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COBRAIDED SMASH PRODUCT HOM-HOPF ALGEBRAS

BY
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Abstract. Let (A,α) and (B, β) be two Hom-Hopf algebras. We construct a new
class of Hom-Hopf algebras: R-smash products (A \R B,α⊗ β). Moreover, necessary and
sufficient conditions for (A \R B,α⊗ β) to be a cobraided Hom-Hopf algebra are given.

1. Introduction. Hom-structures (Lie algebras, algebras, coalgebras,
Hopf algebras) have recently been intensively investigated (see [1, 3, 5, 6, 11,
12, 13]). Hom-algebras are generalizations of algebras obtained by a twisting
map; they have been introduced for the first time in [5]. The associativity
is replaced by Hom-associativity; Hom-coassociativity for a Hom-coalgebra
can be considered in a similar way. Also definitions and properties of Hom-
bialgebras and Hom-Hopf algebras have been proposed (see [1, 3, 6, 12, 13]).

Caenepeel and Goyvaerts [1] studied the Hom-structures from the point
of view of monoidal categories and found that Hom-algebras coincide with
algebras in a symmetric monoidal category. Yau [12] defined the notion of
cobraided Hom-bialgebras and showed that each cobraided Hom-bialgebra
comes with solutions of the operator quantum Hom-Yang–Baxter equa-
tions, which are twisted analogues of the operator form of the quantum
Yang–Baxter equation. Solutions of the Hom-Yang–Baxter equation can
be obtained from comodules of suitable cobraided Hom-bialgebras. In [11],
Yau introduced and characterized the concept of module Hom-algebras as a
twisted version of usual module algebras.

Let H be a Hopf algebra and A an H-module algebra. Then we can
construct a new Hopf algebra, their smash product A # H (see [7] or [8]).
Extended forms of smash product can be found in [2, 4].

Let (H,β) be a Hom-Hopf algebra and (A,α) an (H,β)-module Hom-
algebra (introduced by Yau [11]). Then it is natural to ask: How to construct
the smash product Hom-Hopf algebra and when is it cobraided?

The purpose of this article is to answer the above questions.
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This article is organized as follows. In Section 2, we recall some defini-
tions and results which will be used later. In Section 3, before constructing
the smash product Hom-Hopf algebra (A \ H,α ⊗ β) (Theorem 3.3), we
give a more general case, the so-called R-smash product Hom-Hopf algebra
(A \RB,α⊗β) (Theorem 3.1). We remark that the smash product Hom-Hopf
algebra (A \ H,α ⊗ β) in Theorem 3.3 is different from the one defined by
Chen–Wang–Zhang [3], since here the construction of (A\H,α⊗β) is based
on the concept of the module Hom-algebra introduced by Yau [11], which
differs from Chen–Wang–Zhang’s [3]. Necessary and sufficient conditions for
(A\RB,α⊗β) to be a cobraided Hom-Hopf algebra are derived in Section 4
(Theorems 4.8 and 4.9). In the last section, we give a concrete example.

2. Preliminaries. Throughout this paper, we follow the definitions and
terminology of [1, 11, 12], with all algebraic systems supposed to be over a
field K. Given a K-space M , we write idM for the identity map on M .

We now recall some useful definitions.

Definition 2.1. A Hom-algebra is a quadruple (A,µ, 1A, α) (abbr.
(A,α)), where A is a K-linear space, µ : A ⊗ A → A is a K-linear map,
1A ∈ A and α is an automorphism of A such that

α(aa′) = α(a)α(a′), α(1A) = 1A,(HA1)

α(a)(a′a′′) = (aa′)α(a′′), a1A = 1Aa = α(a),(HA2)

for a, a′, a′′ ∈ A. Here we use the notation µ(a⊗ a′) = aa′.

Definition 2.2. A Hom-coalgebra is a quadruple (C,∆, εC , β) (abbr.
(C, β)), where C is a K-linear space, ∆ : C → C ⊗ C, εC : C → K are
K-linear maps, and β is an automorphism of C, such that

(HC1) β(c)1 ⊗ β(c)2 = β(c1)⊗ β(c2), εC ◦ β = εC ,

(HC2) β(c1)⊗c21⊗c22 = c11⊗c12⊗β(c2), εC(c1)c2 = c1εC(c2) = β(c),

for c ∈ A. Here we use the notation ∆(c) = c1 ⊗ c2 (summation implicitly
understood).

Remarks. (a) Here we use β instead of β−1 in [1].
(b) The first equation in (HC2) is equivalent to

(1) c1 ⊗ c21 ⊗ c22 = β−1(c11)⊗ c12 ⊗ β(c2)

and

(2) c11 ⊗ c12 ⊗ c2 = β(c1)⊗ c21 ⊗ β−1(c22),
respectively.

(c) By (1), (2) and (HC2), we have

(3) c11 ⊗ c12 ⊗ c21 ⊗ c22 = β(c1)⊗ β−1(c211)⊗ β−1(c212)⊗ c22.
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Definition 2.3. A Hom-bialgebra is a sextuple (H,µ, 1H ,∆, ε, γ) (abbr.
(H, γ)), where (H,µ, 1H , γ) is a Hom-algebra and (H,∆, ε, γ) is a Hom-
coalgebra, such that ∆ and ε are morphisms of Hom-algebras, i.e.

∆(hh′) = ∆(h)∆(h′), ∆(1H) = 1H ⊗ 1H ,

ε(hh′) = ε(h)ε(h′), ε(1H) = 1.

Furthermore, if there exists a linear map S : H → H such that

S(h1)h2 = h1S(h2) = ε(h)1H and S(γ(h)) = γ(S(h)),

then we call (H,µ, 1H ,∆, ε, γ, S) (abbr. (H, γ, S)) a Hom-Hopf algebra.
Let (H, γ) and (H ′, γ′) be two Hom-bialgebras. A linear map f : H → H ′

is called a Hom-bialgebra map if f ◦ γ = γ′ ◦ f and at the same time f is a
bialgebra map in the usual sense.

