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ON LÉVY’S BROWNIAN MOTION INDEXED BY
ELEMENTS OF COMPACT GROUPS

BY

PAOLO BALDI and MAURIZIA ROSSI (Roma)

Abstract. We investigate positive definiteness of the Brownian kernel K(x, y) =
1
2
(d(x, x0) + d(y, x0) − d(x, y)) on a compact group G and in particular for G = SO(n).

1. Introduction. In 1959 P. Lévy [8] asked about the existence of a pro-
cess X indexed by the points of a metric space (X , d) and generalizing the
Brownian motion, i.e. of a real Gaussian process which would be centered,
vanishing at some point x0 ∈X and such that E(|Xx−Xy|2) = d(x, y). By
polarization, the covariance function of such a process would be

(1.1) K(x, y) = 1
2(d(x, x0) + d(y, x0)− d(x, y))

so that the above mentioned existence is equivalent to the kernel K be-
ing positive definite. Positive definiteness of K for X = Rm and d the
Euclidean metric was proved by Schoenberg [14] in 1938, and P. Lévy him-
self constructed the Brownian motion on X = Sm−1, the euclidean sphere
of Rm, d being the distance along the geodesics. Later Gangolli [5] gave an
analytical proof of the positive definiteness of the kernel (1.1) for the same
metric space (Sm−1, d), in a paper that dealt with this question for a large
class of homogeneous spaces.

Finally Kubo et al. [6] proved the positive definiteness of the kernel (1.1)
for the Riemannian metric spaces of constant sectional curvature equal to
−1, 0 or 1, thus adding the hyperbolic disk to the list. To be precise, in the
case of the hyperbolic space Hm = {(x0, x1, . . . , xm) ∈ Rm+1 : x21 + · · · +
x2m − x20 = 1}, the distance under consideration is the unique, up to mul-
tiplicative constants, Riemannian distance that is invariant with respect to
the action of G = Lm, the Lorentz group.

In this short note we investigate this question for X = SO(n). The an-
swer is that the kernel (1.1) is not positive definite on SO(n) for n > 2. This
is somehow surprising as, in particular, SO(3) is locally isometric to SU(2),
where positive definiteness of the kernel K is immediate, as shown below.
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We have been led to the question of the existence of the Brownian motion
indexed by elements of these groups—in particular of SO(3)—in connection
with the analysis and modeling of the Cosmic Microwave Background which
has recently become an active research field (see [7], [9], [10], [11] e.g.) and
which has attracted attention to the study of random fields ([1], [2], [13] e.g.).
More precisely, in modern cosmological models the CMB is seen as a realiza-
tion of an invariant random field in a vector bundle over the sphere S2 and
the analysis of its components (polarization e.g.) requires the spin random
fields theory. This leads naturally to the investigation of invariant random
fields on SO(3) enjoying particular properties and therefore to the question
of the existence of a privileged random field, i.e. Lévy’s Brownian random
field on SO(3).

In §2 we recall some elementary facts about invariant distances and pos-
itive definite kernels. In §3 we treat the case G = SU(2), recalling well
known facts about the invariant distance and Haar measure of this group.
Positive definiteness of K for SU(2) is just a simple remark, but these facts
are needed in §4 where we treat the case SO(3) and deduce from it the case
SO(n), n ≥ 3.

2. Some elementary facts. In this section we recall some well known
facts about Lie groups (see mainly [3] and also [4], [15]).

2.1. Invariant distance of a compact Lie group. From now on we
denote by G a compact Lie group. It is well known that G admits a bi-
invariant Riemannian metric (see [4, p. 66] e.g.), which we shall denote by
{〈·, ·〉g}g∈G, where of course 〈·, ·〉g is an inner product on the tangent space
TgG to the manifold G at g and the family {〈·, ·〉g}g∈G smoothly depends
on g. By bi-invariance, for g ∈ G the diffeomorphisms Lg and Rg (resp. left
multiplication and right multiplication of the group) are isometries. Since
the tangent space TgG at any point g can be translated to the tangent
space TeG at the identity element e of the group, the metric {〈·, ·〉g}g∈G
is completely characterized by 〈·, ·〉e. Moreover, TeG being the Lie algebra
g of G, the bi-invariant metric corresponds to an inner product 〈·, ·〉 on g
which is invariant under the adjoint representation Ad of G. Indeed there
is a one-to-one correspondence between bi-invariant Riemannian metrics on
G and Ad-invariant inner products on g. If in addition g is semisimple, then
the negative Killing form of G is an Ad-invariant inner product on g itself.

