BLOW-UP FOR THE FOCUSING ENERGY CRITICAL NONLINEAR SCHRÖDINGER EQUATION WITH CONFINING HARMONIC POTENTIAL

BY
XING CHENG (Hefei) and YANFANG GAO (Fuzhou)

Abstract

The focusing nonlinear Schrödinger equation (NLS) with confining harmonic potential $$
\mathrm{i} \partial_{t} u+\frac{1}{2} \Delta u-\frac{1}{2}|x|^{2} u=-|u|^{4 /(d-2)} u, \quad x \in \mathbb{R}^{d}
$$ is considered. By modifying a variational technique, we shall give a sufficient condition under which the corresponding solution blows up.

1. Introduction. The NLS with confining harmonic potential

$$
\begin{equation*}
\mathrm{i} \partial_{t} u+\frac{1}{2} \Delta u-\frac{1}{2}|x|^{2} u=\mu|u|^{p} u, \quad x \in \mathbb{R}^{d} \tag{1.1}
\end{equation*}
$$

has been used to model the Bose-Einstein condensation (see for example [2, 3]). The most physically relevant case is $p=2, d=3$. Here u is a complex-valued function defined on some spatial-time slab $I \times \mathbb{R}^{d}, d \geq 3$, $4 / d \leq p \leq 4 /(d-2), \mu= \pm 1$, with $\mu=1$ being the defocusing case and $\mu=-1$ the focusing case. There are many mathematical works on the Cauchy problem for this equation (see, e.g., [1, 6, 10, 11, 12, 13]).

Set the initial datum

$$
\begin{equation*}
u(0, x)=u_{0}(x) . \tag{1.2}
\end{equation*}
$$

The natural choice of the initial space is

$$
\Sigma:=\left\{\varphi \in \dot{H}^{1} ; x \varphi \in L^{2}\right\}
$$

endowed with the norm

$$
\|\varphi\|_{\Sigma}^{2}=\|\nabla \varphi\|_{2}^{2}+\|x \varphi\|_{2}^{2} .
$$

It is easily seen that $\Sigma \hookrightarrow L^{2}$ by the standard uncertainty principle

$$
\|f\|_{L^{2}}^{2} \leq \frac{2}{d}\|\nabla f\|_{L^{2}}\|x f\|_{L^{2}} .
$$

[^0]For $u_{0} \in \Sigma$, the solution u obeys two conservation laws, i.e.,

$$
\text { Mass conservation: } \quad M(u(t)):=\int_{\mathbb{R}^{d}}|u(t, x)|^{2} d x \equiv M\left(u_{0}\right)
$$

(1.4) Energy conservation:

$$
E(u(t)):=\int_{\mathbb{R}^{d}}\left(\frac{1}{2}|\nabla u|^{2}+\frac{1}{2}|x|^{2}|u|^{2}-\frac{2}{p+2}|u|^{p+2}\right) d x \equiv E\left(u_{0}\right)
$$

By saying that $u:[0, T) \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ is a solution of $1.1-1.2$, we mean $u \in C_{t}([0, T) ; \Sigma)$ where T is the maximal existence time, and u satisfies the Duhamel formula

$$
u(t)=e^{i \frac{1}{2} t\left(\Delta-|x|^{2}\right)} u_{0}+i \int_{0}^{t} e^{i \frac{1}{2}(t-\tau)\left(\Delta-|x|^{2}\right)}|u|^{p} u(\tau) d \tau, \quad \forall t \in[0, T)
$$