Definition 2.4. Let (A, β) be a Hom-algebra. A left (A, β)-Hom-module
is a triple (M,B, α), where M is a linear space, B : A⊗M →M is a linear
map, and α is an automorphism of M , such that

α(aBm) = β(a) B α(m),(HM1)

β(a) B (a′ Bm) = (aa′) B α(m), 1A Bm = α(m),(HM2)

for a, a′ ∈ A and m ∈M .

Remarks. (a) It is obvious that (A,µ, β) is a left (A, β)-Hom-module.
(b) When β = idA and α = idM , a left (A, β)-Hom-module is the usual

left A-module.

Definition 2.5. Let (H,β) be a Hom-bialgebra and (A,α) a Hom-
algebra. If (A,B, α) is a left (H,β)-Hom-module and for all h ∈ H and
a, a′ ∈ A,

β2(h) B (aa′) = (h1 B a)(h2 B a′),(HMA1)

hB 1A = εH(h)1A,(HMA2)

then (A,B, α) is called an (H,β)-module Hom-algebra.

Remarks. (a) It is obvious that (H,µH , β) is an (H,β)-module Hom-
algebra.

(b) When α = idA and β = idH , an (H,β)-module Hom-algebra is the
usual H-module algebra.

(c) Similar to the case of Hopf algebras, Yau [13] showed that (HMA1) is
satisfied if and only if µA is a morphism of H-modules for suitable H-module
structures on A⊗A and A, respectively.

(d) If β2 = id in (HMA1), then we can get (6.1) of [3]. So the two
definitions of module Hom-algebra are different, which leads to the difference
of smash product Hom-Hopf algebra in our Theorem 3.3 and in Definition 6.2
of [3].



78 T. S. MA ET AL.

Definition 2.6. A cobraided Hom-Hopf algebra is an octuple (H,µ, 1H ,
∆, ε, S, α, σ) (abbr. (H,α, σ)) in which (H,µ, 1H ,∆, ε, S, α) is a Hom-Hopf
algebra and σ is a bilinear form on H (i.e., σ ∈ Hom(H ⊗H,K)), satisfying
the following axioms (for all h, g, l ∈ H):

σ(h, 1H) = σ(1H , h) = ε(h),(CHA1)

σ(hg, α(l)) = σ(α(h), l1)σ(α(g), l2),(CHA2)

σ(α(h), gl) = σ(h1, α(l))σ(h2, α(g)),(CHA3)

σ(h1, g1)h2g2 = g1h1σ(h2, g2),(CHA4)

σ(α(h), α(g)) = σ(h, g).(CHA5)

In this case, σ is called the Hom-cobraiding form.

Remarks. (a) When α = idH , a cobraided Hom-Hopf algebra is exactly
the usual cobraided (or coquasitriangular) Hopf algebra.

(b) The above definition is slightly different from the definitions in [12]
or [13]. Here we replace the Hom-bialgebra by Hom-Hopf algebra and also
add two conditions, (CHA1) and (CHA5). Similar to the Hopf algebra set-
ting, the Hom-cobraiding form σ in Definition 2.6 is invertible.

(c) By Yau’s results [12], each cobraided Hom-Hopf algebra comes with
solutions of the operator quantum Hom-Yang–Baxter equations, which are
twisted analogues of the operator form of the quantum Yang–Baxter equa-
tion.

Next, we generalize the concept of skew pairing to the Hom-setting.

Definition 2.7. Let (A,α, SA) and (B, β, SB) be two Hom-Hopf alge-
bras, and ϑ ∈ Hom(A ⊗ B,K) a bilinear form. A Hom-skew pairing is a
triple (A,B, ϑ) such that

ϑ(a, 1B) = εA(a), ϑ(1A, b) = εB(b),(SP1)

ϑ(aa′, β(b)) = ϑ(α(a), b1)ϑ(α(a′), b2),(SP2)

ϑ(α(a), bb′) = ϑ(a1, β(b′))ϑ(a2, β(b)),(SP3)

ϑ(α(a), β(b)) = ϑ(a, b),(SP4)

for a, a′ ∈ A and b, b′ ∈ B.

Remarks. (a) When α = idA and β = idB, we get the usual skew
pairing.

(b) If (H,α, σ) is a cobraided Hom-Hopf algebra, then (H,H, σ) is a
Hom-skew pairing.

(c) ϑ is (convolution) invertible with ϑ−1(a, b) = ϑ(SA(a), b).

3. Smash product Hom-Hopf algebra. In this section, we introduce
a class of Hom-Hopf algebras: R-smash products A \R B, generalizing the
R-smash product studied in [2]. As a special case, we obtain the Hom-smash
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product based on the structure of module Hom-algebra introduced by Yau
[11], [13].

Let A and B be two linear spaces, and R : B⊗A→ A⊗B a linear map.
In the following, we write R(b ⊗ a) =

∑
aR ⊗ bR for all a ∈ A and b ∈ B,

and the notations
∑
ar ⊗ br,

∑
aR′ ⊗ bR′ are the copies of

∑
aR ⊗ bR. As

usual, we omit the summation sign “
∑

”.

Theorem 3.1. Let (A,µA, 1A, α) and (B,µB, 1B, β) be two Hom-
algebras, and R : B⊗A→ A⊗B a linear map such that for all a ∈ A, b ∈ B,

(4) α(a)R ⊗ β(b)R = α(aR)⊗ β(bR).

Then (A\RB,α⊗β) (A\RB = A⊗B as a linear space) with multiplication

(a⊗ b)(a′ ⊗ b′) = aα−1(a′)R ⊗ β−1(bR)b′,

where a, a′ ∈ A, b, b′ ∈ B, and with unit 1A ⊗ 1B is a Hom-algebra if and
only if the following conditions hold:

aR ⊗ 1BR = α(a)⊗ 1B, 1AR ⊗ bR = 1A ⊗ β(b),(C1)

α(a)R ⊗ (bb′)R = aRr ⊗ β−1(β(b)r)b
′
R,(C2)

α((aa′)R)⊗ β(b)R = α(aR)α(a′)r ⊗ bRr,(C3)

where a, a′ ∈ A, b, b′ ∈ B.

