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MODIFICATIONS OF THE ERATOSTHENES SIEVE

BY

JERZY BROWKIN (Warszawa) and HUI-QIN CAO (Nanjing)

Abstract. We discuss some cancellation algorithms such that the first non-cancelled
number is a prime number p or a number of some specific type. We investigate which
numbers in the interval (p, 2p) are non-cancelled.

1. Introduction. In the present paper we discuss some analogs of the
Eratosthenes sieve, which give many prime numbers.

The well known sieve of Eratosthenes (1) gives all prime numbers less
than a given integer. It can be stated in the following form:

The Algorithm. For a fixed integer n ≥ 2 cancel in the set {2, 3, 4, . . .}
all multiples of 2, of 3, . . . , and of n. In particular, the numbers 2, 3, . . . , n
are cancelled.

Theorem 1. After applying this algorithm:

(i) The least non-cancelled number is the least prime number p greater
than n.

(ii) In the interval (p, p2), where p is defined in (i), all prime numbers
are non-cancelled and all composite ones are cancelled. The least
non-cancelled composite number is p2.

Proof. (i) Let p be the least prime greater than n. Then every number
t, 2 ≤ t < p, has a prime factor q less than p, so q ≤ n, by the minimality
of p. Consequently, t is cancelled.

On the other hand, p is not cancelled, since p does not have any factor
in the interval [2, n].

(ii) Let m be the least non-cancelled composite number. Then m has at
least two prime factors, and each of them is ≥ p. Consequently, m ≥ p2.
Thus in (p, p2) all composite numbers are cancelled.

Every prime number in this interval is non-cancelled, since it does not
have a factor in [2, n].
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Similarly, p2 does not have any factor in this interval, so it is not can-
celled.

In the following we discuss other cancellation algorithms, which give
numbers of some kind, in particular, prime numbers.

2. The first generalization. Let g : N→ N be an injective mapping.
Then for n ∈ N we define b(n) as the least number in the set

Bn := {m ∈ N : g(1), . . . , g(n) are distinct modulo m}.

This can be stated equivalently as the following cancellation algorithm. For
n ≥ 2 define the set

An := {g(s)− g(r) : 1 ≤ r < s ≤ n},

and the set of divisors of numbers in An:

Dn := {d ∈ N : d | a for some a ∈ An}.

Finally, let D′n := N \Dn.

If we cancel in N all divisors of all numbers in An, i.e. all numbers in Dn,
then D′n will be the set of non-cancelled numbers.

Lemma 2. In the above notation we have Bn = D′n for n ≥ 2.

Proof. The following equivalences hold: d /∈ Bn if and only if g(r) ≡ g(s)
(mod d) for some r, s with 1 ≤ r < s ≤ n, if and only if d | g(s) − g(r) for
some r, s as above. This divisibility holds if and only if d ∈ Dn. Consequently,
d /∈ Bn if and only if d ∈ Dn. Hence Bn = D′n.

From Lemma 2 it follows that b(n) is the least number in D′n, so it is
the least non-cancelled number.

3. The case of g(n) = kn for some k ∈ N. We apply the above
algorithm to the linear function g(n) = kn+ l, where k ∈ N and l ∈ Z. From
the definition of An it follows that we can assume that l = 0.

Example 3. If k = 1, i.e. g(n) = n for n ∈ N, then for n ≥ 2 we have

An = {s− r : 1 ≤ r < s ≤ n} = {1, . . . , n− 1}.

Then Dn = An, hence m is not cancelled iff m ≥ n, so b(n) = n for every
n ≥ 2.

The following theorem concerns the case k ≥ 2.

Theorem 4. For a fixed k ≥ 2 let g(n) = kn, where n ∈ N. Assume
that n ≥ k. Then:
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(i) All integers in the interval [1, n− 1] are cancelled.
(ii) The set of non-cancelled numbers in the interval [n, 2n) equals

Sn := {t ∈ N : n ≤ t < 2n, (t, k) = 1}.

