ON LÉVY'S BROWNIAN MOTION INDEXED BY ELEMENTS OF COMPACT GROUPS

BY
PAOLO BALDI and MAURIZIA ROSSI (Roma)

Abstract

We investigate positive definiteness of the Brownian kernel $K(x, y)=$ $\frac{1}{2}\left(d\left(x, x_{0}\right)+d\left(y, x_{0}\right)-d(x, y)\right)$ on a compact group G and in particular for $G=S O(n)$.

1. Introduction. In 1959 P. Lévy [8] asked about the existence of a process X indexed by the points of a metric space (\mathscr{X}, d) and generalizing the Brownian motion, i.e. of a real Gaussian process which would be centered, vanishing at some point $x_{0} \in \mathscr{X}$ and such that $\mathbb{E}\left(\left|X_{x}-X_{y}\right|^{2}\right)=d(x, y)$. By polarization, the covariance function of such a process would be

$$
\begin{equation*}
K(x, y)=\frac{1}{2}\left(d\left(x, x_{0}\right)+d\left(y, x_{0}\right)-d(x, y)\right) \tag{1.1}
\end{equation*}
$$

so that the above mentioned existence is equivalent to the kernel K being positive definite. Positive definiteness of K for $\mathscr{X}=\mathbb{R}^{m}$ and d the Euclidean metric was proved by Schoenberg [14] in 1938, and P. Lévy himself constructed the Brownian motion on $\mathscr{X}=\mathbb{S}^{m-1}$, the euclidean sphere of \mathbb{R}^{m}, d being the distance along the geodesics. Later Gangolli [5] gave an analytical proof of the positive definiteness of the kernel (1.1) for the same metric space $\left(\mathbb{S}^{m-1}, d\right)$, in a paper that dealt with this question for a large class of homogeneous spaces.

Finally Kubo et al. [6] proved the positive definiteness of the kernel (1.1) for the Riemannian metric spaces of constant sectional curvature equal to $-1,0$ or 1 , thus adding the hyperbolic disk to the list. To be precise, in the case of the hyperbolic space $\mathcal{H}_{m}=\left\{\left(x_{0}, x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m+1}: x_{1}^{2}+\cdots+\right.$ $\left.x_{m}^{2}-x_{0}^{2}=1\right\}$, the distance under consideration is the unique, up to multiplicative constants, Riemannian distance that is invariant with respect to the action of $G=L_{m}$, the Lorentz group.

In this short note we investigate this question for $\mathscr{X}=S O(n)$. The answer is that the kernel (1.1) is not positive definite on $S O(n)$ for $n>2$. This is somehow surprising as, in particular, $S O(3)$ is locally isometric to $S U(2)$, where positive definiteness of the kernel K is immediate, as shown below.

[^0]Key words and phrases: positive definite functions, Brownian motion, compact groups.

We have been led to the question of the existence of the Brownian motion indexed by elements of these groups - in particular of $S O(3)$-in connection with the analysis and modeling of the Cosmic Microwave Background which has recently become an active research field (see [7, [9], [10], [11 e.g.) and which has attracted attention to the study of random fields (11, [2], [13] e.g.). More precisely, in modern cosmological models the CMB is seen as a realization of an invariant random field in a vector bundle over the sphere \mathbb{S}^{2} and the analysis of its components (polarization e.g.) requires the spin random fields theory. This leads naturally to the investigation of invariant random fields on $S O(3)$ enjoying particular properties and therefore to the question of the existence of a privileged random field, i.e. Lévy's Brownian random field on $S O(3)$.

