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BLOW-UP FOR THE FOCUSING ENERGY CRITICAL
NONLINEAR SCHRÖDINGER EQUATION WITH

CONFINING HARMONIC POTENTIAL

BY
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Abstract. The focusing nonlinear Schrödinger equation (NLS) with confining har-
monic potential

i∂tu+ 1
2
∆u− 1

2
|x|2u = −|u|4/(d−2)u, x ∈ Rd,

is considered. By modifying a variational technique, we shall give a sufficient condition
under which the corresponding solution blows up.

1. Introduction. The NLS with confining harmonic potential

(1.1) i∂tu+ 1
2∆u−

1
2 |x|

2u = µ|u|pu, x ∈ Rd,

has been used to model the Bose–Einstein condensation (see for example
[2, 3]). The most physically relevant case is p = 2, d = 3. Here u is a
complex-valued function defined on some spatial-time slab I × Rd, d ≥ 3,
4/d ≤ p ≤ 4/(d − 2), µ = ±1, with µ = 1 being the defocusing case and
µ = −1 the focusing case. There are many mathematical works on the
Cauchy problem for this equation (see, e.g., [1, 6, 10, 11, 12, 13]).

Set the initial datum

u(0, x) = u0(x).(1.2)

The natural choice of the initial space is

Σ := {ϕ ∈ Ḣ1; xϕ ∈ L2}

endowed with the norm

‖ϕ‖2Σ = ‖∇ϕ‖22 + ‖xϕ‖22.

It is easily seen that Σ ↪→ L2 by the standard uncertainty principle

‖f‖2L2 ≤
2

d
‖∇f‖L2‖xf‖L2 .
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For u0 ∈ Σ, the solution u obeys two conservation laws, i.e.,

Mass conservation: M(u(t)) :=
�

Rd

|u(t, x)|2 dx ≡M(u0),(1.3)

Energy conservation:(1.4)

E(u(t)) :=
�

Rd

(
1

2
|∇u|2 +

1

2
|x|2|u|2 − 2

p+ 2
|u|p+2

)
dx ≡ E(u0).

By saying that u : [0, T ) × Rd → C is a solution of (1.1)–(1.2), we mean
u ∈ Ct([0, T );Σ) where T is the maximal existence time, and u satisfies the
Duhamel formula

u(t) = ei
1
2
t(∆−|x|2)u0 + i

t�

0

ei
1
2
(t−τ)(∆−|x|2)|u|pu(τ) dτ, ∀t ∈ [0, T ).

If T =∞, we say u globally exists. We say that u blows up in finite time if
T < ∞. For 4/d ≤ p < 4/(d − 2), global existence of the solution for the
Cauchy problem of (1.1) with µ = 1 is a consequence of energy conservation,
while blow-up occurs for the focusing case (µ = −1). The latter case has been
proven in [12], where the sufficient condition for blow-up is M(u0)+E(u0) <

M(ϕ) +E(ϕ), d(M(u)+E(u))
du

∣∣
u0
< 0 and the virial quantity less than 0. Here

ϕ is the solution to the elliptic equation

(1.5) − 1
2∆ϕ+ 1

2 |x|
2ϕ+ ϕ = |ϕ|pϕ, 4/d ≤ p < 4/(d− 2).

Concerning p = 4/(d − 2), the energy-critical case, it has been shown in
[6, 13] that the problem (1.1)–(1.2) for radial solutions with µ = 1 is globally
well-posed.

We call (1.1) the energy-critical NLS when p = 4/(d − 2), since if we
abandon the harmonic potential for a moment, then (1.1) and the Ḣ1-norm
of the initial data are both preserved by the scaling

uλ(t, x) = λ(d−2)/2u(λ2t, λx).

Later, we shall use the transform

ũλ(t, x) = λ(d−2)/2u(t, λx).

Blow-up for the energy-critical case with µ = −1 is expected to exist
similarly to the focusing energy-critical NLS without harmonic potential
([7, 4]) and the focusing subcritical case. Recall that from [7, 4] finite time
blow-up occurs provided the initial datum u0 satisfies E(u0) < E(W ) and
‖∇u0‖L2 ≥ ‖∇W‖L2 . Here E is the corresponding energy functional, and
W is the solution to the elliptic equation

(1.6) −∆W = |W |4/(d−2)W.
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Note that there is no non-trivial solution to the equation

−1
2∆Φ+ 1

2 |x|
2Φ = |Φ|4/(d−2)Φ.