(iii) The least non-cancelled number b(n) is the least number in Sn, i.e.
the least integer ≥ n which is relatively prime to k.

(iv) {b(n) : n ∈ N, n ≥ k} is the set of all integers ≥ k relatively prime
to k.

Proof. We cancel all divisors of all numbers g(s)−g(r) = k(s−r), where
1 ≤ r < s ≤ n, so all divisors of the form d1d2, where d1 | k and d2 | s − r.
Thus d2 takes every value in [1, n − 1] and no others. Hence taking d1 = 1
we get all integers in the interval [1, n− 1]. This proves (i).

Observe that the set Sn is not empty, because from k ≤ n it follows that
the numbers n, n + 1, . . . , n + k− 1 belong to [n, 2n). They give all residues
modulo k, in particular those relatively prime to k.

Assume that t ∈ Sn is cancelled. Then t = d1d2, where d1, d2 are as
above. From (t, k) = 1 and d1 | k it follows that d1 = 1. Hence t = d2 ≥ n,
which is impossible. Therefore no number in Sn is cancelled.

It remains to prove that all numbers t ∈ [n, 2n) such that d := (t, k) > 1
are cancelled. We have t = dt′, where d | k and t′ = t/d < 2n/d. Since d ≥ 2,
we get t′ ≤ n− 1. Therefore t is cancelled. This proves (ii).

Now (iii) follows from (i), (ii) and the definition of b(n), and (iv) follows
from (iii).

4. The case of g(n) = n2. Above we have discussed all linear poly-
nomials; now we shall consider quadratic ones, starting with the simplest
quadratic polynomial g(n) = n2.

This case was investigated in [ABM], where parts (i) and (iii) of the
theorem below are proved.

Let us recall that now for a given n ≥ 2 we cancel all divisors of all
numbers g(s)− g(r) = s2 − r2, where 1 ≤ r < s ≤ n.

Theorem 5.

(i) For n > 2, all integers in the interval [1, 2n) are cancelled.
(ii) For n ≥ 2 all numbers in the set

Tn := {t ∈ N : 2n ≤ t < 4n, t = p or 2p, where p is a prime}

are non-cancelled. For n ≥ 15 all numbers in [2n, 4n] \ Tn are can-
celled.

(iii) For n > 4 the least non-cancelled number b(n) is the least number
in Tn.
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(iv) b(2) = 2, b(4) = 9, and the set of other values of the function b(n)
equals

{b(n) : n ∈ N, n 6= 2, 4} = {2p : p is an odd prime}
∪ {p : p = 2q + 1 is a prime and q is composite}.

Thus b(n) is never equal to a Sophie Germain prime, i.e. to a prime
p = 2q + 1 with q prime.

Proof. For the proof of (i) and (iii) see [ABM]. The proof of (ii) goes
along the same lines as the proof of Lemma 4 in [ABM]. We proceed as
follows.

Let n ≥ 2. Assume that a prime p belongs to Tn and is cancelled. Then
p | s2 − r2 for some 1 ≤ r < s ≤ n. Hence p | s± r < 2s ≤ 2n. Thus p < 2n,
which is impossible for p ∈ Tn.

Assume that 2p ∈ Tn, where p is a prime, is cancelled. Then 2p | s2−r2 for
some 1 ≤ r < s ≤ n. It follows that s, r are of the same parity. Consequently,
n ≥ 3 and p is odd. Hence 2p | s ± r < 2s ≤ 2n. This is impossible since
2p ∈ Tn.

Thus we have proved that all numbers in Tn are non-cancelled. It remains
to prove that for n ≥ 15 all other numbers t in the interval [2n, 4n) are
cancelled.

For n = 15, 16, 17 this can be verified directly. We assume in the following
that n ≥ 18.