If $T=\infty$, we say u globally exists. We say that u blows up in finite time if $T<\infty$. For $4 / d \leq p<4 /(d-2)$, global existence of the solution for the Cauchy problem of 1.1 with $\mu=1$ is a consequence of energy conservation, while blow-up occurs for the focusing case $(\mu=-1)$. The latter case has been proven in [12], where the sufficient condition for blow-up is $M\left(u_{0}\right)+E\left(u_{0}\right)<$ $M(\varphi)+E(\varphi),\left.\frac{d(M(u)+E(u))}{d u}\right|_{u_{0}}<0$ and the virial quantity less than 0 . Here φ is the solution to the elliptic equation

$$
\begin{equation*}
-\frac{1}{2} \Delta \varphi+\frac{1}{2}|x|^{2} \varphi+\varphi=|\varphi|^{p} \varphi, \quad 4 / d \leq p<4 /(d-2) \tag{1.5}
\end{equation*}
$$

Concerning $p=4 /(d-2)$, the energy-critical case, it has been shown in [6, 13] that the problem (1.1)-(1.2) for radial solutions with $\mu=1$ is globally well-posed.

We call (1.1) the energy-critical NLS when $p=4 /(d-2)$, since if we abandon the harmonic potential for a moment, then (1.1) and the \dot{H}^{1}-norm of the initial data are both preserved by the scaling

$$
u_{\lambda}(t, x)=\lambda^{(d-2) / 2} u\left(\lambda^{2} t, \lambda x\right)
$$

Later, we shall use the transform

$$
\tilde{u}_{\lambda}(t, x)=\lambda^{(d-2) / 2} u(t, \lambda x) .
$$

Blow-up for the energy-critical case with $\mu=-1$ is expected to exist similarly to the focusing energy-critical NLS without harmonic potential ([7, 4]) and the focusing subcritical case. Recall that from [7, 4] finite time blow-up occurs provided the initial datum u_{0} satisfies $E\left(u_{0}\right)<E(W)$ and $\left\|\nabla u_{0}\right\|_{L^{2}} \geq\|\nabla W\|_{L^{2}}$. Here E is the corresponding energy functional, and W is the solution to the elliptic equation

$$
\begin{equation*}
-\Delta W=|W|^{4 /(d-2)} W \tag{1.6}
\end{equation*}
$$

Note that there is no non-trivial solution to the equation

$$
-\frac{1}{2} \Delta \Phi+\frac{1}{2}|x|^{2} \Phi=|\Phi|^{4 /(d-2)} \Phi .
$$

So the energy constraint in our case cannot be given by the corresponding energy of the ground state. In this paper, by employing the variational idea of [5] (see also [9]), we shall prove that the energy constraint can be represented by $\|\nabla W\|_{L^{2}}$ and derive a sufficient condition for the solution of (1.1)-1.2) to blow up in finite time. The key ingredient is to reduce the minimization problem for the non-coercive energy functional to minimization of a positive functional. Inspiration comes from an interesting observation. For ease of exposition, we define some functionals:

$$
\begin{align*}
& \mathcal{H}(\phi)=\int_{\mathbb{R}^{d}}\left(\frac{1}{2}|\nabla \phi|^{2}+\frac{1}{2}|x|^{2}|\phi|^{2}-\frac{2}{2^{*}}|\phi|^{2^{*}}\right) d x, \\
& \mathcal{K}(\phi)=\int_{\mathbb{R}^{d}}\left(|\nabla \phi|^{2}+|x|^{2}|\phi|^{2}-2|\phi|^{2^{*}}\right) d x, \tag{1.7}\\
& \mathcal{Q}(\phi)=\int_{\mathbb{R}^{d}}\left(2|\nabla \phi|^{2}-2|x|^{2}|\phi|^{2}-4|\phi|^{2^{*}}\right) d x, \\
& \mathcal{K}_{0}(\phi)=\int_{\mathbb{R}^{d}}\left(|\nabla \phi|^{2}-2|\phi|^{2^{*}}\right) d x .
\end{align*}
$$

Define

$$
\begin{equation*}
m_{c}:=\inf \{\mathcal{H}(\phi) ; 0 \neq \phi \in \Sigma, \mathcal{K}(\phi)=0\} . \tag{1.8}
\end{equation*}
$$