We call this Hom-algebra the R-smash product Hom-algebra and denote
it by (A \R B,α⊗ β).

Proof. (⇐) For all a, a′, a′′ ∈ A and, b, b′, b′′ ∈ B, firstly, we prove that
(HA1) holds. In fact,

(α⊗ β)((a⊗ b)(a′ ⊗ b′)) = α(aα−1(a′)R)⊗ β(β−1(bR)b′)

(HA1)
= α(a)α(α−1(a′)R)⊗ bRβ(b′)

(4)
= α(a)a′R ⊗ β−1(β(b)R)β(b′)

= ((α⊗ β)(a⊗ b))((α⊗ β)(a′ ⊗ b′))
and

(α⊗ β)(1A ⊗ 1B) = α(1A)⊗ β(1B)
(HA1)

= 1A ⊗ 1B.

Secondly, we prove (HA2):

(α(a)⊗ β(b))((a′ ⊗ b′)(a′′ ⊗ b′′))

= α(a)α−1(a′α−1(a′′)R)r ⊗ β−1(β(b)r)(β
−1(b′R)b′′)

(C3)
= α(a)α−1(α(α−1(a′r))α

−1(a′′)RR′)⊗ β−1(brR′)(β−1(b′R)b′′)

= α(a)(α−1(a′r)α
−1(α−1(a′′)RR′))⊗ β−1(brR′)(β−1(b′R)b′′)
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(HA2)
= (aα−1(a′r))α

−1(a′′)RR′ ⊗ β−1(brR′)(β−1(b′R)b′′)

(HA2)
= (aα−1(a′r))α

−1(a′′)RR′ ⊗ β−1(β−1(brR′)b′R)β(b′′)

(C2)
= (aα−1(a′)r)a

′′
R ⊗ β−1((β−1(br)b′)R)β(b′′)

= ((a⊗ b)(a′ ⊗ b′))(α(a′′)⊗ β(b′′))

and

(a⊗ b)(1A ⊗ 1B) = aα−1(1A)R ⊗ β−1(bR)1B
(HA1)

= a1AR ⊗ β−1(bR)1B
(C1)
= a1A ⊗ b1B

(HA2)
= α(a)⊗ β(b).

Similarly, (1A ⊗ 1B)(a⊗ b) = α(a)⊗ β(b) holds.

(⇒) By (HA2), we have

1Aα
−1(a)R ⊗ β−1(1BR)b = α(a)⊗ β(b),(5)

aα−1(1A)⊗ β−1(bR)1B = α(a)⊗ β(b)(6)

and

(7) α(a)α−1(a′α−1(a′′)R)r ⊗ β−1(β(b)r)(β
−1(b′R)b′′)

= (aα−1(a′)r)a
′′
R ⊗ β−1((β−1(br)b′)R)β(b′′).

Letting b = 1B and a = 1 in (5) and (6), respectively, we get (C1).

Letting a = a′ = 1A and b′′ = 1B in (7) and using (C1), we obtain (C2).

Likewise, (C3) can be obtained by letting a = 1A and b′ = b′′ = 1B
in (7).

When α = idA and β = idB, we have

Example 3.2 ([2]). Let (A,µA, 1A) and (B,µB, 1B) be two algebras,
and R : B ⊗ A→ A⊗B a linear map. Then A#R B (A#R B = A⊗B as
linear spaces) with multiplication

(a⊗ b)(a′ ⊗ b′) = aa′R ⊗ bRb′,

where a, a′ ∈ A, b, b′ ∈ B, and unit 1A ⊗ 1B becomes an algebra if and only
if the following conditions hold:

aR ⊗ 1BR = a⊗ 1B, 1AR ⊗ bR = 1A ⊗ b,
aR ⊗ (bb′)R = aRr ⊗ brb′R,
(aa′)R ⊗ bR = aRa

′
r ⊗ bRr,

where a, a′ ∈ A, b, b′ ∈ B.
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Theorem 3.3. Let (H,β) be a Hom-bialgebra and (A,B, α) an (H,β)-
module Hom-algebra. Then (A\H,α⊗β) (A\H = A⊗H as a linear space)
with multiplication

(a⊗ h)(a′ ⊗ h′) = a(h1 B α−1(a′))⊗ β−1(h2)h′,
where a, a′ ∈ A, h, h′ ∈ H, and unit 1A ⊗ 1H is a Hom-algebra; we call it
the smash product Hom-algebra and denote it by (A \ H,α⊗ β).

Proof. Define R : H ⊗A→ A⊗H by

R(h⊗ a) = h1 B a⊗ h2, ∀a ∈ A, h ∈ H.
Firstly, for all a ∈ A and h ∈ H,

α(a)R ⊗ β(h)R = β(h)1 B α(a)⊗ β(h)2
(HC1)

= β(h1) B α(a)⊗ β(h2)

(HM1)
= α(h1 B a)⊗ β(h2) = α(aR)⊗ β(hR),

so (4) holds.
Secondly, we have

aR ⊗ 1HR = 1 B a⊗ 1H
(HM2)

= α(a)⊗ 1H ,

1AR ⊗ hR = h1 B 1A ⊗ h2
(HMA2)

= 1A ⊗ ε(h1)h2
(HC2)

= 1A ⊗ β(h).