So the energy constraint in our case cannot be given by the correspond-
ing energy of the ground state. In this paper, by employing the variational
idea of [5] (see also [9]), we shall prove that the energy constraint can be
represented by ‖∇W‖L2 and derive a sufficient condition for the solution of
(1.1)–(1.2) to blow up in finite time. The key ingredient is to reduce the min-
imization problem for the non-coercive energy functional to minimization of
a positive functional. Inspiration comes from an interesting observation. For
ease of exposition, we define some functionals:

(1.7)

H(φ) =
�

Rd

(
1

2
|∇φ|2 +

1

2
|x|2|φ|2 − 2

2∗
|φ|2∗

)
dx,

K(φ) =
�

Rd

(|∇φ|2 + |x|2|φ|2 − 2|φ|2∗) dx,

Q(φ) =
�

Rd

(2|∇φ|2 − 2|x|2|φ|2 − 4|φ|2∗) dx,

K0(φ) =
�

Rd

(|∇φ|2 − 2|φ|2∗) dx.

Define

(1.8) mc := inf{H(φ); 0 6= φ ∈ Σ, K(φ) = 0}.

Observe that Q(u) is the second derivative of the virial quantity ‖xu‖22.
Moreover,

Q(u) = 2K(u)− 4‖xu‖22,
which implies that if K(u) < 0, so does Q(u). This key observation allows
us to consider blow-up in the set

K = {φ ∈ Σ; H(φ) < mc, K(φ) < 0}.
Otherwise, one should add the constraint

{φ ∈ Σ; H(φ) < mc, K(φ) < 0, Q(φ) < 0}
as in [12] for subcritical powers. We shall prove that mc > 0 and exactly

mc = 21−d/2

d ‖∇W‖22.
We now present our main result.

Theorem 1. Let u0 ∈ Σ, p = 4/(d − 2) and let u be the corresponding
solution to (1.1)–(1.2). Assume u0 ∈ K. Then u blows up in finite time.

In Section 2, we shall find the value of mc, derive some properties of u
in K, and then prove Theorem 1.
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Notation. Throughout, we always denote 2∗ = 2d
d−2 ; Ḣ1 is the Sobolev

space with norm defined by ‖ · ‖Ḣ1 = ‖F−1|ξ|F · ‖L2 , where F is the Fourier
transform and F−1 is its inverse.

2. The value of mc and proof of Theorem 1. In this section, we in-
vestigate the minimization problem (1.8), show properties of solutions in K,
and finally prove Theorem 1.

To find the value of mc in (1.8), we define

J (φ) := H(φ)− 1

2
K(φ) =

2

d

�

Rd

|φ|2∗ dx.

Lemma 1. mc = inf{J (φ); 0 6= φ ∈ Σ, K(φ) ≤ 0}.
Proof. Denote the above infimum by m′. We first prove mc ≤ m′. Denote

A = {φ; 0 6= φ ∈ Σ, K(φ) = 0}, B = {φ; 0 6= φ ∈ Σ, K(φ) ≤ 0}.
For each φ ∈ B, K(φ) ≤ 0. Thus, H(φ) ≤ J (φ). Set

φλ(x) = λ(d−2)/2φ(λx).

Since limλ→0K(φλ) = ∞, there exists a λ0 ∈ (0, 1] such that K(φλ0) = 0,
that is, φλ0 ∈ A. Therefore, we get

mc ≤ J (φλ0) = H(φλ0) ≤ H(φ) ≤ J (φ).

Thus, mc ≤ m′.
Conversely, given φ ∈ A, we have φ ∈ B and H(φ) = J (φ). Thus,

m′ ≤ mc.

The next lemma says that the infimum of J (φ) on the set {K(φ) ≤ 0}
is the same as that on the set {K0(φ) < 0}.

Lemma 2. mc = inf{J (φ); 0 6= φ ∈ Σ, K0(φ) < 0}.
Proof. Denote the above infimum by m̄. By the definition, K0(φ) < K(φ)

for all φ 6= 0. Hence, m̄ ≤ mc.
On the other hand, for all φ with K0(φ) < 0, we have

lim
λ→∞

K(φλ) = K0(φ) < 0.

Thus, there exists a λ̃ ∈ (1,∞) such that K(φλ̃) ≤ 0. So, mc ≤ m̄.

From Lemmas 1 and 2, one can derive the value of mc.

Proposition 1. Let mc be defined as in (1.8). Then

mc =
21−d/2

d
‖∇W‖22,

where W satisfies the equation −∆W = W
d+2
d−2 .
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Proof. Let m̄ be as in the proof of Lemma 2. It is obvious that

m̄ ≥ inf
0 6=φ∈Σ

2

d

( �

Rd

|φ|2∗ dx
)[ 	

Rd |∇φ|2

2
	
Rd |φ|2∗

] 2∗
2∗−2

=: m̃.

