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THE ALMOST DAUGAVET PROPERTY AND
TRANSLATION-INVARIANT SUBSPACES

BY

SIMON LÜCKING (Berlin)

Abstract. Let G be a metrizable, compact abelian group and let Λ be a subset of
its dual group Ĝ. We show that CΛ(G) has the almost Daugavet property if and only if
Λ is an infinite set, and that L1

Λ(G) has the almost Daugavet property if and only if Λ is
not a Λ(1) set.

1. Introduction. I. K. Daugavet [3] proved in 1963 that all compact
operators T on C[0, 1] fulfill the norm identity

‖Id + T‖ = 1 + ‖T‖,

which has become known as the Daugavet equation. C. Foiaş and I. Singer [5]
extended this result to all weakly compact operators on C(K) where
K is a compact space without isolated points. Shortly afterwards
G. Ya. Lozanovskĭı [13] showed that the Daugavet equation holds for all
compact operators on L1[0, 1], and J. R. Holub [9] extended this result to
all weakly compact operators on L1(µ) where µ is a σ-finite non-atomic
measure. V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner [12]
proved that the validity of the Daugavet equation for weakly compact op-
erators already follows from the corresponding statement for operators of
rank one. This result led to the following definition: A Banach space X is
said to have the Daugavet property if every operator T : X → X of rank
one satisfies the Daugavet equation. During the studies of ultraproducts [2]
and quotients [10] of Banach spaces with the Daugavet property a weaker
notion was introduced. Let X be a Banach space and let Y be a subspace
of X∗. We say that X has the Daugavet property with respect to Y if the
Daugavet equation holds true for every rank-one operator T : X → X of the
form T = y∗ ⊗ x where x ∈ X and y∗ ∈ Y . A Banach space X is called an
almost Daugavet space, or a space with the almost Daugavet property, if it
has the Daugavet property with respect to some norming subspace Y ⊂ X∗.
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Recall that a subspace Y ⊂ X∗ is said to be norming if, for every x ∈ X,

sup
y∗∈SY

|y∗(x)| = ‖x‖.

The space `1 is an example of an almost Daugavet space that does not have
the Daugavet property.

Separable almost Daugavet spaces can be characterized using a kind of
inner measure of non-compactness of the unit sphere. We call a set F an
inner ε-net for SX if F ⊂ SX and for every x ∈ SX there exists y ∈ F with
‖x− y‖ ≤ ε. Then the thickness T (X) of a Banach space X is defined by

T (X) = inf{ε > 0 : there exists a finite inner ε-net for SX}.
R. Whitley [18] introduced this parameter and showed that 1 ≤ T (X) ≤ 2 if
X is infinite-dimensional, in particular that T (`p) = 21/p for 1 ≤ p <∞ and
that T (C(K)) = 2 if K has no isolated points. It was shown by V. Kadets,
V. Shepelska, and D. Werner that a separable Banach space X is an almost
Daugavet space if and only if T (X) = 2 [11, Theorem 1.1].

Almost Daugavet spaces contain `1 [11, Corollary 3.3] and are considered
“big”. It is therefore an interesting question which subspaces of an almost
Daugavet space inherit the almost Daugavet property. The most general
result in this direction is that a closed subspace Z of a separable almost
Daugavet space X has the almost Daugavet property as well if the quotient
space X/Z contains no copy of `1 [14, Theorem 2.5].

Let us consider an infinite, compact abelian group G with its Haar mea-
sure m. Since G has no isolated points and since m has no atoms, the spaces
C(G) and L1(G) have the Daugavet property. Using the group structure
of G, we can translate functions that are defined on G and look at closed,
translation-invariant subspaces of C(G) or L1(G). These subspaces can be

described via subsets Λ of the dual group Ĝ and are of the form

CΛ(G) = {f ∈ C(G) : spec f ⊂ Λ}, L1
Λ(G) = {f ∈ L1(G) : spec f ⊂ Λ},

where
spec f = {γ ∈ Ĝ : f̂(γ) 6= 0}.

We are going to characterize the sets Λ ⊂ Ĝ such that CΛ(G) and L1
Λ(G) are

of thickness two. If G is metrizable, this leads to a characterization of the
translation-invariant subspaces of C(G) and L1(G) which have the almost
Daugavet property.