Thirdly, we verify (C2) and (C3): for all a, a′ ∈ A and h, h′ ∈ B,

α(a)R ⊗ (hh′)R = (hh′)1 B α(a)⊗ (hh′)2
= (h1h

′
1) B α(a)⊗ h2h′2

(HM2)
= β(h1) B (h′1 B a)⊗ h2h′2

(HC1)
= β(h)1 B (h′1 B a)⊗ β−1(β(h)2)h

′
2

= aRr ⊗ β−1(β(h)r)h
′
R

and

α((aa′)R)⊗ β(h)R = α(β(h)1 B (aa′))⊗ β(h)2
(HC1)

= α(β(h1) B (aa′))⊗ β(h2)

(HM1)
= β2(h1) B α(aa′)⊗ β(h2)

(HA1)
= β2(h1) B (α(a)α(a′))⊗ β(h2)

(HMA1)
= (h11 B α(a))(h12 B α(a′))⊗ β(h2)

(HC2)
= (β(h1) B α(a))(h21 B α(a′))⊗ h22

(HM1)
= α(h1 B a)(h21 B α(a′))⊗ h22
= α(aR)α(a′)r ⊗ hRr.
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Remarks. (a) The smash product Hom-Hopf algebra (A \ H,α ⊗ β)
is different from the one defined by Chen–Wang–Zhang in [3], since here
the construction of (A \ B, α ⊗ β) is based on the concept of the module
Hom-algebra introduced by Yau [11], while two of conditions (6.1), (6.2) in
the module Hom-algebra of [3] are as in the case of a Hopf algebra.

(b) When α = idA and β = idH , we get the usual smash product algebra
A#H (see [7, 8]).

Lemma 3.4. Let (C,α) and (D,β) be two Hom-coalgebras. Then (C⊗D,
α⊗ β) is a Hom-coalgebra with the following comultiplication and counit:

∆(c⊗ d) = c1 ⊗ d1 ⊗ c2 ⊗ d2, ε(c⊗ d) = εC(c)εD(d),

for c ∈ C and d ∈ D. We call it the tensor product Hom-coalgebra.

Proof. Straightforward.

Theorem 3.5. Let (A,α, SA) and (B, β, SB) be two Hom-Hopf algebras,
and R : B⊗A→ A⊗B a linear map. Then the R-smash product Hom-algebra
(A \R B,α ⊗ β) equipped with the tensor product Hom-coalgebra structure
becomes a Hom-bialgebra if and only if R is a coalgebra map, i.e.

aR1 ⊗ bR1 ⊗ aR2 ⊗ bR2 = a1R ⊗ b1R ⊗ a2r ⊗ b2r,
εA(aR)εB(bR) = εA(a)εB(b),

for a ∈ A and b ∈ B.

Furthermore, the R-smash product Hom-bialgebra (A \R B,α ⊗ β) is a
Hom-Hopf algebra with antipode S̄ defined by

S̄(a⊗ b) = α−1(SA(a))R ⊗ β−1(SB(b)R).

Proof. We only prove that S̄ is an antipode of (A \R B,α⊗ β). The rest
is straightforward by direct computation. For all a ∈ A and b ∈ B,

(S̄ ∗ idA\RB)(a⊗ b) = (α−1(SA(a1))R ⊗ β−1(SB(b1)R))(a2 ⊗ b2)
= α−1(SA(a1))Rα

−1(a2)r ⊗ β−1(β−1(SB(b1)R)r)b2

(4)
= α−1(SA(a1))Rα

−1(a2r)⊗ β−2(SB(b1)Rr)b2

(HA1)
= α−1(α(α−1(SA(a1))R)a2r)⊗ β−2(SB(b1)Rr)b2

(C3)
= α−1(SA(a1)a2)R ⊗ β−2(β(SB(b1))R)b2

= 1ARεA(a)⊗ β−2(β(SB(b1))R)b2

(C1)
= 1AεA(a)⊗ SB(b1)b2

= 1A ⊗ 1BεA(a)εB(b) = 1A ⊗ 1B ε̄(a⊗ b)
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and

(idA\RB ∗ S̄)(a⊗ b) = (a1 ⊗ b1)(α−1(SA(a2))R ⊗ β−1(SB(b2)R))

= a1α
−1(α−1(SA(a2))R)

r
⊗ β−1(b1r)β−1(SB(b2)R)

(4)
= a1α

−2(SA(a2))Rr ⊗ β−1(b1r)β−1(SB(b2))R

= a1α
−1(α−1(SA(a2)))Rr

⊗ β−1(β(β−1(b1))r)β
−1(SB(b2))R

(C2)
= a1α

−1(SA(a2))R ⊗ β−1(b1SB(b2))

= a1α
−1(SA(a2))R ⊗ 1BRεB(b)

(C1)
= a1SA(a2)⊗ 1BεB(b)

= 1A ⊗ 1BεA(a)εB(b) = 1A ⊗ 1B ε̄(a⊗ b),
while

S̄(α(a)⊗ β(b)) = α−1(SA(α(a)))R ⊗ β−1(SB(β(b))R)

= α−1(α(SA(a)))R ⊗ β−1(β(SB(b))R)

= SA(a)R ⊗ β−1(β(SB(b))R)

(4)
= α(α−1(SA(a))R)⊗ SB(b)R = (α⊗ β)(S̄(a⊗ b)),

finishing the proof.

When α = idA and β = idB, we have

Example 3.6 ([2]). Let A and B be two Hopf algebras. Then the twisted
tensor product algebra A #R B equipped with the usual tensor product
coalgebra structure is a bialgebra if and only if R is a coalgebra map.

Furthermore, the twisted tensor product bialgebra A #R B is a Hopf
algebra with antipode SA#RB defined by

SA#RB(a⊗ b) = SA(a)R ⊗ SB(b)R.

Theorem 3.7. Let (H,β) be a Hom-Hopf algebra and (A,B, α) an
(H,β)-module Hom-algebra. Then the smash product Hom-algebra (A \ H,
α⊗ β) endowed with the tensor product Hom-coalgebra structure becomes a
Hom-bialgebra if and only if

(8) (hBa)1⊗ (hBa)2 = (h1Ba1)⊗ (h2Ba2), εA(hBa) = εA(a)εH(h)

and

(9) h1 ⊗ h2 B a = h2 ⊗ h1 B a.

Moreover, (A \ H,α⊗ β) is a Hom-Hopf algebra with antipode

SA\H(a⊗ h) = SH(h)1 B α−1(SA(a))⊗ β−1(SH(h)2).
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Proof. Let R(h⊗ a) = h1 B a⊗ h2 for a ∈ A and h ∈ H in Theorem 3.5.
Then R is a coalgebra map if and only if

(10) (h1 B a)1 ⊗ h21 ⊗ (h1 B a)2 ⊗ h22 = h11 B a1 ⊗ h12 ⊗ h21 B a2 ⊗ h22

and

εA(hB a) = εA(a)εH(h).