In $\mathbb{\S}_{2}$ we recall some elementary facts about invariant distances and positive definite kernels. In $\$ 3$ we treat the case $G=S U(2)$, recalling well known facts about the invariant distance and Haar measure of this group. Positive definiteness of K for $S U(2)$ is just a simple remark, but these facts are needed in $\$ 4$ where we treat the case $S O(3)$ and deduce from it the case $S O(n), n \geq 3$.
2. Some elementary facts. In this section we recall some well known facts about Lie groups (see mainly [3] and also [4, (15).
2.1. Invariant distance of a compact Lie group. From now on we denote by G a compact Lie group. It is well known that G admits a biinvariant Riemannian metric (see [4, p. 66] e.g.), which we shall denote by $\left\{\langle\cdot, \cdot\rangle_{g}\right\}_{g \in G}$, where of course $\langle\cdot, \cdot\rangle_{g}$ is an inner product on the tangent space $T_{g} G$ to the manifold G at g and the family $\left\{\langle\cdot, \cdot\rangle_{g}\right\}_{g \in G}$ smoothly depends on g. By bi-invariance, for $g \in G$ the diffeomorphisms L_{g} and R_{g} (resp. left multiplication and right multiplication of the group) are isometries. Since the tangent space $T_{g} G$ at any point g can be translated to the tangent space $T_{e} G$ at the identity element e of the group, the metric $\left\{\langle\cdot, \cdot\rangle_{g}\right\}_{g \in G}$ is completely characterized by $\langle\cdot, \cdot\rangle_{e}$. Moreover, $T_{e} G$ being the Lie algebra \mathfrak{g} of G, the bi-invariant metric corresponds to an inner product $\langle\cdot, \cdot\rangle$ on \mathfrak{g} which is invariant under the adjoint representation Ad of G. Indeed there is a one-to-one correspondence between bi-invariant Riemannian metrics on G and Ad-invariant inner products on \mathfrak{g}. If in addition \mathfrak{g} is semisimple, then the negative Killing form of G is an Ad-invariant inner product on \mathfrak{g} itself.

If there exists a unique (up to a multiplicative factor) bi-invariant metric on G (for a sufficient condition see [4, Th. 2.43]) and \mathfrak{g} is semisimple, then this metric is necessarily proportional to the negative Killing form of \mathfrak{g}. It is well known that this is the case for $S O(n)(n \neq 4)$ and $S U(n)$; further-
more, the (natural) Riemannian metric on $S O(n)$ induced by the embedding $S O(n) \hookrightarrow \mathbb{R}^{n^{2}}$ corresponds to the negative Killing form of $s o(n)$.

Endowed with this bi-invariant Riemannian metric, G becomes a metric space, with a distance d which is bi-invariant. Therefore the function $g \in$ $G \mapsto d(g, e)$ is a class function, because

$$
\begin{equation*}
d(g, e)=d(h g, h)=d\left(h g h^{-1}, h h^{-1}\right)=d\left(h g h^{-1}, e\right), \quad g, h \in G \tag{2.1}
\end{equation*}
$$

It is well known that geodesics on G through the identity e are exactly the one-parameter subgroups of G (see [12, p. 113] e.g.), thus a geodesic from e is the curve on G given by

$$
\gamma_{X}(t): t \in[0,1] \mapsto \exp (t X)
$$

for some $X \in \mathfrak{g}$. The length of this geodesic is

$$
L\left(\gamma_{X}\right)=\|X\|=\sqrt{\langle X, X\rangle} .
$$

Therefore

$$
d(g, e)=\inf _{X \in \mathfrak{g}: \exp X=g}\|X\| .
$$

2.2. Brownian kernels on a metric space. Let (\mathscr{X}, d) be a metric space.

Lemma 2.1. The kernel K in (1.1) is positive definite on \mathscr{X} if and only if d is a restricted negative definite kernel, i.e., for every choice of elements $x_{1}, \ldots, x_{n} \in \mathscr{X}$ and of complex numbers ξ_{1}, \ldots, ξ_{n} with $\sum_{i=1}^{n} \xi_{i}=0$,

$$
\begin{equation*}
\sum_{i, j=1}^{n} d\left(x_{i}, x_{j}\right) \xi_{i} \overline{\xi_{j}} \leq 0 . \tag{2.2}
\end{equation*}
$$

Proof. For every $x_{1}, \ldots, x_{n} \in \mathscr{X}$ and complex numbers ξ_{1}, \ldots, ξ_{n},
$\sum_{i, j} K\left(x_{i}, x_{j}\right) \xi_{i} \overline{\xi_{j}}=\frac{1}{2}\left(\bar{a} \sum_{i} d\left(x_{i}, x_{0}\right) \xi_{i}+a \sum_{j} d\left(x_{j}, x_{0}\right) \overline{\xi_{j}}-\sum_{i, j} d\left(x_{i}, x_{j}\right) \xi_{i} \overline{\xi_{j}}\right)$
where $a:=\sum_{i} \xi_{i}$. If $a=0$ then it is immediate that in (2.3) the l.h.s. is ≥ 0 if and only if the r.h.s. is ≤ 0. Otherwise set $\xi_{0}:=-a$ so that $\sum_{i=0}^{n} \xi_{i}=0$. The equality