2. Translation-invariant subspaces of C(G). Let us start with
translation-invariant subspaces of C(G). We will show that T (CΛ(G)) = 2

if and only if Λ is an infinite subset of Ĝ. We will split the proof into various
cases that depend on the structure of G. For this reason we recall some def-
initions and results concerning abelian groups and compact abelian groups.
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Let G be an abelian group with identity element eG. A subset E of G is
said to be independent if xk11 · · ·xknn = eG implies xk11 = · · · = xknn = eG for
every choice of distinct points x1, . . . , xn ∈ E and integers k1, . . . , kn. The
order o(x) of an element x ∈ G is the smallest positive integer m such that
xm = eG. If no such m exists, x is said to have infinite order.

Let T be the circle group, i.e., the multiplicative group of all complex
numbers with absolute value one. If G is a compact abelian group, we denote
by 1G the identity element of Ĝ, which coincides with the function identically
equal to one. Linear combinations of elements of Ĝ are called trigonometric
polynomials, and for every Λ ⊂ Ĝ, the space TΛ(G) = linΛ of trigonometric
polynomials with spectrum contained in Λ is dense in CΛ(G).

Let H be a closed subgroup of G. The annihilator of H is defined by

H⊥ = {γ ∈ Ĝ : γ(x) = 1 for all x ∈ H}

and is therefore a closed subgroup of Ĝ. We remark that Ĥ = Ĝ/H⊥ and

Ĝ/H = H⊥ [17, Theorem 2.1.2].

If (Gj)j∈J is a family of abelian groups, we define their direct product
(or their complete direct sum) by∏

j∈J
Gj =

{
f : J →

⋃
j∈J

Gj : f(j) ∈ Gj
}

and define the group operation coordinatewise. Their direct sum is the sub-
group⊕

j∈J
Gj =

{
f ∈

∏
j∈J

Gj : f(j) = eGj for all but finitely many j ∈ J
}
.

If all Gj coincide with G, we write GJ or G(J) for the direct product or
the direct sum. We denote by pGj the projection from

∏
j∈J Gj onto Gj .

If we consider products of the form ZN or Zn, we denote by p1, p2, . . . the
corresponding projections onto Z. If all Gj are compact, then

∏
j∈J Gj is a

compact abelian group as well and its dual group is given by
⊕

j∈J Ĝj [17,
Theorem 2.2.3].

Proposition 2.1. Let A be a compact abelian group, set G = T ⊕ A,
and let Λ be a subset of Ĝ = Z⊕ Â. If pZ[Λ] is infinite, then T (CΛ(G)) = 2.

Proof. Fix f1, . . . , fn ∈ SCΛ(G) and ε > 0. We have to find g ∈ SCΛ(G)

with ‖fk + g‖∞ ≥ 2− ε for k = 1, . . . , n.

Every fk is uniformly continuous and therefore there exists δ > 0 such
that, for k = 1, . . . , n and all a ∈ A,

|ϕ− ϑ| ≤ δ ⇒ |fk(eiϕ, a)− fk(eiϑ, a)| ≤ ε.
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Since pZ[Λ] contains infinitely many elements, we can pick s ∈ pZ[Λ] with
|s|2δ ≥ 2π. By our choice of s, for all ϑ ∈ [0, 2π] we get

(2.1) {eisϕ : |ϕ− ϑ| ≤ δ} = {eiϕ : |ϕ− ϑ| ≤ |s|δ} = T.

Choose g ∈ Λ with pZ(g) = s and fix k ∈ {1, . . . , n}. Since fk ∈ SCΛ(G),

there exists (eiϑ
(k)
, a(k)) ∈ G with

|fk(eiϑ
(k)
, a(k))| = 1.

By (2.1), we can pick ϕ(k) ∈ R with

|ϕ(k) − ϑ(k)| ≤ δ and eisϕ
(k)

=
fk(e

iϑ(k) , a(k))

g(1, a(k))
.

Note that the right-hand side of the last equation has absolute value one
because g is a character of G. Consequently,

g(eiϕ
(k)
, a(k)) = g(eiϕ

(k)
, eA)g(1, a(k)) = eisϕ

(k)
g(1, a(k)) = fk(e

iϑ(k) , a(k)).

Finally,

‖fk + g‖∞ ≥ |fk(eiϕ
(k)
, a(k)) + g(eiϕ

(k)
, a(k))|

≥ 2|fk(eiϑ
(k)
, a(k))| − |fk(eiϕ

(k)
, a(k))− fk(eiϑ

(k)
, a(k))| ≥ 2− ε.