Moreover by (3) and (HC1), it is easy to deduce that the first equation in
(8) and (9) are equivalent to (10).

Remarks. (a) Let (H,β) be a Hom-Hopf algebra. Assume that (A,B, α)
is a Hom-coalgebra and an (H,β)-Hom-module satisfying (8). Then we call
(A,B, α) an (H,β)-module Hom-coalgebra.

When α = idA and β = idH , then an (H,β)-module Hom-coalgebra is
exactly a module coalgebra in the usual sense (see [7]).

(b) Theorem 3.7 is the Hom-version of the usual smash product Hopf
algebra (see [7]).

4. Cobraided Hom-Hopf algebra. In this section, necessary and suf-
ficient conditions for a smash product Hom-Hopf algebra to be cobraided
are given.

Proposition 4.1. Let (A\RB,α⊗β) be a R-smash product Hom-Hopf
algebra. Define

i : A→ A \R B, i(a) = a⊗ 1B, j : B → A \R B, j(b) = 1A ⊗ b,

for all a ∈ A and b ∈ B. Then i and j are both Hom-bialgebra maps.

Proof. Straightforward.

Let (A \R B,α ⊗ β) be an R-smash product Hom-Hopf algebra, and
σ : A \R B ⊗A \R B → K a bilinear form. Define

τ : A⊗A→ K, τ(a, a′) = σ(i⊗ i)(a⊗ a′),
υ : B ⊗B → K, υ(b, b′) = σ(j ⊗ j)(b⊗ b′),
ϕ : A⊗B → K, ϕ(a, b) = σ(i⊗ j)(a⊗ b),
ψ : B ⊗A→ K, ψ(b, a) = σ(j ⊗ i)(b⊗ a),

for a, a′ ∈ A and b, b′ ∈ B.

The following two lemmas are obvious.

Lemma 4.2. Let (A \R B,α ⊗ β) be an R-smash product Hom-Hopf al-
gebra. If σ satisfies (CHA1), then for a ∈ A and b ∈ B,
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τ(1A, a) = τ(a, 1A) = εA(a),

υ(b, 1B) = υ(1B, b) = εB(b),

ϕ(1A, b) = εB(b), ϕ(a, 1B) = εA(a),

ψ(1B, a) = εA(a), ψ(b, 1A) = εB(b).

Lemma 4.3. Let (A \R B,α ⊗ β) be an R-smash product Hom-Hopf al-
gebra. If σ satisfies (CHA5) for α⊗ β, then, for a, a′ ∈ A and b, b′ ∈ B,

τ(α(a), α(a′)) = τ(a, a′),

υ(β(b), β(b′)) = υ(b, b′),

ϕ(α(a), β(b)) = ϕ(a, b),

ψ(β(b), α(a)) = ψ(b, a).

Lemma 4.4. Let (A\RB,α⊗β, σ) be a cobraided R-smash product Hom-
Hopf algebra. Then, for all a, a′ ∈ A and b, b′ ∈ B,

(11) σ(α(a)⊗ β(b), α(a′)⊗ β(b′)) = ϕ(a1, b
′
1)τ(a2, a

′
1)υ(b1, b

′
2)ψ(b2, a

′
2).

Proof. By (CHA2) and (CHA3), for all a, a′, a′′, a′′′ ∈ A and b, b′, b′′, b′′′

∈ B, we have

σ(aα−1(a′)R ⊗ β−1(bR)b′, a′′α−1(a′′′)r ⊗ β−1(b′′r)b′′′)
= σ(a1 ⊗ b1, a′′′1 ⊗ b′′′1 )σ(a2 ⊗ b2, a′′1 ⊗ b′′1)

× σ(a′1 ⊗ b′1, a′′′2 ⊗ b′′′2 )σ(a′2 ⊗ b′2, a′′2 ⊗ b′′2).

Letting a′ = a′′′ = 1A and b = b′′ = 1B in the above equation, we get (11).

Lemma 4.5. Let (A\RB,α⊗β, σ) be a cobraided R-smash product Hom-
Hopf algebra. Then, for all a, a′ ∈ A and b, b′ ∈ B,

ϕ(α(α−1(a)R), b1)υ(b′R, b2) = υ(β(b′), b1)ϕ(α(a), b2),(D1)

τ(α(α−1(a)R), a′1)ψ(bR, a
′
2) = ψ(β(b), a′1)τ(α(a), a′2),(D2)

υ(b1, b
′
R)ψ(b2, α(α−1(a)R)) = ψ(b1, α(a)υ(b2, β(b′)),(D3)

ϕ(a1, bR)τ(a2, α(α−1(a′)R)) = τ(a1, α(a′)ϕ(a2, β(b)),(D4)

ψ(b1, a1)(α(α−1(a2)R)⊗ b2R) = (α(a1)⊗ β(b1))ψ(b2, a2),(D5)

ϕ(a1, b1)(α(a2)⊗ β(b2)) = (α(α−1(a1)R)⊗ b1R)ϕ(a2, b2).(D6)

Proof. By (CHA2), for all a, a′, a′′ ∈ A and b, b′, b′′ ∈ B, we can obtain

(12) σ(aα−1(a′)R ⊗ β−1(bR)b′, α(a′′)⊗ β(b′′))

= σ(α(a)⊗ β(b), a′′1 ⊗ b′′1)σ(α(a′)⊗ β(b′), a′′2 ⊗ b′′2).

Letting a = 1A and b′ = b′′ = 1B in (12) yields (D1) by (11). Similarly,
setting a = a′′ = 1A and b′ = 1B in (12), we get (D2) by (11).
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By (CHA3), for all a, a′, a′′ ∈ A and b, b′, b′′ ∈ B, we have

(13) σ
(
α(a)⊗ β(b), a′α−1(a′′)R ⊗ β−1(b′R)b′′

)
= σ(a1 ⊗ b1, α(a′′)⊗ β(b′′))σ(a2 ⊗ b2, α(a′)⊗ β(b′)).