$$
\begin{equation*}
\sum_{i, j=0}^{n} K\left(x_{i}, x_{j}\right) \xi_{i} \overline{\xi_{j}}=\sum_{i, j=1}^{n} K\left(x_{i}, x_{j}\right) \xi_{i} \overline{\xi_{j}} \tag{2.4}
\end{equation*}
$$

is then easy to check, keeping in mind that $K\left(x_{i}, x_{0}\right)=K\left(x_{0}, x_{j}\right)=0$, which finishes the proof.

For a more general proof see [5, p. 127, proof of Lemma 2.5].
If \mathscr{X} is the homogeneous space of some topological group G, and d is a G-invariant distance, then 2.2 is satisfied if and only if for every choice of
elements $g_{1}, \ldots, g_{n} \in G$ and of complex numbers ξ_{1}, \ldots, ξ_{n} with $\sum_{i=1}^{n} \xi_{i}=0$,

$$
\begin{equation*}
\sum_{i, j=1}^{n} d\left(g_{i} g_{j}^{-1} x_{0}, x_{0}\right) \xi_{i} \overline{\xi_{j}} \leq 0 \tag{2.5}
\end{equation*}
$$

where $x_{0} \in \mathscr{X}$ is a fixed point. We shall say that the function $g \in G \mapsto$ $d\left(g x_{0}, x_{0}\right)$ is restricted negative definite on G if it satisfies (2.5).

In our case of interest, $\mathscr{X}=G$ is a compact (Lie) group and d is a bi-invariant distance as in $\S 2.1$. The Peter-Weyl development (see [3] e.g.) for the class function $d(\cdot, e)$ on G is

$$
\begin{equation*}
d(g, e)=\sum_{\ell \in \widehat{G}} \alpha_{\ell} \chi_{\ell}(g) \tag{2.6}
\end{equation*}
$$

where \widehat{G} denotes the family of equivalence classes of irreducible representations of G, and χ_{ℓ} the character of the ℓ th irreducible representation of G.

REMARK 2.2. A function ϕ with a development as in 2.6 is restricted negative definite if and only if $\alpha_{\ell} \leq 0$ but for the trivial representation.

Actually note first that, by standard approximation arguments, ϕ is restricted negative definite if and only if for every continuous function f : $G \rightarrow \mathbb{C}$ with 0-mean (i.e. orthogonal to the constants),

$$
\begin{equation*}
\int_{G} \int_{G} \phi\left(g h^{-1}\right) f(g) \overline{f(h)} d g d h \leq 0 \tag{2.7}
\end{equation*}
$$

$d g$ denoting the Haar measure of G. Choosing $f=\chi_{\ell}$ on the l.h.s. of (2.7) and denoting by d_{ℓ} the dimension of the corresponding representation, we find by a straightforward computation that

$$
\begin{equation*}
\iint_{G} \phi\left(g h^{-1}\right) \chi_{\ell}(g) \overline{\chi_{\ell}(h)} d g d h=\frac{\alpha_{\ell}}{d_{\ell}} . \tag{2.8}
\end{equation*}
$$

so that if ϕ is restricted negative definite, then necessarily $\alpha_{\ell} \leq 0$.
Conversely, if $\alpha_{\ell} \leq 0$ but for the trivial representation, then ϕ is restricted negative definite, as the characters χ_{ℓ} are positive definite and orthogonal to the constants.
3. $S U(2)$. The special unitary group $S U(2)$ consists of the complex unitary 2×2-matrices g such that $\operatorname{det}(g)=1$. Every $g \in S U(2)$ has the form

$$
g=\left(\begin{array}{cc}
a & b \tag{3.1}\\
-\bar{b} & \bar{a}
\end{array}\right), \quad a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1
$$