Observe that $\mathcal{Q}(u)$ is the second derivative of the virial quantity $\|x u\|_{2}^{2}$. Moreover,

$$
\mathcal{Q}(u)=2 \mathcal{K}(u)-4\|x u\|_{2}^{2},
$$

which implies that if $\mathcal{K}(u)<0$, so does $\mathcal{Q}(u)$. This key observation allows us to consider blow-up in the set

$$
\mathbb{K}=\left\{\phi \in \Sigma ; \mathcal{H}(\phi)<m_{c}, \mathcal{K}(\phi)<0\right\} .
$$

Otherwise, one should add the constraint

$$
\left\{\phi \in \Sigma ; \mathcal{H}(\phi)<m_{c}, \mathcal{K}(\phi)<0, \mathcal{Q}(\phi)<0\right\}
$$

as in $\left[12\right.$ for subcritical powers. We shall prove that $m_{c}>0$ and exactly $m_{c}=\frac{2^{1-d / 2}}{d}\|\nabla W\|_{2}^{2}$.

We now present our main result.
Theorem 1. Let $u_{0} \in \Sigma, p=4 /(d-2)$ and let u be the corresponding solution to (1.1-1.2). Assume $u_{0} \in \mathbb{K}$. Then u blows up in finite time.

In Section 2, we shall find the value of m_{c}, derive some properties of u in \mathbb{K}, and then prove Theorem 1 .

Notation. Throughout, we always denote $2^{*}=\frac{2 d}{d-2} ; \dot{H}^{1}$ is the Sobolev space with norm defined by $\|\cdot\|_{\dot{H}^{1}}=\left\|\mathcal{F}^{-1}|\xi| \mathcal{F} \cdot\right\|_{L^{2}}$, where \mathcal{F} is the Fourier transform and \mathcal{F}^{-1} is its inverse.
2. The value of m_{c} and proof of Theorem 1. In this section, we investigate the minimization problem $(1.8$, show properties of solutions in \mathbb{K}, and finally prove Theorem 1 .

To find the value of m_{c} in 1.8), we define

$$
\mathcal{J}(\phi):=\mathcal{H}(\phi)-\frac{1}{2} \mathcal{K}(\phi)=\frac{2}{d} \int_{\mathbb{R}^{d}}|\phi|^{2^{*}} d x
$$

Lemma 1. $m_{c}=\inf \{\mathcal{J}(\phi) ; 0 \neq \phi \in \Sigma, \mathcal{K}(\phi) \leq 0\}$.
Proof. Denote the above infimum by m^{\prime}. We first prove $m_{c} \leq m^{\prime}$. Denote

$$
\mathbb{A}=\{\phi ; 0 \neq \phi \in \Sigma, \mathcal{K}(\phi)=0\}, \quad \mathbb{B}=\{\phi ; 0 \neq \phi \in \Sigma, \mathcal{K}(\phi) \leq 0\} .
$$

For each $\phi \in \mathbb{B}, \mathcal{K}(\phi) \leq 0$. Thus, $\mathcal{H}(\phi) \leq \mathcal{J}(\phi)$. Set

$$
\phi^{\lambda}(x)=\lambda^{(d-2) / 2} \phi(\lambda x)
$$

Since $\lim _{\lambda \rightarrow 0} \mathcal{K}\left(\phi^{\lambda}\right)=\infty$, there exists a $\lambda_{0} \in(0,1]$ such that $\mathcal{K}\left(\phi^{\lambda_{0}}\right)=0$, that is, $\phi^{\lambda_{0}} \in \mathbb{A}$. Therefore, we get

$$
m_{c} \leq \mathcal{J}\left(\phi^{\lambda_{0}}\right)=\mathcal{H}\left(\phi^{\lambda_{0}}\right) \leq \mathcal{H}(\phi) \leq \mathcal{J}(\phi)
$$

Thus, $m_{c} \leq m^{\prime}$.
Conversely, given $\phi \in \mathbb{A}$, we have $\phi \in \mathbb{B}$ and $\mathcal{H}(\phi)=\mathcal{J}(\phi)$. Thus, $m^{\prime} \leq m_{c}$.