Proposition 2.2. Let A be a compact abelian group, set G = TN ⊕ A,
and let Λ be a subset of Ĝ = Z(N)⊕ Â. If we find arbitrarily large l ∈ N with
pl[Λ] 6= {0}, then T (CΛ(G)) = 2.

Proof. Fix f1, . . . , fn ∈ SCΛ(G). Since TΛ(G) is dense in CΛ(G), we may
assume without loss of generality that f1, . . . , fn are trigonometric polyno-
mials. We are going to find g ∈ SCΛ(G) with ‖fk + g‖∞ = 2 for k = 1, . . . , n.

Setting ∆ =
⋃n
k=1 spec fk, we get a finite subset of Λ because every fk is a

trigonometric polynomial and therefore has a finite spectrum. Consequently,
there exists l0 ∈ N with pl[∆] = {0} for all l > l0 and the evaluation of
f1, . . . , fn at a point (t1, t2, . . . , a) ∈ G just depends on the coordinates
t1, . . . , tl0 and a.

By assumption, we can find l > l0 and g ∈ Λ with s = pl(g) 6= 0. Fix

k ∈ {1, . . . , n}. Since fk ∈ SC(G), there exists x(k) = (t
(k)
1 , t

(k)
2 , . . . , a(k)) ∈ G

with |fk(x(k))| = 1. Pick u(k) ∈ T with

(u(k))s =
fk(x

(k))

g(t
(k)
1 , . . . , t

(k)
l−1, 1, t

(k)
l+1, t

(k)
l+2, . . . , a

(k))
.

Note that the right-hand side of the last equation has absolute value one
because g is a character of G. With the same reasoning as at the end of the
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proof of Proposition 2.1 we get

g(t
(k)
1 , . . . , t

(k)
l−1, u

(k), t
(k)
l+1, t

(k)
l+2, . . . , a

(k)) = fk(x
(k)).

Finally,

‖fk + g‖∞ ≥ |(fk + g)(t
(k)
1 , . . . , t

(k)
l−1, u

(k), t
(k)
l+1, t

(k)
l+2, . . . , a

(k))|

= 2|fk(x(k))| = 2.

Lemma 2.3. Let ε > 0 and z1, . . . , zn ∈ {z ∈ C : |z| ≤ 1} with∣∣∣ n∑
k=1

zk

∣∣∣ ≥ n(1− ε).

Then
|zk| ≥ 1− nε and |zk − zl| ≤ 2n

√
ε

for k, l = 1, . . . , n.

Proof. The first assertion is an easy consequence of the triangle inequality.
For fixed k, l ∈ {1, . . . , n} we have

Re zkzl = Re
n∑

s,t=1

zszt − Re
n∑

s,t=1
(s,t)6=(k,l)

zszt =
∣∣∣ n∑
k=1

zk

∣∣∣2 − Re
n∑

s,t=1
(s,t)6=(k,l)

zszt

≥ n2(1− ε)2 − (n2 − 1) = 1− 2n2ε+ n2ε2 ≥ 1− 2n2ε.

Using this inequality, we get

|zk − zl|2 = |zk|2 + |zl|2 − 2 Re(zkzl) ≤ 2− 2(1− 2n2ε) = 4n2ε.

The following lemma shows that if we are given n subsets of the unit circle
that do not meet a circular sector with central angle larger than 2π/n, then
we can rotate these n subsets such that their intersection becomes empty.

Lemma 2.4. Let W1, . . . ,Wn ⊂ {z ∈ C : |z| ≤ 1}. Suppose that for every
k ∈ {1, . . . , n} there exist ϕk ∈ [0, 2π] and ϑk ∈ [2π/n, 2π] with

Wk ∩ {reiα : r ∈ [0, 1], α ∈ [ϕk, ϕk + ϑk]} = ∅.
Then there exist t1, . . . , tn ∈ T with

n⋂
k=1

tkWk = ∅.