If $a=a_{1}+i a_{2}$ and $b=b_{1}+i b_{2}$, then the map

$$
\begin{equation*}
\Phi(g)=\left(a_{1}, a_{2}, b_{1}, b_{2}\right) \tag{3.2}
\end{equation*}
$$

is a homeomorphism (see [3], 15] e.g.) between $S U(2)$ and the unit sphere \mathbb{S}^{3} of \mathbb{R}^{4}. Moreover the right translation

$$
R_{g}: h \mapsto h g, \quad h, g \in S U(2),
$$

of $S U(2)$ is a rotation (an element of $S O(4))$ of \mathbb{S}^{3} (identified with $S U(2)$). The homeomorphism (3.2) preserves the invariant measure, i.e., if $d g$ is the normalized Haar measure on $S U(2)$, then $\Phi(d g)$ is the normalized Lebesgue measure on \mathbb{S}^{3}. As the 3-dimensional polar coordinates on \mathbb{S}^{3} are

$$
\begin{align*}
a_{1} & =\cos \theta, \\
a_{2} & =\sin \theta \cos \varphi, \tag{3.3}\\
b_{1} & =\sin \theta \sin \varphi \cos \psi, \\
b_{2} & =\sin \theta \sin \varphi \sin \psi,
\end{align*}
$$

with $(\theta, \varphi, \psi) \in[0, \pi] \times[0, \pi] \times[0,2 \pi]$, the normalized Haar integral of $S U(2)$ for an integrable function f is

$$
\begin{equation*}
\int_{S U(2)} f(g) d g=\frac{1}{2 \pi^{2}} \int_{0}^{\pi} \sin \varphi d \varphi \int_{0}^{\pi} \sin ^{2} \theta d \theta \int_{0}^{2 \pi} f(\theta, \varphi, \psi) d \psi \tag{3.4}
\end{equation*}
$$

The bi-invariant Riemannian metric on $S U(2)$ is necessarily proportional to the negative Killing form of its Lie algebra $s u(2)$ (the real vector space of anti-hermitian complex 2×2 matrices). We consider the bi-invariant metric corresponding to the Ad-invariant inner product on $s u(2)$,

$$
\langle X, Y\rangle=-\frac{1}{2} \operatorname{tr}(X Y), \quad X, Y \in s u(2)
$$

Therefore as an orthonormal basis of $s u(2)$ we can take the matrices

$$
X_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) .
$$

The homeomorphism (3.2) is actually an isometry between $S U(2)$ endowed with this distance and \mathbb{S}^{3}. Hence the restricted negative definiteness of the kernel d on $S U(2)$ is an immediate consequence of this property on \mathbb{S}^{3}, which is known to be true as mentioned in the introduction ([5], [8], [6). In order to develop a comparison with $S O(3)$, we shall give a different proof of this fact in $\$ 5$.
4. $S O(n)$. We first investigate the case $n=3$. The group $S O(3)$ can also be realized as a quotient of $S U(2)$. Actually the adjoint representation Ad of $S U(2)$ is a surjective morphism from $S U(2)$ onto $S O(3)$ with kernel $\{ \pm e\}$ (see [3] e.g.). Hence the well known result

$$
\begin{equation*}
S O(3) \cong S U(2) /\{ \pm e\} . \tag{4.1}
\end{equation*}
$$

Let us explicitly recall this morphism: if $a=a_{1}+i a_{2}, b=b_{1}+i b_{2}$ with $|a|^{2}+|b|^{2}=1$ and

$$
\widetilde{g}=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)
$$

then the orthogonal matrix $\operatorname{Ad}(\widetilde{g})$ is given by
(4.2) $\quad g=\left(\begin{array}{ccc}a_{1}^{2}-a_{2}^{2}-\left(b_{1}^{2}-b_{2}^{2}\right) & -2 a_{1} a_{2}-2 b_{1} b_{2} & -2\left(a_{1} b_{1}-a_{2} b_{2}\right) \\ 2 a_{1} a_{2}-2 b_{1} b_{2} & \left(a_{1}^{2}-a_{2}^{2}\right)+\left(b_{1}^{2}-b_{2}^{2}\right) & -2\left(a_{1} b_{2}+a_{2} b_{1}\right) \\ 2\left(a_{1} b_{1}+a_{2} b_{2}\right) & -2\left(-a_{1} b_{2}+a_{2} b_{1}\right) & |a|^{2}-|b|^{2}\end{array}\right)$.

The isomorphism in (4.1) might suggest that the positive definiteness of the Brownian kernel on $S U(2)$ implies a similar result for $S O(3)$. This is not true and actually it turns out that the distance $(g, h) \mapsto d(g, h)$ on $S O(3)$ induced by its bi-invariant Riemannian metric is not a restricted negative definite kernel (see Lemma 2.1).