If there exists a unique (up to a multiplicative factor) bi-invariant metric
on G (for a sufficient condition see [4, Th. 2.43]) and g is semisimple, then
this metric is necessarily proportional to the negative Killing form of g. It
is well known that this is the case for SO(n) (n 6= 4) and SU(n); further-
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more, the (natural) Riemannian metric on SO(n) induced by the embedding

SO(n) ↪→ Rn2
corresponds to the negative Killing form of so(n).

Endowed with this bi-invariant Riemannian metric, G becomes a metric
space, with a distance d which is bi-invariant. Therefore the function g ∈
G 7→ d(g, e) is a class function, because

(2.1) d(g, e) = d(hg, h) = d(hgh−1, hh−1) = d(hgh−1, e), g, h ∈ G.
It is well known that geodesics on G through the identity e are exactly the
one-parameter subgroups of G (see [12, p. 113] e.g.), thus a geodesic from e
is the curve on G given by

γX(t) : t ∈ [0, 1] 7→ exp(tX)

for some X ∈ g. The length of this geodesic is

L(γX) = ‖X‖ =
√
〈X,X〉.

Therefore
d(g, e) = inf

X∈g : expX=g
‖X‖.

2.2. Brownian kernels on a metric space. Let (X , d) be a metric
space.

Lemma 2.1. The kernel K in (1.1) is positive definite on X if and only
if d is a restricted negative definite kernel, i.e., for every choice of elements
x1, . . . , xn ∈X and of complex numbers ξ1, . . . , ξn with

∑n
i=1 ξi = 0,

(2.2)
n∑

i,j=1

d(xi, xj)ξiξj ≤ 0.

Proof. For every x1, . . . , xn ∈X and complex numbers ξ1, . . . , ξn,

(2.3)∑
i,j

K(xi, xj)ξiξj =
1

2

(
a
∑
i

d(xi, x0)ξi+a
∑
j

d(xj , x0)ξj−
∑
i,j

d(xi, xj)ξiξj

)
where a :=

∑
i ξi. If a = 0 then it is immediate that in (2.3) the l.h.s. is ≥ 0

if and only if the r.h.s. is ≤ 0. Otherwise set ξ0 := −a so that
∑n

i=0 ξi = 0.
The equality

(2.4)
n∑

i,j=0

K(xi, xj)ξiξj =
n∑

i,j=1

K(xi, xj)ξiξj

is then easy to check, keeping in mind that K(xi, x0) = K(x0, xj) = 0, which
finishes the proof.

For a more general proof see [5, p. 127, proof of Lemma 2.5].
If X is the homogeneous space of some topological group G, and d is a

G-invariant distance, then (2.2) is satisfied if and only if for every choice of
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elements g1, . . . , gn ∈ G and of complex numbers ξ1, . . . , ξn with
∑n

i=1 ξi = 0,

(2.5)

n∑
i,j=1

d(gig
−1
j x0, x0)ξiξj ≤ 0

where x0 ∈ X is a fixed point. We shall say that the function g ∈ G 7→
d(gx0, x0) is restricted negative definite on G if it satisfies (2.5).

In our case of interest, X = G is a compact (Lie) group and d is a
bi-invariant distance as in §2.1. The Peter–Weyl development (see [3] e.g.)
for the class function d(·, e) on G is

(2.6) d(g, e) =
∑
`∈Ĝ

α`χ`(g)

where Ĝ denotes the family of equivalence classes of irreducible representa-
tions of G, and χ` the character of the `th irreducible representation of G.

Remark 2.2. A function φ with a development as in (2.6) is restricted
negative definite if and only if α` ≤ 0 but for the trivial representation.