Proof. Setting for k = 1, . . . , n (with ϑ0 = 0)

tk = ei
∑k−1
l=0 ϑle−iϕk ,

we get

tkWk ∩
{
reiα : r ∈ [0, 1], α ∈

[ k−1∑
l=0

ϑl,
k∑
l=0

ϑl

]}
= ∅.
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Fix α ∈ [0, 2π] and r ∈ [0, 1]. Since
∑n

k=1 ϑk ≥ 2π, there is k ∈ {1, . . . , n}
with

α ∈
[ k−1∑
l=0

ϑl,
k∑
l=0

ϑl

]
.

Consequently, reiα does not belong to tkWk and
⋂n
k=1 tkWk = ∅.

Lemma 2.5. Let ε, δ > 0, let W ⊂ {z ∈ C : 1 − δ ≤ |z| ≤ 1}, and
set Wε = {z ∈ C : there exists w ∈W with |w − z| ≤ ε}. Suppose that there
exists ϑ ∈ [0, 2π] such that for every ϕ ∈ [0, 2π],

Wε ∩ {reiα : r ∈ [0, 1], α ∈ [ϕ,ϕ+ ϑ]} 6= ∅.

Then W is a (2ε+ δ + ϑ)-net for T.

Proof. Fix eiϕ ∈ T. We have to find w ∈W with |w − eiϕ| ≤ 2ε+ δ + ϑ.

By assumption, there exist seiβ ∈ Wε ∩ {reiα : r ∈ [0, 1], α ∈ [ϕ,ϕ+ ϑ]}
and w ∈W with |w− seiβ| ≤ ε. It is easy to see that s ≥ 1− δ − ε. Finally,

|w − eiϕ| ≤ |w − seiβ|+ |seiβ − seiϕ|+ |seiϕ − eiϕ|
≤ ε+ ϑ+ (δ + ε) = 2ε+ δ + ϑ.

Proposition 2.6. Let A be a compact abelian group, let (Gl)l∈N be a
sequence of finite abelian groups, set G =

∏∞
l=1Gl ⊕ A, and let Λ be an

infinite subset of Ĝ=
⊕∞

l=1 Ĝl⊕Â.If p
Â

[Λ] is a finite set, then T (CΛ(G))=2.

Proof. The beginning is almost like in the proof of Proposition 2.2.

Fix f1, . . . , fn ∈ SCΛ(G) and ε > 0. Since TΛ(G) is dense in CΛ(G),
we may assume without loss of generality that f1, . . . , fn are trigonometric
polynomials. We have to find g ∈ SCΛ(G) with ‖fk + g‖∞ ≥ 2 − ε for
k = 1, . . . , n.

Setting ∆ =
⋃n
k=1 spec fk, we get a finite subset of Λ because every fk is a

trigonometric polynomial and therefore has a finite spectrum. Consequently,
there exists l0 ∈ N with p

Ĝl
[∆] = {1Gl} for all l > l0 and the evaluation

of f1, . . . , fn at a point (x1, x2, . . . , a) ∈ G just depends on the coordinates
x1, . . . , xl0 and a.

Since Ĝ1, . . . , Ĝl0 and p
Â

[Λ] are finite sets and Λ is an infinite set, there

exist an infinite subset Λ0 of Λ and elements γ1 ∈ Ĝ1, . . . , γl0 ∈ Ĝl0 , γA ∈ Â
with p

Ĝl
[Λ0] = {γl} for l = 1, . . . , l0 and p

Â
[Λ0] = {γA}. In other words,

all elements of Λ0 coincide in the first l0 coordinates of
⊕∞

l=1 Ĝl and in the

coordinate that corresponds to Â. We can also assume that Λ0 is a Sidon
set because every infinite subset of Ĝ contains an infinite Sidon set [17,
Example 5.7.6(a)]. (Recall that Λ0 is said to be a Sidon set if there exists

a constant C > 0 such that
∑

γ∈Λ0
|f̂(γ)| ≤ C‖f‖∞ for all f ∈ TΛ0(G).)
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So if {λ1, λ2, . . . } is an enumeration of Λ0, then (λs)s∈N is equivalent to the
canonical basis of `1.

Set γ = (γ1, . . . , γl0 ,1Gl0+1
,1Gl0+2

, . . . , γA) ∈ Ĝ. The sequence (γλs)s∈N
is still equivalent to the canonical basis of `1 and for every character γλs
we have p

Â
(γλs) = 1A and p

Ĝl
(γλs) = 1Gl for l = 1, . . . , l0. Thus the

evaluation of γλ1, γλ2, . . . at a point (x1, x2, . . . , a) ∈ G does not depend on
the coordinates x1, . . . , xl0 and a.