Since t /∈ Tn, t is not equal to p or 2p, where p is a prime. Therefore
there are four possibilities for t, shown in Table 1 below. In each case we
give r, s such that 1 ≤ r < s ≤ n and t | s2 − r2. This will prove that such a
t is cancelled.

Table 1

No. t r s s2 − r2 Conditions

1. a2 a 2a 3a2

2. 2a2 a 3a 8a2

3. ab a−b
2

a+b
2

ab 2 | a− b, a > b > 1

4. 2ab a− b a + b 4ab ab odd, a > b > 1

From this table it is clear that in each case we have 1 ≤ r < s and
t | s2 − r2. It remains to prove that s ≤ n in each case. We proceed as
follows.

By assumption, 2n ≤ t < 4n.

1. We have s = 2a = 2
√
t < 2

√
4n ≤ n for n ≥ 16.

2. We have s = 3a = 3
√

t/2 < 3
√

2n ≤ n for n ≥ 18.
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3. If a, b are odd, then a > b ≥ 3. Hence

(a− 3)(b− 3) ≥ 0, which gives ab + 9 ≥ 3(a + b).

Therefore

s =
a + b

2
≤ ab + 9

6
=

t + 9

6
<

4n + 9

6
< n

for n ≥ 5.

If a, b are even, then a > b ≥ 2. Hence

(a− 2)(b− 2) ≥ 0, which gives ab + 4 ≥ 2(a + b).

Therefore

s =
a + b

2
≤ ab + 4

4
=

t

4
+ 1 < n + 1,

so s ≤ n.

4. Since a, b are odd, we get, as above, ab + 9 ≥ 3(a + b). Hence

s = a + b ≤ ab + 9

3
=

t

6
+ 3 <

4n

6
+ 3 ≤ n

for n ≥ 9.

Thus we have proved that s ≤ n for n ≥ 18, which gives (ii).

(iv) From (iii) it follows that b(n+ 1) ≥ b(n) for n ≥ 15. The same holds
for 2 ≤ n ≤ 14 (see [ABM]).

For a prime p, by the definition of Tn, it follows that the least number in
Tp is 2p. Then (iii) implies that b(p) = 2p for every odd prime p, including
p = 3, since b(3) = 6.

If p = 2q + 1 where q is composite, then the least number in Tq is
2q + 1 = p.

If p = 2q + 1 where q ≥ 5 is a prime, i.e. if p is a Sophie Germain prime,
then b(q) = 2q and b(q + 1) ≥ 2(q + 1) > p. Since b(n) is a non-decreasing
function, it follows that b(n) 6= p for every n ≥ 2 and each Sophie Germain
prime p.

5. The case of g(n) = 2n(n−1). For a fixed n ≥ 2 we cancel all divisors
of all numbers g(s) − g(r) = 2(s − r)(s + r − 1), where 1 ≤ r < s ≤ n.
Equivalently, substituting k = s − r and m = r we get g(s) − g(r) =
2k(k+2m−1) =: f(m, k). Thus we cancel all divisors of all numbers f(m, k)
where k,m ∈ N, k + m ≤ n.

This case was investigated by Zhi-Wei Sun, who proved the following

Theorem 6 ([Sun1, Theorem 1.1(i)]). For n ≥ 2 the least non-cancelled
number b(n) is the least prime p ≥ 2n−1. Therefore the set of numbers b(n)
is the set of all odd prime numbers.



132 J. BROWKIN AND H. Q. CAO

Theorem 7. For n ≥ 9 let p be the least prime ≥ 2n− 1.

(i) All prime numbers in the interval [p, 2p) are non-cancelled.
(ii) All composite numbers in the interval [p, 2p) are cancelled with at

most one exception: If 2s−1 < n ≤ 2s, then 2s+2 is not cancelled.
2s+2 ∈ (p, 2p) iff there is no prime in [2n− 1, 2s+1− 1]; equivalently,
iff p > 2s+1 − 1.

Proof. For 9 ≤ n ≤ 19 the theorem can be verified directly. In what
follows we assume that n ≥ 20.