(D3) can be obtained by letting a = a′ = 1A and b′′ = 1B in (13) and
by (11). Likewise, one gets (D4) by putting a′ = 1A and b = b′′ = 1B in (13)
and using (11).

By (CHA4), for all a, a′ ∈ A and b, b′ ∈ B, we have

(14) σ(a1 ⊗ b1, a′1 ⊗ b′1)(a2α−1(a′2)R ⊗ β−1(b2R)b′2)

= (a′1α
−1(a1)R ⊗ β−1(b′1R)b1)σ(a2 ⊗ b2, a′2 ⊗ b′2).

Letting a = 1A and b′ = 1B in (14), we get (D5); and (D6) is derived by
letting a′ = 1A and b = 1B in (14).

Lemma 4.6. Given the cobraiding σ on an R-smash product Hom-Hopf
algebra (A \R B,α⊗ β), consider the induced maps τ, υ, ϕ and ψ. Then

(1) (A,α, τ) and (B, β, υ) are cobraided Hom-Hopf algebras,
(2) (A,B,ϕ) and (B,A,ψ) are Hom-skew pairings.

Proof. (1) Setting b = b′ = b′′ = 1B in (12) and (13), we get (CHA2) and
(CHA3) for τ , respectively. (CHA4) can be derived by letting b = b′ = 1B
in (14); then by Lemmas 4.2 and 4.3, (A,α, τ) is a cobraided Hom-Hopf
algebra. Similarly, we can prove that (B, β, υ) is a cobraided Hom-Hopf
algebra.

(2) Letting a′′ = 1A and b = b′ = 1B in (12), and a′ = a′′ = 1A and
b = 1B in (13), one can obtain (SP2) and (SP3) for ϕ, respectively. Then
(A,B,ϕ) is a Hom-skew pairing by Lemmas 4.2 and 4.3. The rest of (2) can
be demonstrated similarly.

Lemma 4.7. Let (A \R B,α ⊗ β) be an R-smash product Hom-Hopf
algebra. Suppose there exist forms τ : A ⊗ A → K, ϕ : A ⊗ B → K,
ψ : B ⊗A→ K, and υ : B ⊗B → K such that

(1) (A,α, τ) and (B, β, υ) are cobraided Hom-Hopf algebras,
(2) (A,B,ϕ) and (B,A,ψ) are Hom-skew pairings,
(3) the conditions (D1)–(D6) in Lemma 4.5 hold.

Then (A \R B,α⊗ β, σ) is a cobraided Hom-Hopf algebra with the cobraided
structure given by

σ(α(a)⊗ β(b), α(a′)⊗ β(b′)) = ϕ(a1, b
′
1)τ(a2, a

′
1)υ(b1, b

′
2)ψ(b2, a

′
2)

for a, a′ ∈ A and b, b′ ∈ B.

Proof. It is obvious that σ satisfies (CHA1) and (CHA5).
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Next, we show that (CHA2) holds for σ. For all a,a′,a′′ ∈ A and b,b′, b′′

∈ B,

σ((a⊗b)(a′⊗b′),α(a′′)⊗β(b′′))

= σ(aα−1(a′)R⊗β−1(bR)b′,α(a′′)⊗β(b′′))

= ϕ(α−1(aα−1(a′)R)1, b
′′
1)τ(α−1(aα−1(a′)R)2,a

′′
1)

×υ(β−1(β−1(bR)b′)1, b
′′
2)ψ(β−1(β−1(bR)b′)2,a

′′
2)

(HA1),(HC1)
= ϕ(α−1(a1)α

−1(α−1(a′)R1), b
′′
1)τ(α−1(a2)α

−1(α−1(a′)R2),a
′′
1)

×υ(β−2(bR1)β
−1(b′1), b

′′
2)ψ(β−2(bR2)β

−1(b′2),a
′′
2)

(CHA2),(SP2)
= ϕ(a1,β

−1(b′′11))ϕ(α−1(a′)R1,β
−1(b′′12))τ(a2,α

−1(a′′11))

×τ(α−1(a′)R2,α
−1(a′′12))υ(β−1(bR1),β

−1(b′′21))υ(b′1,β
−1(b′′22))

×ψ(β−1(bR2),α
−1(a′′21))ψ(b′2,α

−1(a′′22))

= ϕ(a1,β
−1(b′′11))ϕ(α−1(a′)1R,β

−1(b′′12))τ(a2,α
−1(a′′11))

×τ(α−1(a′)2r,α
−1(a′′12))×υ(β−1(b1R),β−1(b′′21))υ(b′1,β

−1(b′′22))

×ψ(β−1(b2r),α
−1(a′′21))ψ(b′2,α

−1(a′′22))

(3)
= ϕ(a1, b

′′
1)ϕ(α−1(a′)1R,β

−2(b′′211))τ(a2,a
′′
1)

×τ(α−1(a′)2r,α
−2(a′′211))υ(β−1(b1R),β−2(b′′212))υ(b′1,β

−1(b′′22))

×ψ(β−1(b2r),α
−2(a′′212))ψ(b′2,α

−1(a′′22))

(4),(HC1)
= ϕ(a1, b

′′
1)ϕ(α(α−1(α−1(a′)1)R),β−2(b′′21)1)τ(a2,a

′′
1)

×τ(α(α−1(α−1(a′)2)r),α
−2(a′′21)1) υ(β−1(b1)R,β

−2(b′′21)2)

×υ(b′1,β
−1(b′′22))ψ(β−1(b2)r,α

−2(a′′21)2)ψ(b′2,α
−1(a′′22))

(D1),(D2)
= ϕ(a1, b

′′
1)ϕ(a′1,β

−2(b′′21)2)τ(a2,a
′′
1)τ(a′2,α

−2(a′′21)2)

×υ(b1,β
−2(b′′21)1)υ(b′1,β

−1(b′′22))ψ(b2,α
−2(a′′21)1)ψ(b′2,α

−1(a′′22))