Choose n0 ∈ N with 2π/n0 ≤ ε/3 and δ ∈ (0, 1) with 4n0
√
δ ≤ ε/3.

By James’s `1 distortion theorem [1, Theorem 10.3.1], there is a normalized
block basis sequence (gs)s∈N of (γλs)s∈N with

(1− δ)
∞∑
s=1

|zs| ≤
∥∥∥ ∞∑
s=1

zsgs

∥∥∥
∞
≤
∞∑
s=1

|zs|

for any sequence of complex numbers (zs)s∈N with finite support. It follows
that for every n0-tuple (z1, . . . , zn0) ∈ Tn0 there is x ∈ G with∣∣∣ n0∑

s=1

zsgs(x)
∣∣∣ ≥ n0(1− δ).

Using Lemma 2.3, for s, t = 1, . . . , n0 we have

|gs(x)| ≥ 1− n0δ and |zsgs(x)− ztgt(x)| ≤ 2n0
√
δ.

If for s = 1, . . . , n0, we set

Ws = gs[G] ∩ {z ∈ C : |z| ≥ 1− n0δ},

W̃s = {z ∈ C : there exists w ∈Ws with |w − z| ≤ 2n0
√
δ},

we conclude that for every tuple (z1, . . . , zn0) ∈ Tn0 ,

n0⋂
s=1

zsW̃s 6= ∅.

By Lemma 2.4, there is s0 ∈ {1, . . . , n0} such that for any ϕ ∈ [0, 2π],

W̃s0 ∩
{
reiα : r ∈ [0, 1], α ∈

[
ϕ,ϕ+

2π

n0

]}
6= ∅.

It follows from Lemma 2.5 and our choice of n0 and δ that Ws0 is an ε-net
for T.

The function g = γgs0 is by construction a normalized trigonometric
polynomial with spectrum contained in Λ. Fix k ∈ {1, . . . , n}. There exists

x(k) = (x
(k)
1 , x

(k)
2 , . . . , a(k)) ∈ G with |fk(x(k))| = 1. By our choice of gs0 , we

can find y(k) = (y
(k)
1 , y

(k)
2 , . . . , b(k)) ∈ G with

|γ(x(k))fk(x
(k))− gs0(y(k))| ≤ ε.
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Note that γ(x(k))fk(x
(k)) ∈ T since γ is a character. We therefore get

‖fk + g‖∞ = ‖γfk + gs0‖∞
≥ |(γfk + gs0)(x

(k)
1 , . . . , x

(k)
l0
, y

(k)
l0+1, y

(k)
l0+2, . . . , a

(k))|

= |γ(x(k))fk(x
(k)) + gs0(y(k))|

≥ 2|γ(x(k))fk(x
(k))| − |γ(x(k))fk(x

(k))− gs0(y(k))| ≥ 2− ε.

Lemma 2.7. Let G be a compact abelian group and let γ ∈ Ĝ.

(a) If o(γ) = m, then γ[G] = {e2πik/m : k = 0, . . . ,m − 1}, i.e., the
image of G under γ is the set of mth roots of unity.

(b) If o(γ) =∞, then γ[G] = T.

Proof. If o(γ) = m, we have γ(x)m = 1 for every x ∈ G. Thus every
element of γ[G] is an mth root of unity. Setting n = |γ[G]|, it follows from
Lagrange’s theorem that γ(x)n = 1 for every x ∈ G. Therefore n ≥ m and
γ[G] has to coincide with {e2πik/m : k = 0, . . . ,m− 1}.

The set γ[G] is a compact and therefore closed subgroup of T. Since all
proper closed subgroups of T are finite [15, Corollary 2.3], we have γ[G] = T
if o(γ) =∞.

Theorem 2.8. Let G be a compact abelian group and let Λ be an infinite
subset of Ĝ. Then T (CΛ(G)) = 2.

Proof. We start like in the proofs of Propositions 2.2 and 2.6.

Fix f1, . . . , fn ∈ SCΛ(G) and ε > 0. Since TΛ(G) is dense in CΛ(G),
we may assume without loss of generality that f1, . . . , fn are trigonometric
polynomials. We have to find g ∈ SCΛ(G) with ‖fk + g‖∞ ≥ 2 − ε for
k = 1, . . . , n.