As for $S U(2)$, the bi-invariant Riemannian metric on $S O(3)$ is proportional to the negative Killing form of its Lie algebra so(3) (the real antisymmetric 3×3 matrices). We shall consider the Ad-invariant inner product on so(3) defined as

$$
\langle A, B\rangle=-\frac{1}{2} \operatorname{tr}(A B), \quad A, B \in \operatorname{so}(3)
$$

An orthonormal basis for $s o(3)$ is then given by the matrices

$$
A_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Similarly to the case of $S U(2)$, it is easy to compute the distance from $g \in S O(3)$ to the identity. Actually g is conjugate to the matrix

$$
\Delta(t)=\left(\begin{array}{ccc}
\cos t & \sin t & 0 \\
-\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)=\exp \left(t A_{1}\right)
$$

where $t \in[0, \pi]$ is the rotation angle of g. Therefore if d still denotes the distance induced by the bi-invariant metric, then

$$
d(g, e)=d(\Delta(t), e)=t
$$

i.e. the distance from g to e is the rotation angle of g.

Let us denote by $\left\{\chi_{\ell}\right\}_{\ell \geq 0}$ the set of characters for $S O(3)$. It is easy to compute the Peter-Weyl development (2.6) for $d(\cdot, e)$, as the characters χ_{ℓ} are also simple functions of the rotation angle. More precisely, if t is the
rotation angle of g (see [10] e.g.), then

$$
\chi_{\ell}(g)=\frac{\sin \frac{(2 \ell+1) t}{2}}{\sin \frac{t}{2}}=1+2 \sum_{m=1}^{\ell} \cos (m t)
$$

We shall prove that the coefficient

$$
\alpha_{\ell}=\int_{S O(3)} d(g, e) \chi_{\ell}(g) d g
$$

is positive for some $\ell \geq 1$. As both $d(\cdot, e)$ and χ_{ℓ} are functions of the rotation angle t, we have

$$
\alpha_{\ell}=\int_{0}^{\pi} t\left(1+2 \sum_{j=1}^{\ell} \cos (j t)\right) p_{T}(t) d t
$$

where p_{T} is the density of $t=t(g)$, considered as a r.v. on the probability space $(S O(3), d g)$. The next statements are devoted to the computation of the density p_{T}. This is certainly well known but we were unable to find a reference in the literature. We first compute the density of the trace of g.

Proposition 4.1. The distribution of the trace of a matrix in $S O(3)$ with respect to the normalized Haar measure is given by the density

$$
\begin{equation*}
f(y)=\frac{1}{2 \pi}(3-y)^{1 / 2}(y+1)^{-1 / 2} 1_{[-1,3]}(y) \tag{4.3}
\end{equation*}
$$

Proof. The trace of the matrix 4.2 is equal to

$$
\operatorname{tr}(g)=3 a_{1}^{2}-a_{2}^{2}-b_{1}^{2}-b_{2}^{2}
$$

Under the normalized Haar measure of $S U(2)$ the vector $\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$ is uniformly distributed on the sphere \mathbb{S}^{3}. Recall the normalized Haar integral (3.4) so that, taking the corresponding marginal, θ has density

$$
\begin{equation*}
f_{1}(\theta)=\frac{2}{\pi} \sin ^{2}(\theta) d \theta \tag{4.4}
\end{equation*}
$$

Now

$$
3 a_{1}^{2}-a_{2}^{2}-b_{1}^{2}-b_{2}^{2}=4 \cos ^{2} \theta-1
$$

Let us first compute the density of $Y=\cos ^{2} X$, where X is distributed according to the density (4.4). This is elementary as

$$
\begin{aligned}
F_{Y}(t) & =\mathbb{P}\left(\cos ^{2} X \leq t\right)=\mathbb{P}(\arccos (\sqrt{t}) \leq X \leq \arccos (-\sqrt{t})) \\
& =\frac{2}{\pi} \int_{\arccos (\sqrt{t})}^{\arccos (-\sqrt{t})} \sin ^{2}(\theta) d \theta
\end{aligned}
$$

Taking the derivative it is easily found that the density of Y is, for $0<t<1$,

$$
F_{Y}^{\prime}(t)=\frac{2}{\pi}(1-t)^{1 / 2} t^{-1 / 2}
$$

By an elementary change of variable the distribution of the trace $4 Y-1$ is therefore given by (4.3).