(3)
= ϕ(a1,β

−1(b′′11))ϕ(a′1,β
−1(b′′21))τ(a2,α

−1(a′′11))τ(a′2,α
−1(a′′21))

×υ(b1,β
−1(b′′12))υ(b′1,β

−1(b′′22))ψ(b2,α
−1(a′′12))ψ(b′2,α

−1(a′′22))

(HC1)
= ϕ(a1,β

−1(b′′1)1)τ(a2,α
−1(a′′1)1)υ(b′1,β

−1(b′′2)2)ψ(b′2,α
−1(a′′2)2)

×ϕ(a′1,β
−1(b′′2)1)τ(a′2,α

−1(a′′2)1)υ(b1,β
−1(b′′1)2)ψ(b2,α

−1(a′′1)2)

= σ(α(a)⊗β(b),a′′1⊗b′′1)σ(α(a′)⊗β(b′),a′′2⊗b′′2).

(CHA3) for σ can be proved by a similar method.
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Now we check (CHA4): for all a,a′ ∈ A and b,b′ ∈ B,

σ(a1⊗b1,a′1⊗b′1)(a2⊗b2)(a′2⊗b′2)
= u(α−1(a1)1,β

−1(b′1)1)τ(α−1(a1)2,α
−1(a′1)1)υ(β−1(b1)1,β

−1(b′1)2)

×ψ(β−1(b1)2,α
−1(a′1)2)(a2α

−1(a′2)R⊗β−1(b2R)b′2)

(HC1)
= ϕ(α−1(a11),β

−1(b′11))τ(α−1(a12),α
−1(a′11))υ(β−1(b11),β

−1(b′12))

×ψ(β−1(b12),α
−1(a′12))(a2α

−1(a′2)R⊗β−1(b2R)b′2)

×ψ(β−1(b1)2,α
−1(a′1)2)(a2α

−1(a′2)R⊗β−1(b2R)b′2)

(2)
= ϕ(a1, b

′
1)τ(α−1(a21),a

′
1)υ(b1,β

−1(b′21))ψ(β−1(b21),α
−1(a′21))

×(α−1(a22)α
−2(a′22)R⊗β−1(β−1(b22)R)β−1(b′22))

(HC1)
= ϕ(a1, b

′
1)τ(α−1(a2)1,a

′
1)υ(b1,β

−1(b′2)1)ψ(β−1(b2)1,α
−1(a′2)1)

×(α−1(a2)2α
−1(α−1(a′2)2)R⊗β−1(β−1(b2)2R)β−1(b′2)2)

(D5)
= ϕ(a1, b

′
1)τ(α−1(a2)1,a

′
1)υ(b1,β

−1(b′2)1)ψ(β−1(b2)2,α
−1(a′2)2)

×(α−1(a2)2α
−1(a′2)1⊗β−1(b2)1β−1(b′2)2)

(1),(HC1)
= ϕ(a1, b

′
1)τ(α−1(a2)1,α

−1(a′1)1) υ(β−1(b1)1,β
−1(b′2)1)ψ(b2,a

′
2)

×(α−1(a2)2α
−1(a′1)2⊗β−1(b1)2β−1(b′2)2)

(CHA4)
= u(a1, b

′
1)τ(α−1(a2)2,α

−1(a′1)2)υ(β−1(b1)2,β
−1(b′2)2)ψ(b2,a

′
2)

×(α−1(a′1)1α
−1(a2)1⊗β−1(b′2)1β−1(b1)1)

(1),(HC1)
= ϕ(α−1(a1)1,β

−1(b′1)1)τ(a2,α
−1(a′1)2)υ(β−1(b1)2, b

′
2)ψ(b2,a

′
2)

×(α−1(a′1)1α
−1(a1)2⊗β−1(b′1)2β−1(b1)1)

(D6)
= ϕ(α−1(a1)2,β

−1(b′1)2)τ(a2,α
−1(a′1)2)υ(β−1(b1)2, b

′
2)ψ(b2,a

′
2)

×(α−1(a′1)1α
−1(α−1(a1)1)R⊗β−1(β−1(b′1)1R)β−1(b1)1)

(2),(3)
= (a′1α

−1(a1)R⊗β−1(b′1R)b1)ϕ(α−1(a2)1,β
−1(b′1)2)

×τ(α−1(a2)2,α
−1(a′2)1)υ(β−1(b2)1,β

−1(b′2)2)ψ(β−1(b2)2,α
−1(a′2)2)

= (a′1⊗b′1)(a1⊗b1)σ(a2⊗b2,a′2⊗b′2).

Therefore, (A\RB,α⊗β,σ) is a cobraided Hom-Hopf algebra.

Lemmas 4.2–4.7 imply

Theorem 4.8. An R-smash product Hom-Hopf algebra (A \R B,α⊗ β)
is cobraided if and only if there exist forms τ : A ⊗ A → K, ϕ : A ⊗
B → K, ψ : B ⊗ A → K, and υ : B ⊗ B → K such that (A,α, τ) and
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(B, β, υ) are cobraided Hom-Hopf algebras, (A,B,ϕ) and (B,A,ψ) are Hom-
skew pairings, and the conditions (D1)–(D6) of Lemma 4.5 hold. Moreover,
the cobraided structure σ on (A \R B,α⊗ β) has the decomposition

σ(α(a)⊗ β(b), α(a′)⊗ β(b′)) = ϕ(a1, b
′
1)τ(a2, a

′
1)υ(b1, b

′
2)ψ(b2, a

′
2).