Setting ∆ =
⋃n
k=1 spec fk, we get a finite subset of Λ because every fk

is a trigonometric polynomial and therefore has a finite spectrum.

We can assume, by passing to a countably infinite subset if necessary,
that Λ is countable. Hence Γ = 〈Λ〉, the group generated by Λ, is a countable

subgroup of Ĝ.

Let M be a maximal independent subset of Γ and let Γ1 = 〈M〉 be the
subgroup of Γ that is generated by M . Defining inductively

Γl = {γ ∈ Γ : γl ∈ Γl−1}

for l = 2, 3, . . . , we get an increasing sequence (Γl)l∈N of subgroups of Γ .
Since M is a maximal independent subset of Γ , we see that

⋃∞
l=1 Γl = Γ .

Furthermore, every Γl is a direct sum of cyclic groups [6, Corollary 18.4].
We distinguish two cases depending on whether or not there exists Γl that
contains ∆ and infinitely many elements of Λ.
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First case: Suppose that there exists l0 ∈ N such that ∆ ⊂ Γl0 and
Λ0 = Λ ∩ Γl0 is an infinite set.

By our choice of Γl0 , the functions f1, . . . , fn and all characters γ ∈ Λ0

are constant on the cosets of G/(Γl0)⊥ and can therefore be considered
as functions and characters on G0 = G/(Γl0)⊥. (To simplify notation, we
continue to write f1, . . . , fn.) Note that Γl0 is the dual group of G0. Since

Γl0 is a direct sum of cyclic groups, there exists a sequence (Ĝs)s∈N of finite

abelian groups such that Γl0 = Z(N) ⊕
⊕∞

s=1 Ĝs or Γl0 = Zn0 ⊕
⊕∞

s=1 Ĝs for
adequate n0 ∈ N. Hence G0 = TN ⊕

∏∞
s=1Gs or G0 = Tn0 ⊕

∏∞
s=1Gs. Let

p1, p2, . . . be the projections from Γl0 onto Z.
If there exists s0 ∈ N such that ps0 [Λ0] contains infinitely many elements

or there exist arbitrarily large s ∈ N with ps[Λ0] 6= {0}, then T (CΛ0(G0)) = 2
by Proposition 2.1 or 2.2. Otherwise pZ(N) [Λ0] (or pZn0 [Λ0]) is a finite set
and T (CΛ0(G0)) = 2 by Proposition 2.6. So we can find g̃ ∈ SCΛ0

(G0) with

‖fk+ g̃‖∞ ≥ 2−ε for k = 1, . . . , n. Setting g = g̃◦π where π is the canonical
map from G onto G0 = G/(Γ0)

⊥, we get ‖fk + g‖∞ ≥ 2− ε for k = 1, . . . , n.

Second case: Suppose that there exist arbitrarily large l ∈ N with
Λ ∩ (Γl \ Γl−1) 6= ∅.

Fix l0 ∈ N with ∆ ⊂ Γl0 and choose l1 ∈ N with l1 > l20, 2π/l1 ≤ ε
and (Γl1 \ Γl1−1) ∩ Λ 6= ∅. By our choice of Γl0 , the functions f1, . . . , fn are
constant on the cosets of G/(Γl0)⊥ and therefore

(2.2) fk(xy) = fk(x) (x ∈ G, y ∈ (Γl0)⊥)

for k = 1, . . . , n. Pick g ∈ (Γl \ Γl−1) ∩ Λ and denote by g̃ the restriction of
g to (Γl0)⊥. What can we say about the order of g̃? Since (Γl0)⊥⊥ = Γl0 , we
see that, for every m ∈ N, g̃m = 1(Γl0 )

⊥ if and only if gm ∈ Γl0 .

Suppose that g̃m = 1(Γl0 )
⊥ for some 2 ≤ m ≤ l0. Then g̃ml0 = 1(Γl0 )

⊥ as

well and gml0 ∈ Γl0 . Consequently, g ∈ Γml0 because gml0 ∈ Γl0 ⊂ Γml0−1.
But this contradicts our choice of g and l1 because l1 > ml0. Assuming that
g̃m = 1(Γl0 )

⊥ for some l0 < m < l1 leads to the same contradiction. The

order of g̃ is therefore at least l1. By our choice of l1 and by Lemma 2.7, we
find that g̃[(Γl0)⊥] is an ε-net for T.