Corollary 4.2. The distribution of the rotation angle of a matrix in $S O(3)$ is

$$
p_{T}(t)=\frac{1}{\pi}(1-\cos t) 1_{[0, \pi]}(t) .
$$

Proof. It suffices to remark that if t is the rotation angle of g, then its trace is equal to $2 \cos t+1$. Therefore p_{T} is the distribution of $W=$ $\arccos \left(\frac{Y-1}{2}\right), Y$ being distributed as 4.3 . The elementary details are left to the reader.

Now it is easy to compute the Fourier development of the function $d(\cdot, e)$.
Proposition 4.3. The kernel d on $S O(3)$ is not restricted negative definite.

Proof. It is enough to show that in the Fourier development

$$
d(g, e)=\sum_{\ell \geq 0} \alpha_{\ell} \chi_{\ell}(g)
$$

$\alpha_{\ell}>0$ for some $\ell \geq 1$ (see Remark (2.2). We have

$$
\begin{aligned}
\alpha_{\ell} & =\int_{S O(3)} d(g, e) \chi_{\ell}(g) d g=\frac{1}{\pi} \int_{0}^{\pi} t\left(1+2 \sum_{m=1}^{\ell} \cos (m t)\right)(1-\cos t) d t \\
& =\frac{1}{\pi} \underbrace{\int_{0}^{\pi} t(1-\cos t) d t}_{:=I_{1}}+\frac{2}{\pi} \sum_{m=1}^{\ell} \underbrace{\int_{0}^{\pi} t \cos (m t) d t}_{:=I_{2}}-\frac{2}{\pi} \sum_{m=1}^{\ell} \underbrace{\int_{0}^{\pi} t \cos (m t) \cos t d t}_{:=I_{3}} .
\end{aligned}
$$

Now integration by parts gives

$$
I_{1}=\frac{\pi^{2}}{2}+2, \quad I_{2}=\frac{(-1)^{m}-1}{m^{2}}
$$

whereas, if $m \neq 1$, we have

$$
I_{3}=\int_{0}^{\pi} t \cos (m t) \cos t d t=\frac{m^{2}+1}{\left(m^{2}-1\right)^{2}}\left((-1)^{m}+1\right),
$$

and for $m=1$,

$$
I_{3}=\int_{0}^{\pi} t \cos ^{2} t d t=\frac{\pi^{2}}{4} .
$$

Putting things together we find

$$
\alpha_{\ell}=\frac{2}{\pi}\left(1+\sum_{m=1}^{\ell} \frac{(-1)^{m}-1}{m^{2}}+\sum_{m=2}^{\ell} \frac{m^{2}+1}{\left(m^{2}-1\right)^{2}}\left((-1)^{m}+1\right)\right) .
$$

If $\ell=2$, for instance, we find $\alpha_{2}=\frac{2}{9 \pi}>0$, but it is easy to see that $\alpha_{\ell}>0$ for every ℓ even.

Consider now the case $n>3$. Then $S O(n)$ contains a closed subgroup H that is isomorphic to $S O(3)$, and the restriction to H of any bi-invariant distance d on $S O(n)$ is a bi-invariant distance \tilde{d} on $S O(3)$. By Proposition 4.3. \widetilde{d} is not restricted negative definite, therefore there exist $g_{1}, \ldots, g_{m} \in H$ and $\xi_{1}, \ldots, \xi_{m} \in \mathbb{R}$ with $\sum_{i=1}^{m} \xi_{i}=0$ such that

$$
\begin{equation*}
\sum_{i, j} d\left(g_{i}, g_{j}\right) \xi_{i} \xi_{j}=\sum_{i, j} \widetilde{d}\left(g_{i}, g_{j}\right) \xi_{i} \xi_{j}>0 \tag{4.5}
\end{equation*}
$$

We have therefore
Corollary 4.4. No bi-invariant distance d on $S O(n), n \geq 3$, is a restricted negative definite kernel.