Actually note first that, by standard approximation arguments, φ is re-
stricted negative definite if and only if for every continuous function f :
G→ C with 0-mean (i.e. orthogonal to the constants),

(2.7)
�

G

�

G

φ(gh−1)f(g)f(h) dg dh ≤ 0,

dg denoting the Haar measure of G. Choosing f = χ` on the l.h.s. of (2.7)
and denoting by d` the dimension of the corresponding representation, we
find by a straightforward computation that

(2.8)
�

G

�

G

φ(gh−1)χ`(g)χ`(h) dg dh =
α`
d`
.

so that if φ is restricted negative definite, then necessarily α` ≤ 0.

Conversely, if α` ≤ 0 but for the trivial representation, then φ is re-
stricted negative definite, as the characters χ` are positive definite and or-
thogonal to the constants.

3. SU(2). The special unitary group SU(2) consists of the complex uni-
tary 2× 2-matrices g such that det(g) = 1. Every g ∈ SU(2) has the form

(3.1) g =

(
a b

−b a

)
, a, b ∈ C, |a|2 + |b|2 = 1.

If a = a1 + ia2 and b = b1 + ib2, then the map

Φ(g) = (a1, a2, b1, b2)(3.2)
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is a homeomorphism (see [3], [15] e.g.) between SU(2) and the unit sphere
S3 of R4. Moreover the right translation

Rg : h 7→ hg, h, g ∈ SU(2),

of SU(2) is a rotation (an element of SO(4)) of S3 (identified with SU(2)).
The homeomorphism (3.2) preserves the invariant measure, i.e., if dg is the
normalized Haar measure on SU(2), then Φ(dg) is the normalized Lebesgue
measure on S3. As the 3-dimensional polar coordinates on S3 are

(3.3)

a1 = cos θ,

a2 = sin θ cosϕ,

b1 = sin θ sinϕ cosψ,

b2 = sin θ sinϕ sinψ,

with (θ, ϕ, ψ) ∈ [0, π]× [0, π]× [0, 2π], the normalized Haar integral of SU(2)
for an integrable function f is

(3.4)
�

SU(2)

f(g) dg =
1

2π2

π�

0

sinϕdϕ

π�

0

sin2 θ dθ

2π�

0

f(θ, ϕ, ψ) dψ.

The bi-invariant Riemannian metric on SU(2) is necessarily proportional to
the negative Killing form of its Lie algebra su(2) (the real vector space of
anti-hermitian complex 2× 2 matrices). We consider the bi-invariant metric
corresponding to the Ad-invariant inner product on su(2),

〈X,Y 〉 = −1
2 tr(XY ), X, Y ∈ su(2).

Therefore as an orthonormal basis of su(2) we can take the matrices

X1 =

(
0 1

−1 0

)
, X2 =

(
0 i

i 0

)
, X3 =

(
i 0

0 −i

)
.

The homeomorphism (3.2) is actually an isometry between SU(2) endowed
with this distance and S3. Hence the restricted negative definiteness of the
kernel d on SU(2) is an immediate consequence of this property on S3, which
is known to be true as mentioned in the introduction ([5], [8], [6]). In order
to develop a comparison with SO(3), we shall give a different proof of this
fact in §5.

4. SO(n). We first investigate the case n = 3. The group SO(3) can
also be realized as a quotient of SU(2). Actually the adjoint representation
Ad of SU(2) is a surjective morphism from SU(2) onto SO(3) with kernel
{±e} (see [3] e.g.). Hence the well known result

(4.1) SO(3) ∼= SU(2)/{±e}.
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Let us explicitly recall this morphism: if a = a1 + ia2, b = b1 + ib2 with
|a|2 + |b|2 = 1 and

g̃ =

(
a b

−b a

)
then the orthogonal matrix Ad(g̃) is given by

(4.2) g =

a
2
1 − a22 − (b21 − b22) −2a1a2 − 2b1b2 −2(a1b1 − a2b2)

2a1a2 − 2b1b2 (a21 − a22) + (b21 − b22) −2(a1b2 + a2b1)

2(a1b1 + a2b2) −2(−a1b2 + a2b1) |a|2 − |b|2

.
The isomorphism in (4.1) might suggest that the positive definiteness of the
Brownian kernel on SU(2) implies a similar result for SO(3). This is not
true and actually it turns out that the distance (g, h) 7→ d(g, h) on SO(3)
induced by its bi-invariant Riemannian metric is not a restricted negative
definite kernel (see Lemma 2.1).