Fix now k ∈ {1, . . . , n} and choose x(k) ∈ G with |fk(x(k))| = 1 and
y(k) ∈ (Γl0)⊥ with

(2.3) |fk(x(k))− g(x(k))g̃(y(k))| ≤ ε.
Note that g is a character and hence g(x(k)) ∈ T. Using (2.2) and (2.3),
we get

‖fk + g‖∞ ≥ |fk(x(k)y(k)) + g(x(k)y(k))| = |fk(x(k)) + g(x(k))g̃(y(k))|
≥ 2|fk(x(k))| − |fk(x(k))− g(x(k))g̃(y(k))| ≥ 2− ε.
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Corollary 2.9. Let G be a metrizable, compact abelian group and let
Λ be a subset of Ĝ. The space CΛ(G) has the almost Daugavet property if
and only if Λ contains infinitely many elements.

Proof. Every almost Daugavet space is infinite-dimensional and so the
condition is necessary.

If G is a metrizable, compact abelian group, then Ĝ is countable [17,
Theorem 2.2.6] and C(G) is separable. Since for separable Banach spaces
the almost Daugavet property can be characterized via thickness [11, The-
orem 1.1], it is sufficient to prove that T (CΛ(G)) = 2. But this is given by
Theorem 2.8.

3. Subspaces of L-embedded spaces. To deal with translation-in-
variant subspaces of L1(G) we will consider a more general class of Banach
spaces. A linear projection P on a Banach spaceX is called an L-projection if

‖x‖ = ‖Px‖+ ‖x− Px‖ (x ∈ X).

A closed subspace of X is called an L-summand if it is the range of an
L-projection, and X is called L-embedded if X is an L-summand in X∗∗.
Classical examples of L-embedded spaces are L1(µ)-spaces, preduals of von
Neumann algebras, and the Hardy space H1 [8, Example IV.1.1].

Using the principle of local reflexivity, it is easy to see that a non-
reflexive, L-embedded space has thickness two. We will strengthen this
and will show that every non-reflexive subspace of an L-embedded space
has thickness two. Let us recall the following result from the theory of L-
embedded spaces [8, claim in the proof of Theorem IV.2.7].

Proposition 3.1. Let X be an L-embedded space with X∗∗ = X ⊕1Xs,
let ε be a number with 0 < ε < 1/4, and let (yl)l∈N be a sequence in X with

(1− ε)
∞∑
l=1

|al| ≤
∥∥∥ ∞∑
l=1

alyl

∥∥∥ ≤ ∞∑
l=1

|al|

for any sequence of scalars (al)l∈N with finite support. Then there exists
xs ∈ Xs such that

1− 4
√
ε ≤ ‖xs‖ ≤ 1

and for all δ > 0, all x∗1, . . . , x
∗
n ∈ X∗, and all l0 ∈ N there is l ≥ l0 with

|xs(x∗k)− x∗k(yl)| ≤ 3
√
ε‖x∗k‖+ δ (k = 1, . . . , n).

In other words, there is xs ∈ Xs which is “close” to a weak∗ accumulation
point of (yl)l∈N.

Theorem 3.2. Let X be an L-embedded space with X∗∗ = X ⊕1Xs and
let Y be a closed subspace of X which is not reflexive. Then T (Y ) = 2.
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Proof. Fix x1, . . . , xn ∈ SY and ε > 0. We have to find y ∈ SY with
‖xk + y‖ ≥ 2− ε for k = 1, . . . , n.

Choose δ > 0 with 7
√
δ + 2δ ≤ ε. Every non-reflexive subspace of X

contains a copy of `1 [8, Corollary IV.2.3] and by James’s `1 distortion
theorem [1, Theorem 10.3.1] there is a sequence (yl)l∈N in Y with

(1− δ)
∞∑
l=1

|al| ≤
∥∥∥ ∞∑
l=1

alyl

∥∥∥ ≤ ∞∑
l=1

|al|

for any sequence of scalars (al)l∈N with finite support. Let xs ∈ Xs be
“close” to a weak∗ accumulation point of (yl)l∈N as in Proposition 3.1. Since
X∗∗ = X ⊕1 Xs, for k = 1, . . . , n we have

‖xk + xs‖ = ‖xk‖+ ‖xs‖ ≥ 2− 4
√
δ.