(i) If a prime q ∈ (p, 2p) is cancelled, then q | 2k(k + 2m − 1) for some
k,m ∈ N, k + m ≤ n.

If q | k, then q ≤ k < n < p, contradicting q ∈ (p, 2p).
If q | k + 2m− 1, then, from k + 2m− 1 < 2(k +m)− 1 ≤ 2n− 1 ≤ p, we

get the same contradiction.
Therefore q is not cancelled, so (i) follows.
(ii) The proof will be divided in several steps.
Let 2s−1 < n ≤ 2s. By Chebyshev’s theorem we get 2s < 2n − 1 ≤ p <

2(2n− 1) < 4n ≤ 2s+2. Thus 2p < 2s+3. It follows that if a power of 2 is in
the interval (p, 2p) then it must be 2s+1 or 2s+2.

(1) We claim that 2s+1 is cancelled, and 2s+2 is not. Indeed, we have
f(2s−1, 1) = 2(1 + 2s − 1) = 2s+1 and 2s−1 + 1 ≤ n, so 2s+1 is cancelled. If
2s+2 were cancelled, then 2s+2 | 2k(k+2m−1) for some k,m ∈ N, k+m ≤ n.

If k is even, then 2s+1 | k < n ≤ 2s, contradiction.
If k is odd, then 2s+1 | k + 2m− 1 < 2n− 1 ≤ 2s+1 − 1, contradiction.

Thus the claim is proved.

(2) Now we shall consider the exceptional case. It remains to investigate
when 2s+2 < 2p, or equivalently, when 2s+1− 1 < p, because p is odd. Since
p is the least prime ≥ 2n − 1, the inequality 2s+1 − 1 < p holds iff there is
no prime in the interval [2n− 1, 2s+1 − 1].

This proves the exceptional case.

(3) It remains to prove that every composite number t ∈ (p, 2p) which
is not a power of 2, is cancelled. Therefore it is sufficient to prove that
t | f(m, k) for some m, k ∈ N such that m + k ≤ n.

We shall use the following strong effective version of Chebyshev’s theo-
rem.

Lemma 8 ([Sun1, proof of Lemma 3.1]). For n ≥ 2 there is a prime
number p ∈ [2n− 1, 2.4n].

From this lemma it follows that the least prime p ≥ 2n − 1 satisfies
p ≤ 2.4n. Consequently, t < 2p ≤ 4.8n. We shall use this inequality several
times.
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Since t is not a power of 2, it has an odd prime factor. Let q be the least
odd prime factor of t. Then t = qv, where v > 1, since t is not a prime.

Case 1: q ≤ 7, that is, q = 3, 5 or 7.

1.1: v is even, v = 2v1. We look for m ∈ N such that t | f(m, q) and

m + q ≤ n. We have f(m, q) = 2q(q + 2m − 1) = 4q
(
m + q−1

2

)
. There is

m ∈ [1, v1] such that m + q−1
2 ≡ 0 (mod v1). Then t | f(m, q) and

m + q ≤ v1 + q =
t

2q
+ q ≤ 4.8

2q
n + q.

For q = 3, 5, 7 and n ≥ 15 the last expression is ≤ n.

1.2: v is odd.

1.2.1: v ≤ 2q − 1. We have as before f(m, q) = 4q
(
m + q−1

2

)
. There is

m ∈ [1, v] such that v |m + q−1
2 . Then t = qv | f(m, q), and

m + q ≤ v + q ≤ 3q − 1 ≤ 20 ≤ n

for q ≤ 7 and n ≥ 20.

1.2.2: v > 2q − 1. Now consider f(m, 2q) = 4q(2q + 2m − 1). Take
m := v+1

2 − q. By assumption, m ≥ 1, and f(m, 2q) = 4qv = 4t. Moreover,

m + 2q =
v + 1

2
+ q <

t

2q
+ q + 1 ≤ 2.4

q
n + q + 1.