As for SU(2), the bi-invariant Riemannian metric on SO(3) is propor-
tional to the negative Killing form of its Lie algebra so(3) (the real antisym-
metric 3× 3 matrices). We shall consider the Ad-invariant inner product on
so(3) defined as

〈A,B〉 = −1
2 tr(AB), A,B ∈ so(3).

An orthonormal basis for so(3) is then given by the matrices

A1 =

0 0 0

0 0 −1

0 1 0

 , A2 =

 0 0 1

0 0 0

−1 0 0

 , A3 =

0 −1 0

1 0 0

0 0 0

 .

Similarly to the case of SU(2), it is easy to compute the distance from
g ∈ SO(3) to the identity. Actually g is conjugate to the matrix

∆(t) =

 cos t sin t 0

− sin t cos t 0

0 0 1

 = exp(tA1)

where t ∈ [0, π] is the rotation angle of g. Therefore if d still denotes the
distance induced by the bi-invariant metric, then

d(g, e) = d(∆(t), e) = t,

i.e. the distance from g to e is the rotation angle of g.

Let us denote by {χ`}`≥0 the set of characters for SO(3). It is easy to
compute the Peter–Weyl development (2.6) for d(·, e), as the characters χ`
are also simple functions of the rotation angle. More precisely, if t is the
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rotation angle of g (see [10] e.g.), then

χ`(g) =
sin (2`+1)t

2

sin t
2

= 1 + 2
∑̀
m=1

cos(mt).

We shall prove that the coefficient

α` =
�

SO(3)

d(g, e)χ`(g) dg

is positive for some ` ≥ 1. As both d(·, e) and χ` are functions of the rotation
angle t, we have

α` =

π�

0

t
(

1 + 2
∑̀
j=1

cos(jt)
)
pT (t) dt

where pT is the density of t = t(g), considered as a r.v. on the probability
space (SO(3), dg). The next statements are devoted to the computation of
the density pT . This is certainly well known but we were unable to find a
reference in the literature. We first compute the density of the trace of g.

Proposition 4.1. The distribution of the trace of a matrix in SO(3)
with respect to the normalized Haar measure is given by the density

(4.3) f(y) =
1

2π
(3− y)1/2(y + 1)−1/21[−1,3](y).

Proof. The trace of the matrix (4.2) is equal to

tr(g) = 3a21 − a22 − b21 − b22.
Under the normalized Haar measure of SU(2) the vector (a1, a2, b1, b2) is
uniformly distributed on the sphere S3. Recall the normalized Haar integral
(3.4) so that, taking the corresponding marginal, θ has density

(4.4) f1(θ) =
2

π
sin2(θ) dθ.

Now

3a21 − a22 − b21 − b22 = 4 cos2 θ − 1.

Let us first compute the density of Y = cos2X, where X is distributed
according to the density (4.4). This is elementary as

FY (t) = P(cos2X ≤ t) = P(arccos(
√
t) ≤ X ≤ arccos(−

√
t))

=
2

π

arccos(−
√
t)�

arccos(
√
t)

sin2(θ) dθ.

Taking the derivative it is easily found that the density of Y is, for 0 < t < 1,

F ′Y (t) =
2

π
(1− t)1/2t−1/2.
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By an elementary change of variable the distribution of the trace 4Y − 1 is
therefore given by (4.3).

Corollary 4.2. The distribution of the rotation angle of a matrix in
SO(3) is

pT (t) =
1

π
(1− cos t) 1[0,π](t).

Proof. It suffices to remark that if t is the rotation angle of g, then
its trace is equal to 2 cos t + 1. Therefore pT is the distribution of W =
arccos

(
Y−1
2

)
, Y being distributed as (4.3). The elementary details are left

to the reader.

Now it is easy to compute the Fourier development of the function d(·, e).
Proposition 4.3. The kernel d on SO(3) is not restricted negative def-

inite.