Thus there exist functionals x∗1, . . . , x
∗
n ∈ SX∗ with

|x∗k(xk) + xs(x
∗
k)| ≥ 2− 4

√
δ − δ

and l ∈ N with

|xs(x∗k)− x∗k(yl)| ≤ 3
√
δ + δ

for k = 1, . . . , n.
Fix k ∈ {1, . . . , n}. The last two inequalities lead to

‖xk + yl‖ ≥ |x∗k(xk) + x∗k(yl)| ≥ |x∗k(xk) + xs(x
∗
k)| − |xs(x∗k)− x∗k(yl)|

≥ (2− 4
√
δ − δ)− (3

√
δ + δ) ≥ 2− ε.

Corollary 3.3. Let X be an L-embedded space and let Y be a separable,
closed subspace of X. If Y is not reflexive, then Y has the almost Daugavet
property.

Proof. The space Y has thickness two by Theorem 3.2, and for sepa-
rable spaces this is equivalent to the almost Daugavet property [11, Theo-
rem 1.1].

Let us use this result in the setting of translation-invariant subspaces of
L1(G). Suppose that G is a compact abelian group, Λ is a subset of its dual

group Ĝ, and 0 < r < p < ∞. The set Λ is said to be of type (r, p) if there
is a constant C > 0 such that

‖f‖p ≤ C‖f‖r
for every f ∈ TΛ(G), or in other words, if ‖ · ‖r and ‖ · ‖p are equivalent on
TΛ(G). Furthermore we say that Λ is a Λ(p) set if Λ is of type (r, p) for some
r < p.

Corollary 3.4. Let G be a metrizable, compact abelian group and let
Λ be a subset of Ĝ. The space L1

Λ(G) has the almost Daugavet property if
and only if Λ is not a Λ(1) set.
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Proof. Every almost Daugavet space contains a copy of `1 [11, Corol-
lary 3.3] and is therefore not reflexive. So the condition is necessary because
L1
Λ(G) is reflexive if and only if Λ is a Λ(1) set [7, Corollary].

If G is a metrizable, compact abelian group, then Ĝ is countable [17,
Theorem 2.2.6] and L1(G) is separable. If Λ is not a Λ(1) set, then L1

Λ(G) is
not reflexive and T (L1

Λ(G)) = 2 by Theorem 3.2. But for separable spaces
this is equivalent to the almost Daugavet property [11, Theorem 1.1].

4. Remarks. The almost Daugavet property is strictly weaker than the
Daugavet property for translation-invariant subspaces of C(G) or L1(G). If
we set Λ = {3n : n ∈ N}, then Λ is a Sidon set. So CΛ(T) is isomorphic
to `1, has the Radon–Nikodým property and therefore not the Daugavet
property. But Λ is an infinite set and CΛ(T) has the almost Daugavet prop-
erty. Analogously, L1

N(T) is isomorphic to the Hardy space H1
0 , has therefore

the Radon–Nikodým property and fails the Daugavet property. But N is not
a Λ(1) set and L1

N(T) has the almost Daugavet property.

We say that a Banach space X has the fixed point property if, given
any non-empty, closed, bounded and convex subset C of X, every non-
expansive mapping T : C → C has a fixed point. Here T is non-expansive if
‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. By considering

C = {(xn)n∈N ∈ S`1 : xn ≥ 0}

and the right shift operator, it can be shown that `1 does not have the fixed
point property [4, Theorem 1.2]. This counterexample can be transferred
to all Banach spaces that contain an asymptotically isometric copy of `1.
A Banach space X is said to contain an asymptotically isometric copy of `1

if there is a null sequence (εn)n∈N in (0, 1) and a sequence (xn)n∈N in X
such that

∞∑
n=1

(1− εn)|an| ≤
∥∥∥ ∞∑
n=1

anxn

∥∥∥ ≤ ∞∑
n=1

|an|

for any sequence of scalars (an)n∈N with finite support. Every Banach space
X with T (X) = 2 contains an asymptotically isometric copy of `1 [11,
implicitly in the proof of Propositions 3.2 and 3.4]. So Theorem 3.2 gives
another proof of the fact that every non-reflexive subspace of L1[0, 1], or
more generally every non-reflexive subspace of an L-embedded space, fails
the fixed point property (cf. [4, Theorem 1.4] and [16, Corollary 4]).
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