The last expression is ≤ n for q = 3, 5, 7 and n ≥ 20.

Case 2. q ≥ 11.

2.1: v = 2 or 4. From t = qv we get q = t/v ≤ t/2 < p, where p is the
least prime ≥ 2n− 1. Hence q ≤ 2n− 3. We have

f

(
q − 1

2
, 2

)
= 4(2 + (q − 1)− 1) = 4q ≡ 0 (mod t)

and q−1
2 + 2 ≤ (n− 2) + 2 = n.

2.2: v = 8. As above we have f(m, q) = 4q
(
m + q−1

2

)
. We choose m ∈

{1, 2} such that m + q−1
2 ≡ 0 (mod 2). Then t = 8q | f(m, q) and

m + q ≤ 2 +
t

8
≤ 2 +

4.8

8
n ≤ n for n ≥ 5.

2.3: v /∈ {2, 4, 8}. Then v ≥ 11, since v does not have an odd prime
factor ≤ 7. We have f(m, q) = 4q

(
m + q−1

2

)
. Take m ∈ [1, v] such that

m + q−1
2 ≡ 0 (mod v). Then t = qv | f(m, q) and

m + q ≤ v + q ≤ t

(
1

q
+

1

v

)
≤ 2

11
t ≤ 2

11
· 4.8n ≤ n for n ≥ 1.
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6. The second generalization. Above we have considered functions
f : N × N → N defined by means of injective mappings g : N → N via
f(m, k) = g(m + k)− g(m) for k,m ∈ N.

More generally, we can consider an arbitrary function f : N × N → N
and use it in the same cancellation algorithm.

We give the details for the function

(1) f(m, k) = m2 + k2.

It is easy to verify that it does not correspond to any injective mapping
g : N→ N.

For a given n ≥ 2, Dn is the set of all divisors of all numbers f(m, k) =
m2 + k2, where m, k ∈ N, m + k ≤ n. The numbers in Dn are cancelled, so
the numbers in D′n = N \Dn remain non-cancelled.

Denote by Q the set of all squarefree positive integers which are products
of prime numbers ≡ 3 (mod 4). Let (qs)

∞
s=0 be the increasing sequence of

all elements of Q. In particular, q0 = 1, which corresponds to the empty
product. Thus

Q = {1, 3, 7, 11, 19, 21, 23, 31, 33, 43, 47, 57, 59, 67, 69, 71, 77, 79, 83, 103, . . .}.
The following lemma gives estimates on the growth rate of the sequence (qs).

Lemma 9. We have
q1
q0

= 3,
q2
q1

=
7

3
= 2.33,

q3
q2

=
11

7
= 1.57,

q4
q3

=
19

11
= 1.72,

and
qs
qs−1

< 1.5 for all s ≥ 5.

It follows that

(2) qs ≤ 2qs−1 + 1 for s ≥ 1.

Proof. The sequence (rn) of all prime numbers ≡ 3 (mod 4) is a subse-
quence of (qs), and r1 = q1 = 3. Therefore for every s ≥ 2 there is n ∈ N
such that

rn−1 < qs ≤ rn.

Then rn−1 ≤ qs−1, since (rn) is a subsequence of (qs). Hence

(3) 1 <
qs
qs−1

≤ rn
rn−1

.

It is known that rn < 2rn−1 for n ≥ 3 and rn < 1.5 rn−1 for n > 118
(see [Mol] and [Mor]). Then from (3) the lemma follows, after the direct
verification of the claim for small values of s.

Lemma 10. If q ∈ Q satisfies q | a2+b2 for some a, b ∈ N, then a ≡ b ≡ 0
(mod q). Hence a + b ≥ 2q.
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Proof. For q = 1 the lemma holds, since a+b ≥ 2 for a, b ∈ N. Let q > 1.
Since −1 is not a quadratic residue modulo any prime p ≡ 3 (mod 4), the
divisibility p | a2 + b2 implies that a ≡ b ≡ 0 (mod p). The lemma follows,
since q is the product of distinct primes ≡ 3 (mod 4).