The next lemma says that the infimum of $\mathcal{J}(\phi)$ on the set $\{\mathcal{K}(\phi) \leq 0\}$ is the same as that on the set $\left\{\mathcal{K}_{0}(\phi)<0\right\}$.

Lemma 2. $m_{c}=\inf \left\{\mathcal{J}(\phi) ; 0 \neq \phi \in \Sigma, \mathcal{K}_{0}(\phi)<0\right\}$.
Proof. Denote the above infimum by \bar{m}. By the definition, $\mathcal{K}_{0}(\phi)<\mathcal{K}(\phi)$ for all $\phi \neq 0$. Hence, $\bar{m} \leq m_{c}$.

On the other hand, for all ϕ with $\mathcal{K}_{0}(\phi)<0$, we have

$$
\lim _{\lambda \rightarrow \infty} \mathcal{K}\left(\phi^{\lambda}\right)=\mathcal{K}_{0}(\phi)<0
$$

Thus, there exists a $\tilde{\lambda} \in(1, \infty)$ such that $\mathcal{K}\left(\phi^{\tilde{\lambda}}\right) \leq 0$. So, $m_{c} \leq \bar{m}$.
From Lemmas 1 and 2, one can derive the value of m_{c}.
Proposition 1. Let m_{c} be defined as in (1.8). Then

$$
m_{c}=\frac{2^{1-d / 2}}{d}\|\nabla W\|_{2}^{2}
$$

where W satisfies the equation $-\Delta W=W^{\frac{d+2}{d-2}}$.

Proof. Let \bar{m} be as in the proof of Lemma 2. It is obvious that

$$
\bar{m} \geq \inf _{0 \neq \phi \in \Sigma} \frac{2}{d}\left(\int_{\mathbb{R}^{d}}|\phi|^{2^{*}} d x\right)\left[\frac{\int_{\mathbb{R}^{d}}|\nabla \phi|^{2}}{2 \int_{\mathbb{R}^{d}}|\phi|^{2^{*}}}\right]^{\frac{2^{*}}{2^{*}-2}}=: \tilde{m}
$$

Next, we shall show by homogeneity and scaling $\phi \mapsto \mu \phi$ that $\bar{m} \leq \tilde{m}$. Indeed, for all $0<\varepsilon(<1)$, there exists $0 \neq \phi \in \Sigma$ such that

$$
\begin{align*}
\tilde{m}+\varepsilon & >\frac{2}{d}\left(\int_{\mathbb{R}^{d}}|\phi|^{2^{*}} d x\right)\left[\frac{\int_{\mathbb{R}^{d}}|\nabla \phi|^{2}}{2 \int_{\mathbb{R}^{d}}|\phi|^{2^{*}}}\right]^{\frac{2^{*}}{2^{*}-2}} \tag{2.1}\\
& =\frac{2}{d}\left(\int_{\mathbb{R}^{d}}|\mu \phi|^{2^{*}} d x\right)\left[\frac{\int_{\mathbb{R}^{d}}|\nabla(\mu \phi)|^{2}}{2 \int_{\mathbb{R}^{d}}|\mu \phi|^{2^{*}}}\right]^{\frac{2^{*}}{2^{*}-2}}, \quad \forall \mu>0 .
\end{align*}
$$

Taking

$$
\mu=\frac{1}{(1-\varepsilon / \bar{m})^{1 / 2^{*}}}\left[\frac{\int_{\mathbb{R}^{d}}|\nabla \phi|^{2}}{2 \int_{\mathbb{R}^{d}}|\phi|^{2^{*}}}\right]^{1 /\left(2^{*}-2\right)},
$$

we then have

$$
\left[\frac{\int_{\mathbb{R}^{d}}|\nabla(\mu \phi)|^{2}}{2 \int_{\mathbb{R}^{d}}|\mu \phi|^{2^{*}}}\right]^{2^{2^{*}-2}}=1-\frac{\varepsilon}{\bar{m}}, \quad \mathcal{K}(\mu \phi)<0
$$

