................................................... ......................................................... .................................... ....................................

1

2 3 4 5 n

and we will deal with the cases n = 6, 7, 8.

Type E6:

i ∆(i) e(∆(i))

1 A5 1296

2 D5 2048

3 A1 t A4
5!
1!4!

1 · 125

4 A2 t A1 t A2
5!

2!1!2!
3 · 1 · 3

We see that

e(E6) =
h

2

(
e(A5)+2e(D5)+2e(A1tA4)+e(A2tA1tA2)

)
= 41 472 = 2934.

Type E7:

i ∆(i) e(∆(i))

1 A6 16807

2 D6 46656

3 A1 t A5
6!
1!5!

1 · 1296

4 A2 t A1 t A3
6!

2!1!3!
3 · 1 · 16

5 A4 t A2
6!
4!2!

125 · 3
6 D5 t A1

6!
5!1!

2048 · 1
7 E6 41472

e(E7) = 1 062 882 = 2 · 312.
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Type E8:

i ∆(i) e(∆(i))

1 A7 262144

2 D7 559872

3 A1 t A6
7!
1!6!

1 · 16807

4 A2 t A1 t A4
7!

2!1!4!
3 · 1 · 125

5 A4 t A3
7!
4!3!

125 · 16

6 D5 t A2
7!
5!2!

2048 · 3
7 E6 t A1

7!
6!1!

41472 · 1
8 E7 1062882

e(E8) = 37 968 750 = 2 · 35 · 57.

Type F4. This concerns the diagram

◦ ◦ ◦ ◦......................................................... .........................................................
......................................................... .........................................................

..................................
1 2 3 4

i ∆(i) e(∆(i))

1 B3 27

2 A1 t A2
3!
1!2!

1 · 3
3 A2 t A1

3!
2!1!

3 · 1
4 C3 27

e(F4) = 432 = 24 · 33.

6. Appendix: The binomial convolution of some power series.
Let Z[T ] be the set of formal power series F =

∑
n≥0 F (n)Tn in one vari-

able T with integer coefficients F (n). Given power series F =
∑

n F (n)Tn

and G =
∑

nG(n)Tn, the binomial convolution F ∗ G is by definition the
power series

∑
nH(n)Tn with H(n) =

∑
k

(
n
k

)
F (k)G(n− k) (see [GKP]).

We are interested in the power series A,B,D with coefficients A(n) =
(n+ 1)n−1, B(n) = nn and D(n) = (n− 1)n, thus

A =
∑
n≥0

(n+ 1)n−1Tn = 1 + T + 3T 2 + 16T 3 + 125T 4 + · · · ,

B =
∑
n≥0

nnTn = 1 + T + 4T 2 + 27T 3 + 256T 4 + · · · ,

D =
∑
n≥0

(n− 1)nTn = 1 + T 2 + 8T 3 + 81T 4 + · · · .

The main result of the paper asserts that e(An) = A(n) and e(Bn) = e(Cn) =
B(n) for n ≥ 1 and that e(Dn) = 2D(n) for n ≥ 2. Our proofs in Section 5
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use two of the following identities, namely (1) and (3) (and we could use (2)
in order to deal with the cases Bn):

Proposition.

A ∗A =
∑
n≥0

2(n+ 2)n−1Tn,(1)

A ∗B =
∑
n≥0

(n+ 1)nTn,(2)

A ∗D =
∑
n≥0

nnTn = B.(3)

Proof. Let us recall Abel’s identity [Ab]

(x+ y)n =

n∑
k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k,

which is valid in any commutative ring with x being invertible. Several
proofs can be found in Comptet [Co]. We need Abel’s identity for x = 1 and
z = −1, thus the identity

(1 + y)n =
n∑
k=0

(
n

k

)
(1 + k)k−1(y − k)n−k.

Let us start with the proof of (2), using Abel’s identity for y = n (and
x = 1, z = −1):

(1+n)n =
n∑
k=0

(
n

k

)
(1+k)k−1(n−k)n−k =

n∑
k=0

(
n

k

)
A(k)B(n−k) = (A∗B)(n).

For the proof of (3), we use Abel’s identity for y = n−1 (and x = 1, z = −1):

nn = (1 + (n− 1))n =

n∑
k=0

(
n

k

)
(1 + k)k−1(n− 1− k)n−k

=

n∑
k=0

(
n

k

)
A(k)D(n− k) = (A ∗D)(n).

For the proof of (1), we expand (n+ 2)n−1 with y = n+ 1 (and again x = 1,
z = −1):

(∗) (1 + (n+ 1))n−1 =

n∑
k=0

(
n− 1

k

)
(1 + k)k−1(n+ 1− k)n−1−k;

note that we have added the summand with index k = n; there is no harm,
since by definition

(
n−1
n

)
= 0. Replacing the summation index k by n − k,
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and using the equality
(
n−1
n−k
)

=
(
n−1
k−1
)
, we see that we also have

(∗∗) (1 + (n+ 1))n−1 =

n∑
k=0

(
n− 1

k − 1

)
(1 + n− k)n−k−1(k + 1)k−1.

Since
(
n−1
k

)
+
(
n−1
k−1
)

=
(
n
k

)
, the summation of (∗) and (∗∗) yields

2(n+ 2)n−1 =

n∑
k=0

(
n

k

)
(k + 1)k−1(n− k + 1)n−k−1

=
n∑
k=0

(
n

k

)
A(k)A(n− k) = (A ∗A)(n).

This completes the proof of the Proposition.

It seems to us that these binomial convolution formulas are very pretty;
as an example, let us exhibit the coefficients of T 4 in A ∗A, A ∗B, A ∗D:

(A ∗A)(4) 1 · 125 · 1 + 4 · 1 · 16 + 6 · 3 · 3 + 4 · 1 · 16 + 1 · 125 · 1 = 2 · 63

(A ∗B)(4) 1 · 256 · 1 + 4 · 1 · 27 + 6 · 3 · 4 + 4 · 1 · 16 + 1 · 125 · 1 = 54

(A ∗D)(4) 1 · 82 · 1 + 4 · 1 · 8 + 6 · 3 · 1 + 4 · 0 · 16 + 1 · 125 · 1 = 44

Finally, let us add some general information concerning the sequences
A,B,D as provided by Sloane’s On-Line Encyclopedia of Integer Sequen-
ces [Sl]. The sequence A(n) = (n + 1)n−1 is the Sloane sequence A000272,
but shifted by 1, thus A(n) is the number of trees on n + 1 labeled nodes.
The sequence B(n) = nn is the Sloane sequence A000312, so B(n) is the
number of functions from {1, . . . , n} to itself. The sequence D(n) = (n−1)n

with e(Dn) = 2D(n) for n ≥ 2 is the Sloane sequence A065440, so D(n) is
the number of functions from {1, . . . , n} to itself without fixed points.

n A(n) B(n) 2D(n)

0 1 1 2

1 1 1 0

2 3 4 2

3 16 27 16

4 125 256 162

5 1 296 3 125 2048

6 16 807 46 656 31 250

7 262 144 823 543 559 872

8 4 782 969 12 777 216 11 529 602

9 100 000 000 387 420 489 268 435 456

10 2 357 947 691 10 000 000 000 6 973 568 802
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The table gives the first terms of the sequences A,B, 2D, namely A(n),
B(n), 2D(n), with n ≤ 10; note that A(n) = e(An) and B(n) = e(Bn) for
n ≥ 1, and 2D(n) = e(Dn) for n ≥ 2.
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