For n ≥ 2 define s ∈ N by

(4) 2qs−1 ≤ n ≤ 2qs − 1.

Theorem 11. Assuming the above notation we have:

(i) For n ≥ 2 the least non-cancelled number b(n) is qs.
(ii) For n ≥ 3 in the interval Is := (qs, 2qs) the numbers

1) qj ∈ Q ∩ Is,
2) 4qj , where qj ∈ Q satisfies 4qj > n,

are non-cancelled. All other numbers in this interval are cancelled.
(iii) The set {b(n) : n ≥ 2} is equal to Q \ {1}.

Proof. (i) We have to prove that qs is non-cancelled, and every t < qs is
cancelled.

Let qs | k2 + m2 for some k,m ∈ N. By Lemma 10 and (4), we have
k + m ≥ 2qs > n. Therefore qs is non-cancelled.

Let t < qs. Then t satisfies one of the following conditions, where qj is
an element of Q:

(a) t = qj , where j ≤ s− 1,

(b) t = a2qj , where a ≥ 2,

(c) t = (a2 + b2)qj , where a, b ∈ N.

We shall prove that in each case t is cancelled.

(a) Put k = m = qj . Then t = qj | k2 + m2 = 2q2j , and k + m = 2qj ≤
2qs−1 ≤ n, by (4).

(b) Put k = m = aqj . Then t = a2qj | k2 + m2 = 2a2q2j , and k + m =

2aqj ≤ a2qj = t ≤ qs − 1 ≤ 2qs−1 ≤ n, by (2) and (4).

(c) Put k = aqj , m = bqj . Then t = (a2 + b2)qj | k2 + m2 = (a2 + b2)q2j ,

and k+m = (a+b)qj ≤ (a2+b2)qj = t ≤ qs−1 ≤ 2qs−1 ≤ n, by (2) and (4).

In each case we have proved that k + m ≤ n, so t is cancelled.

(ii) We have the following possibilities for numbers t in the interval
(qs, 2qs), where qj is an element of Q:

1) qj , 4) 2qj ,

2) 4qj , 5) 5qj ,

3) a2qj , a ≥ 3, 6) (a2 + b2)qj , a, b ∈ N, a2 + b2 > 5.
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We shall prove that the numbers qj and 4qj , where 4qj > n, are not
cancelled, and all other numbers in the interval (qs, 2qs) are cancelled.

1) From the assumption we have qs < qj < 2qs. If qj | k2 + m2 for some
k,m ∈ N, then, by Lemma 10 and (4), k + m ≥ 2qj > 2qs > n. Hence qj is
non-cancelled.

2) Assume that 4qj | k2 + m2 for some k,m ∈ N. Let 4qj > n. Then k
and m are even, and, by Lemma 10, k ≡ m ≡ 0 (mod qj). Hence 2qj | k,
2qj |m, which implies that k + m ≥ 4qj > n, by assumption. Consequently,
4qj is not cancelled.

If 4qj ≤ n, take k = m = 2qj . Then t = 4qj | k2 + m2 = 4q2j and
k + m = 4qj ≤ n, by assumption. Therefore the number 4qj is cancelled.

3) Let t = a2qj belong to (qs, 2qs), where a ≥ 3. First we assume that
s ≤ 4. In (q1, 2q1) = (3, 6) there is no number of the form a2qj , since a ≥ 3.
The cases s = 2, 3, 4 are described in the table below.

Table 2

s (qs, 2qs) t = a2qj k = m n ≥ 2qs−1

2 (7, 14) 9 = 32 · 1 3 6

3 (11, 22) 16 = 42 · 1 4 14

4 (19, 38) 25 = 52 · 1 5 22

4 (19, 38) 27 = 32 · 3 5 22

4 (19, 38) 36 = 62 · 1 5 22

We see that in all cases k + m = 2k ≤ n, so t = a2qj is cancelled.