Proof. It is enough to show that in the Fourier development

d(g, e) =
∑
`≥0

α`χ`(g),

α` > 0 for some ` ≥ 1 (see Remark 2.2). We have

α` =
�

SO(3)

d(g, e)χ`(g) dg =
1

π

π�

0

t
(

1 + 2
∑̀
m=1

cos(mt)
)

(1− cos t) dt

=
1

π

π�

0

t(1− cos t) dt︸ ︷︷ ︸
:=I1

+
2

π

∑̀
m=1

π�

0

t cos(mt) dt︸ ︷︷ ︸
:=I2

− 2

π

∑̀
m=1

π�

0

t cos(mt) cos t dt︸ ︷︷ ︸
:=I3

.

Now integration by parts gives

I1 =
π2

2
+ 2, I2 =

(−1)m − 1

m2
,

whereas, if m 6= 1, we have

I3 =

π�

0

t cos(mt) cos t dt =
m2 + 1

(m2 − 1)2
((−1)m + 1),

and for m = 1,

I3 =

π�

0

t cos2 t dt =
π2

4
.

Putting things together we find

α` =
2

π

(
1 +

∑̀
m=1

(−1)m − 1

m2
+
∑̀
m=2

m2 + 1

(m2 − 1)2
((−1)m + 1)

)
.
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If ` = 2, for instance, we find α2 = 2
9π > 0, but it is easy to see that α` > 0

for every ` even.

Consider now the case n > 3. Then SO(n) contains a closed subgroup
H that is isomorphic to SO(3), and the restriction to H of any bi-invariant

distance d on SO(n) is a bi-invariant distance d̃ on SO(3). By Proposition

4.3, d̃ is not restricted negative definite, therefore there exist g1, . . . , gm ∈ H
and ξ1, . . . , ξm ∈ R with

∑m
i=1 ξi = 0 such that

(4.5)
∑
i,j

d(gi, gj)ξiξj =
∑
i,j

d̃(gi, gj)ξiξj > 0.

We have therefore

Corollary 4.4. No bi-invariant distance d on SO(n), n ≥ 3, is a
restricted negative definite kernel.

Note that a bi-invariant Riemannian metric on SO(4) is not unique,
meaning that it is not necessarily proportional to the negative Killing form
of so(4). In this case Corollary 4.4 states that no such bi-invariant distance
can be restricted negative definite.

5. Final remarks. We were intrigued by the different behavior of the
invariant distance of SU(2) and SO(3) despite these groups being locally
isometric, and decided to compute also for SU(2) the development

(5.1) d(g, e) =
∑
`

α`χ`(g).

This is not difficult, since if we denote by t the distance of g from e, the
characters of SU(2) are

χ`(g) =
sin((`+ 1)t)

sin t
, t 6= kπ,

and χ`(e) = `+1 if t = 0, χ`(g) = (−1)`(`+1) if t = π. Then it is elementary
to compute, for ` > 0,

α` =
1

π

π�

0

t sin((`+ 1)t) sin t dt =

{
− 8

π

m+ 1

m2(m+ 2)2
, ` odd,

0, ` even,

thus confirming the restricted negative definiteness of d (see Remark 2.2).
Note also that the coefficients corresponding to the even numbered repre-
sentations, which are also representations of SO(3), here vanish.

Acknowledgements. The authors wish to thank A. Iannuzzi and
S. Trapani for valuable assistance.

This research was supported by ERC grant 277742 Pascal.



236 P. BALDI AND M. ROSSI

REFERENCES

[1] P. Baldi and D. Marinucci, Some characterizations of the spherical harmonics coef-
ficients for isotropic random fields, Statist. Probab. Lett. 77 (2007), 490–496.

[2] P. Baldi, D. Marinucci, and V. S. Varadarajan, On the characterization of isotropic
Gaussian fields on homogeneous spaces of compact groups, Electron. Comm. Probab.
12 (2007), 291–302.

[3] J. Faraut, Analysis on Lie Groups, Cambridge Stud. Adv. Math. 110, Cambridge
Univ. Press, Cambridge, 2008.

[4] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, 3rd ed., Universitext,
Springer, Berlin, 2004.

[5] R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic
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