Note that a bi-invariant Riemannian metric on $S O(4)$ is not unique, meaning that it is not necessarily proportional to the negative Killing form of $s o(4)$. In this case Corollary 4.4 states that no such bi-invariant distance can be restricted negative definite.
5. Final remarks. We were intrigued by the different behavior of the invariant distance of $S U(2)$ and $S O(3)$ despite these groups being locally isometric, and decided to compute also for $S U(2)$ the development

$$
\begin{equation*}
d(g, e)=\sum_{\ell} \alpha_{\ell} \chi_{\ell}(g) \tag{5.1}
\end{equation*}
$$

This is not difficult, since if we denote by t the distance of g from e, the characters of $S U(2)$ are

$$
\chi_{\ell}(g)=\frac{\sin ((\ell+1) t)}{\sin t}, \quad t \neq k \pi
$$

and $\chi_{\ell}(e)=\ell+1$ if $t=0, \chi_{\ell}(g)=(-1)^{\ell}(\ell+1)$ if $t=\pi$. Then it is elementary to compute, for $\ell>0$,

$$
\alpha_{\ell}=\frac{1}{\pi} \int_{0}^{\pi} t \sin ((\ell+1) t) \sin t d t= \begin{cases}-\frac{8}{\pi} \frac{m+1}{m^{2}(m+2)^{2}}, & \ell \text { odd } \\ 0, & \ell \text { even }\end{cases}
$$

thus confirming the restricted negative definiteness of d (see Remark 2.2). Note also that the coefficients corresponding to the even numbered representations, which are also representations of $S O(3)$, here vanish.

Acknowledgements. The authors wish to thank A. Iannuzzi and S. Trapani for valuable assistance.

This research was supported by ERC grant 277742 Pascal.

REFERENCES

[1] P. Baldi and D. Marinucci, Some characterizations of the spherical harmonics coefficients for isotropic random fields, Statist. Probab. Lett. 77 (2007), 490-496.
[2] P. Baldi, D. Marinucci, and V. S. Varadarajan, On the characterization of isotropic Gaussian fields on homogeneous spaces of compact groups, Electron. Comm. Probab. 12 (2007), 291-302.
[3] J. Faraut, Analysis on Lie Groups, Cambridge Stud. Adv. Math. 110, Cambridge Univ. Press, Cambridge, 2008.
[4] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, 3rd ed., Universitext, Springer, Berlin, 2004.
[5] R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. H. Poincaré Sect. B 3 (1967), 121-226.
[6] I. Kubo, S. Takenaka and H. Urakawa, Brownian motion parametrized with metric space of constant curvature, Nagoya Math. J. 82 (1981), 131-140.
[7] N. Leonenko and L. Sakhno, On spectral representations of tensor random fields on the sphere, Stoch. Anal. Appl. 30 (2012), 44-66.
[8] P. Lévy, Le mouvement brownien fonction d'un point de la sphère de Riemann, Rend. Circ. Mat. Palermo 8 (1959), 297-310.
[9] A. Malyarenko, Invariant random fields in vector bundles and application to cosmology, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011), 1068-1095.
[10] D. Marinucci and G. Peccati, Random Fields, London Math. Soc. Lecture Note Ser. 389, Cambridge Univ. Press, Cambridge, 2011.
[11] D. Marinucci and I. Wigman, On the area of excursion sets of spherical Gaussian eigenfunctions, J. Math. Phys. 52 (2011), 093301, 21.
[12] J. Milnor, Morse Theory, Ann. of Math. Stud. 51, Princeton Univ. Press, Princeton, NJ, 1963.
[13] G. Peccati and J.-R. Pycke, Decompositions of stochastic processes based on irreducible group representations, Teor. Veroyatn. Primen. 54 (2009), 304-336 (in Russian); English transl.: Theory Probab. Appl. 54 (2010), 217-245.
[14] I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), 522-536.
[15] M. Sugiura, Unitary Representations and Harmonic Analysis, 2nd ed., North-Holland Math. Library 44, North-Holland, Amsterdam, 1990.

Paolo Baldi, Maurizia Rossi
Dipartimento di Matematica
Università di Roma Tor Vergata
00133 Roma, Italy
E-mail: baldi@mat.uniroma2.it
rossim@mat.uniroma2.it

Received 12 April 2013;
revised 18 September 2013

[^0]: 2010 Mathematics Subject Classification: Primary 43A35; Secondary 60G60, 60B15.