Thus, by (2.1) and Lemma 2, we obtain

$$
\tilde{m}+\varepsilon>\frac{2}{d}(1-\varepsilon / \bar{m}) \int_{\mathbb{R}^{d}}|\mu \phi|^{2^{*}} \geq \bar{m}-\varepsilon .
$$

This implies that $\tilde{m} \geq \bar{m}$. Hence

$$
\begin{aligned}
\bar{m} & =\inf _{0 \neq \phi \in \Sigma} \frac{2}{d}\left(\int_{\mathbb{R}^{d}}|\phi|^{2^{*}} d x\right)\left[\frac{\int_{\mathbb{R}^{d}}|\nabla \phi|^{2}}{2 \int_{\mathbb{R}^{d}}|\phi|^{2^{*}}}\right]^{\frac{2^{*}}{2^{*}-2}} \\
& =\inf _{0 \neq \phi \in \Sigma} \frac{2^{1-d / 2}}{d}\left[\frac{\|\nabla \phi\|_{2}}{\|\phi\|_{2^{*}}^{d}}\right]^{d}=\frac{2^{1-d / 2}}{d} C_{d}^{-d}
\end{aligned}
$$

where C_{d} is the sharp constant in the Sobolev inequality

$$
\|\psi\|_{L^{2^{*}}} \leq C_{d}\|\nabla \psi\|_{L^{2}},
$$

which is attained at W that is the solution of the equation

$$
-\Delta \varphi=\varphi^{\frac{d+2}{d-2}} .
$$

By a direct calculation, we obtain

$$
m_{c}=\frac{2^{1-d / 2}}{d}\|\nabla W\|_{2}^{2}
$$

Proof of Theorem 1. To prove the theorem, we first establish some properties of the solution for $u_{0} \in \mathbb{K}$. The argument for the theorem uses the standard convexity method (see [8]).

Lemma 3. Let $u_{0} \in \Sigma$ and let u be the corresponding solution to (1.1)(1.2) with maximal life-span I. If $u_{0} \in \mathbb{K}$, then $u(t) \in \mathbb{K}$ for all $t \in I$.

Proof. Suppose for contradiction that there exists $t_{1} \in I$ such that $\mathcal{K}\left(u\left(t_{1}\right)\right) \geq 0$. Then by the continuity of the flow, there exists $0<t_{2} \leq t_{1}$ such that $\mathcal{K}\left(u\left(t_{2}\right)\right)=0$. Hence by the definition of $m_{c}, E\left(u\left(t_{2}\right)\right) \geq m_{c}$. But the energy of the solution is conserved, which is a contradiction.

Lemma 4 (Coercivity). Assume $u_{0} \in \mathbb{K}$. Then $\mathcal{K}(u(t)) \leq 2\left(E(u)-m_{c}\right)$ for all $t \in I$.

Proof. By Lemma 3, $u(t) \in \mathbb{K}$ for all $t \in I$. Set $u^{\lambda}(t, x)=\lambda^{(d-2) / 2} u(t, \lambda x)$. Note that

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \mathcal{K}\left(u^{\lambda}\right)=\infty \tag{2.2}
\end{equation*}
$$

Since $\mathcal{K}(u)<0$, it follows from (2.2) that there exists $\tilde{\lambda} \in(0,1)$ such that $\mathcal{K}\left(u^{\tilde{\lambda}}\right)=0$. This implies $E\left(u^{\tilde{\lambda}}\right) \geq m_{c}$. Thus,

$$
\mathcal{K}(u)=\mathcal{K}(u)-\mathcal{K}\left(u^{\tilde{\lambda}}\right)=2\left(E(u)-E\left(u^{\tilde{\lambda}}\right)\right) \leq 2\left(E(u)-m_{c}\right)
$$