Next, we shall show by homogeneity and scaling φ 7→ µφ that m̄ ≤ m̃.
Indeed, for all 0 < ε (< 1), there exists 0 6= φ ∈ Σ such that

m̃+ ε >
2

d

( �

Rd

|φ|2∗ dx
)[ 	

Rd |∇φ|2

2
	
Rd |φ|2∗

] 2∗
2∗−2

(2.1)

=
2

d

( �

Rd

|µφ|2∗ dx
)[	

Rd |∇(µφ)|2

2
	
Rd |µφ|2∗

] 2∗
2∗−2

, ∀µ > 0.

Taking

µ =
1

(1− ε/m̄)1/2∗

[ 	
Rd |∇φ|2

2
	
Rd |φ|2∗

]1/(2∗−2)
,

we then have [	
Rd |∇(µφ)|2

2
	
Rd |µφ|2∗

] 2∗
2∗−2

= 1− ε

m̄
, K(µφ) < 0.

Thus, by (2.1) and Lemma 2, we obtain

m̃+ ε >
2

d
(1− ε/m̄)

�

Rd

|µφ|2∗ ≥ m̄− ε.

This implies that m̃ ≥ m̄. Hence

m̄ = inf
06=φ∈Σ

2

d

( �

Rd

|φ|2∗ dx
)[ 	

Rd |∇φ|2

2
	
Rd |φ|2∗

] 2∗
2∗−2

= inf
06=φ∈Σ

21−d/2

d

[
‖∇φ‖2
‖φ‖2∗

]d
=

21−d/2

d
C−dd ,

where Cd is the sharp constant in the Sobolev inequality

‖ψ‖L2∗ ≤ Cd‖∇ψ‖L2 ,

which is attained at W that is the solution of the equation

−∆ϕ = ϕ
d+2
d−2 .

By a direct calculation, we obtain

mc =
21−d/2

d
‖∇W‖22.



148 X. CHENG AND Y. F. GAO

Proof of Theorem 1. To prove the theorem, we first establish some
properties of the solution for u0 ∈ K. The argument for the theorem uses
the standard convexity method (see [8]).

Lemma 3. Let u0 ∈ Σ and let u be the corresponding solution to (1.1)–
(1.2) with maximal life-span I. If u0 ∈ K, then u(t) ∈ K for all t ∈ I.

Proof. Suppose for contradiction that there exists t1 ∈ I such that
K(u(t1)) ≥ 0. Then by the continuity of the flow, there exists 0 < t2 ≤ t1
such that K(u(t2)) = 0. Hence by the definition of mc, E(u(t2)) ≥ mc. But
the energy of the solution is conserved, which is a contradiction.

Lemma 4 (Coercivity). Assume u0 ∈ K. Then K(u(t)) ≤ 2(E(u)−mc)
for all t ∈ I.

Proof. By Lemma 3, u(t) ∈ K for all t∈I. Set uλ(t, x) = λ(d−2)/2u(t, λx).
Note that

(2.2) lim
λ→0
K(uλ) =∞.

Since K(u) < 0, it follows from (2.2) that there exists λ̃ ∈ (0, 1) such that

K(uλ̃) = 0. This implies E(uλ̃) ≥ mc. Thus,

K(u) = K(u)−K(uλ̃) = 2(E(u)− E(uλ̃)) ≤ 2(E(u)−mc).

Proof of Theorem 1. Suppose for contradiction that u is global. Define
the virial quantity

V (u)(t) =
�

Rd

|x|2|u(t, x)|2 dx.

By a direct computation, we have

d

dt
V (t) = 2 Im

�

Rd

ūx · ∇u dx,

d2

dt2
V (t) =

�

Rd

(2|∇u|2 − 2|x|2|u(t, x)|2 − 4|u(t, x)|2∗) dx = 2K(u)− 4V.

By an ODE technique and Lemma 4, for 0 ≤ t ≤ π/2 we obtain

V (t) = V (0) cos(2t) + 1
2 V̇ (0) sin(2t) +

t�

0

K(u(s)) sin[2(t− s)] ds

≤ V (0) cos(2t) + 1
2 V̇ (0) sin(2t) + (mc − E)(cos(2t)− 1)

≤ V (0) cos(2t) + 1
2 V̇ (0) sin(2t).

It is easily seen that V (t) becomes negative after t = π/4 in both cases
V̇ (0) ≤ 0 and V̇ (0) ≥ 0. But this is impossible. Thus, u must blow up in
finite time.
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