Theorem 4.9. A smash product Hom-Hopf algebra (A \ H,α ⊗ β) is
cobraided if and only if there exist forms τ : A⊗ A → K, ϕ : A⊗H → K,
ψ : H ⊗ A → K, and υ : H ⊗ H → K such that (A,α, τ) and (H,β, υ)
are cobraided Hom-Hopf algebras, (A,H,ϕ) and (H,A,ψ) are Hom-skew
pairings, and the conditions (D1)′–(D6)′ below hold: for all a, a′ ∈ A and
h, h′ ∈ B,

ϕ(β(h′1) B a, h1)υ(h′2, h2) = υ(β(h′), h1)ϕ(α(a), h2),(D1)′

τ(β(h1) B a, a′1)ψ(h2, a
′
2) = ψ(β(h), a′1)τ(α(a), a′2),(D2)′

υ(h1, h
′
2)ψ(h2, β(h′1) B a) = ψ(h1, α(a)υ(h2, β(h′)),(D3)′

ϕ(a1, h2)τ(a2, β(h1) B a′) = τ(a1, α(a′)ϕ(a2, β(h)),(D4)′

ψ(h1, a1)(β(h21) B a2 ⊗ h22) = (α(a1)⊗ β(h1))ψ(h2, a2),(D5)′

ϕ(a1, h1)(α(a2)⊗ β(h2)) = (β(h11) B a1 ⊗ h12)ϕ(a2, h2).(D6)′

Moreover, the cobraided structure σ′ on (A \ H,α⊗ β) has the decomposition

σ′(α(a)⊗ β(h), α(a′)⊗ β(h′)) = ϕ(a1, h
′
1)τ(a2, a

′
1)υ(h1, h

′
2)ψ(h2, a

′
2).

Proof. Let R(h ⊗ a) = h1 B a ⊗ h2 for a ∈ A and h ∈ H in Theorem
4.8.

5. Applications. In this section, we apply the main results of Sections 3
and 4 to a concrete example.

The following result is clear.

Lemma 5.1. Let KZ2 = K{1, a} be a Hopf group algebra (see [9]). Then
(KZ2, idKZ2 , υ) is a cobraided Hom-Hopf algebra, where υ is given by

υ 1 a

1 1 1

a 1 −1

Let

T2,−1 = K{1, g, x, gx | g2 = 1, x2 = 0, xg = −gx}

be Taft’s Hopf algebra (see [10]); its coalgebra structure and antipode are
given by

∆(g) = g ⊗ g, ∆(x) = x⊗ g + 1⊗ x, ∆(gx) = gx⊗ 1 + g ⊗ gx;

ε(g) = 1, ε(x) = 0, ε(gx) = 0;
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and
S(g) = g, S(x) = gx, S(gx) = −x.

Define a linear map α : T2,−1 → T2,−1 by

α(1) = 1, α(g) = g, α(x) = kx, α(gx) = kgx

where 0 6= k ∈ K. Then α is an automorphism of Hopf algebras.
So we get a Hom-Hopf algebra

Hα = (T2,−1, α ◦ µT2,−1 , 1T2,−1 ,∆T2,−1 ◦ α, εT2,−1 , α)

(see [6]).
Lemma 5.2. Let Hα be the Hom-Hopf algebra defined above. Then

(Hα, α, τ) is a cobraided Hom-Hopf algebra, where τ is given by

τ 1 g x gx

1 1 1 0 0

g 1 −1 0 0

x 0 0 0 0

gx 0 0 0 0

Proof. A straightforward but tedious computation.

Theorem 5.3. Let KZ2 be the Hopf group algebra and Hα the Hom-
Hopf algebra defined above. Define a module action B : KZ2 ⊗ Hα → Hα

by

1KZ2 B 1Hα = 1Hα , aB 1Hα = 1Hα ,

1KZ2 B g = g, aB g = g,

1KZ2 B x = kx, aB x = −kx,
1KZ2 B gx = kgx, aB gx = −kgx,

Then by a routine computation we find that Hα is a KZ2-module Hom-
algebra. Therefore, by Theorem 3.3, (Hα \ KZ2, α⊗ idKZ2) is a smash prod-
uct Hom-algebra.

Furthermore, (Hα \ KZ2, α ⊗ idKZ2) with the tensor product Hom-co-
algebra structure becomes a Hom-Hopf algebra, where the antipode S̄ is
given by

S̄(1Hα ⊗ 1KZ2) = 1Hα ⊗ 1KZ2 , S̄(1Hα ⊗ a) = 1Hα ⊗ a,
S̄(g ⊗ 1KZ2) = g ⊗ 1KZ2 , S̄(g ⊗ a) = g ⊗ a,
S̄(x⊗ 1KZ2) = −gx⊗ 1KZ2 , S̄(x⊗ a) = −gx⊗ a,
S̄(gx⊗ 1KZ2) = x⊗ 1KZ2 , S̄(gx⊗ a) = x⊗ a.

Lemma 5.4. Let KZ2 be the Hopf group algebra and Hα the Hom-Hopf
algebra defined above. Define two linear maps ϕ : Hα ⊗ KZ2 → K and
ψ : KZ2 ⊗Hα → K as follows:
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ϕ 1 a

1 1 1

g 1 −1

x 0 0

gx 0 0

ψ 1 g x gx

1 1 1 0 0

a 1 −1 0 0

Then (Hα,KZ2, ϕ) and (KZ2, Hα, ψ) are Hom-skew pairings.

Proof. Straightforward.

Theorem 5.5. With the notations above, the smash product Hom-Hopf
algebra (Hα \ KZ2, α ⊗ idKZ2 , σ) is a cobraided Hom-Hopf algebra with co-
braiding σ given as follows:

σ 1 ⊗ 1 1 ⊗ a g ⊗ 1 g ⊗ a x⊗ 1 x⊗ a gx⊗ 1 gx⊗ a

1 ⊗ 1 1 1 1 1 0 0 0 0

1 ⊗ a 1 −1 −1 1 0 0 0 0

g ⊗ 1 1 −1 −1 1 0 0 0 0

g ⊗ a 1 1 1 1 0 0 0 0

x⊗ 1 0 0 0 0 0 0 0 0

x⊗ a 0 0 0 0 0 0 0 0

gx⊗ 1 0 0 0 0 0 0 0 0

gx⊗ a 0 0 0 0 0 0 0 0

Proof. It is easy to prove that the conditions (D1)′–(D6)′ hold. We finish
the proof by using Lemmas 5.1, 5.2, 5.4 and Theorem 4.9.
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