Proof of Theorem 1. Suppose for contradiction that u is global. Define the virial quantity

$$
V(u)(t)=\int_{\mathbb{R}^{d}}|x|^{2}|u(t, x)|^{2} d x
$$

By a direct computation, we have

$$
\begin{aligned}
\frac{d}{d t} V(t) & =2 \operatorname{Im} \int_{\mathbb{R}^{d}} \bar{u} x \cdot \nabla u d x \\
\frac{d^{2}}{d t^{2}} V(t) & =\int_{\mathbb{R}^{d}}\left(2|\nabla u|^{2}-2|x|^{2}|u(t, x)|^{2}-4|u(t, x)|^{2^{*}}\right) d x=2 \mathcal{K}(u)-4 V
\end{aligned}
$$

By an ODE technique and Lemma 4 for $0 \leq t \leq \pi / 2$ we obtain

$$
\begin{aligned}
V(t) & =V(0) \cos (2 t)+\frac{1}{2} \dot{V}(0) \sin (2 t)+\int_{0}^{t} \mathcal{K}(u(s)) \sin [2(t-s)] d s \\
& \leq V(0) \cos (2 t)+\frac{1}{2} \dot{V}(0) \sin (2 t)+\left(m_{c}-E\right)(\cos (2 t)-1) \\
& \leq V(0) \cos (2 t)+\frac{1}{2} \dot{V}(0) \sin (2 t) .
\end{aligned}
$$

It is easily seen that $V(t)$ becomes negative after $t=\pi / 4$ in both cases $\dot{V}(0) \leq 0$ and $\dot{V}(0) \geq 0$. But this is impossible. Thus, u must blow up in finite time.

REFERENCES

[1] R. Carles, Remarks on nonlinear Schrödinger equations with harmonic potential, Ann. Henri Poincaré 3 (2002), 757-772.
[2] C. Cohen-Tannoudji, Condensation de Bose-Einstein des gaz atomiques ultra froids; effets des interactions, Cours au Collège de France, Année 1998-1999, http://www. lkb.ens.fr/ ${ }^{\text {cctt/. }}$
[3] F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys. 71 (1999), 463-512.
[4] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow up for the energy-critical, focusing NLS in the radial case, Invent. Math. 166 (2006), 645-675.
[5] S. Ibrahim, N. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE 4 (2011), 405-460.
[6] R. Killip, M. Visan and X. Zhang, Energy-critical NLS with quadratic potentials, Comm. Partial Differential Equations 134 (2009), 1531-1565.
[7] R. Killip and M. Visan, Focusing NLS in dimensions five and higher, Amer. J. Math. 132 (2010), 361-424.
[8] T. Ogawa and Y. Tsutsumi, Blow-up of H^{1}-solution for the nonlinear Schrödinger equation, J. Differential Equations 92 (1991), 317-330.
[9] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), 273-303.
[10] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270-291.
[11] T. Tao, A pseudoconformal compactification of the nonlinear Schrödinger equation and applications, arXiv:math/0606254v4
[12] J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Comm. Partial Differential Equations 30 (2005), 1429-1443.
[13] X. Zhang, Global well-posedness and scattering for 3D Schrödinger equations with harmonic potential, Forum Math. 19 (2007), 633-675.

Xing Cheng
Department of Mathematics University of Science and Technology of China Hefei 230026, China
E-mail: chengx@mail.ustc.edu.cn

Yanfang Gao (corresponding author)
School of Mathematics and Computer Science
Fujian Normal University
Fuzhou, China, 350117
E-mail: gaoyanfang236@gmail.com

Received 9 November 2013;
revised 28 November 2013

[^0]: 2010 Mathematics Subject Classification: Primary 35Q55; Secondary 35A15, 35B44.
 Key words and phrases: nonlinear Schrödinger equation, energy-critical, harmonic potential, blow-up.