Assume that s ≥ 5. For t = a2qj take k = m = aqj . Then t =
a2qj | k2 + m2 = 2a2q2j . From a ≥ 3 it follows that a ≤ a2/3. Therefore

k + m = 2aqj ≤
2

3
a2qj =

2

3
t ≤ 4

3
qs ≤

4

3
· 3

2
qs−1 = 2qs−1 ≤ n,

by Lemma 9 and (4). Consequently, t = a2qj is cancelled.

4) Let t = 2qj . From qs < t < 2qs it follows that qj < qs, so j ≤ s − 1.
Taking k = m = qj we get t = 2qj | k2 + m2 = 2q2j and k + m = 2qj ≤
2qs−1 ≤ n, by (4). It follows that t = 2qj is cancelled.

5) Let t = 5qj . First we assume that s ≤ 4. There are the following cases:

Table 3

s (qs, 2qs) t = 5qj k = qj m = 2qj n ≥ 2qs−1

1 (3, 6) 5 = 5 · 1 1 2 3

2 (7, 14) −−−
3 (11, 22) 15 = 5 · 3 3 6 14

4 (19, 38) 35 = 5 · 7 7 14 22
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In the first line of the table we have n ≥ 3, since in the theorem we have
assumed that n ≥ 3, so the case n = 2 is out of consideration.

In all cases in Table 3 we have k + m ≤ n. Consequently, t = 5qj is
cancelled.

Assume that s ≥ 5. Take k = qj and m = 2qj . Then t = 5qj | k2 + m2 =
5q2j and from qs < 5qj < 2qs we get

k + m = 3qj <
6

5
qs <

6

5
· 3

2
qs−1 < 2qs−1 ≤ n,

by Lemma 9 and (4). Consequently, t = 5qj is cancelled.
6) Let t = (a2 + b2)qj , where a, b ∈ N, a2 + b2 > 5. From the last

inequality it follows easily that a2 + b2 ≥ 2(a + b).
Take k = aqj and m = bqj . Then t = (a2 + b2)qj | k2 + m2 = (a2 + b2)q2j ,

and

k + m = (a + b)qj ≤
1

2
(a2 + b2)qj =

t

2
< qs ≤ 2qs−1 + 1,

by (2). Consequently, k + m ≤ 2qs−1 ≤ n, by (4).
Therefore t = (a2 + b2)qj is cancelled.

(iii) The claim follows from (i).

Remark. Zhi-Wei Sun (see [Sun1] and [Sun2]) has given many other
cancellation algorithms such that the first non-cancelled number b(n) is a
prime (or conjecturally a prime). One may try to determine which numbers
in the interval (b(n), 2b(n)) are non-cancelled by applying arguments similar
to those in this paper. It turns out that for some of these algorithms also

Table 4

n Non-cancelled numbers in [qs, 2qs]

2 3, 4, 5, 6

3 3, 4, 6

4—5 3, 6

7—11 7, 11, 12, 14

12—13 7, 11, 14

14—21 11, 19, 21, 22

22—27 19, 21, 23, 28, 31, 33, 38

28—37 19, 21, 23, 31, 33, 38

38—41 21, 23, 31, 33, 42

42—43 23, 31, 33, 44, 46

44—45 23, 31, 33, 46

46—61 31, 33, 43, 47, 57, 59, 62

62—65 33, 43, 47, 57, 59, 66

66—75 43, 47, 57, 59, 67, 69, 71, 76, 77, 79, 83, 84, 86
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some composite numbers in this interval are not cancelled. It would be
interesting to describe them.

Table 4 illustrates Theorem 11. It lists the non-cancelled numbers in the
interval [qs, 2qs] corresponding to n ∈ [2, 75] and the function f(m, k) =
m2 + k2. The numbers of the form 4qj are printed in bold. They satisfy
4qj > n (see Theorem 11(ii) 2)).
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