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MODIFICATIONS OF THE ERATOSTHENES SIEVE

JERZY BROWKIN (Warszawa) and HUI-QIN CAO (Nanjing)

Abstract. We discuss some cancellation algorithms such that the first non-cancelled
number is a prime number p or a number of some specific type. We investigate which
numbers in the interval (p,2p) are non-cancelled.

1. Introduction. In the present paper we discuss some analogs of the
Eratosthenes sieve, which give many prime numbers.

The well known sieve of Eratosthenes m gives all prime numbers less
than a given integer. It can be stated in the following form:

THE ALGORITHM. For a fixed integer n > 2 cancel in the set {2,3,4,...}
all multiples of 2, of 3,..., and of n. In particular, the numbers 2,3,...,n
are cancelled.

THEOREM 1. After applying this algorithm:

(i) The least non-cancelled number is the least prime number p greater
than n.

(i) In the interval (p,p?), where p is defined in (i), all prime numbers
are non-cancelled and all composite ones are cancelled. The least
non-cancelled composite number is p*.

Proof. (i) Let p be the least prime greater than n. Then every number
t, 2 <t < p, has a prime factor ¢ less than p, so ¢ < n, by the minimality
of p. Consequently, t is cancelled.

On the other hand, p is not cancelled, since p does not have any factor
in the interval [2,n].

(ii) Let m be the least non-cancelled composite number. Then m has at
least two prime factors, and each of them is > p. Consequently, m > p?.
Thus in (p, p?) all composite numbers are cancelled.

Every prime number in this interval is non-cancelled, since it does not
have a factor in [2,n].
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Similarly, p? does not have any factor in this interval, so it is not can-
celled. m

In the following we discuss other cancellation algorithms, which give
numbers of some kind, in particular, prime numbers.

2. The first generalization. Let g : N — N be an injective mapping.
Then for n € N we define b(n) as the least number in the set

B, :={m e N:g(1),...,g9(n) are distinct modulo m}.

This can be stated equivalently as the following cancellation algorithm. For
n > 2 define the set

Ap ={g(s) —g(r) : 1 <r <s<n},
and the set of divisors of numbers in A,,:
D,, :={d e N:d]a for some a € A,}.

Finally, let D), := N\ D,,.
If we cancel in N all divisors of all numbers in A, i.e. all numbers in D,
then D/, will be the set of non-cancelled numbers.

LEMMA 2. In the above notation we have B, = D!, forn > 2.

Proof. The following equivalences hold: d ¢ By, if and only if g(r) = g(s)
(mod d) for some r,s with 1 < r < s < n, if and only if d|g(s) — g(r) for
some 1, s as above. This divisibility holds if and only if d € D,,. Consequently,
d ¢ B, if and only if d € D,,. Hence B,, = D).

From Lemma 2 it follows that b(n) is the least number in D), so it is
the least non-cancelled number.

3. The case of g(n) = kn for some k € N. We apply the above
algorithm to the linear function g(n) = kn+1, where k € N and [ € Z. From
the definition of A, it follows that we can assume that [ = 0.

EXAMPLE 3. If K =1, i.e. g(n) = n for n € N, then for n > 2 we have
Ap={s—r:1<r<s<n}={1,...,n—1}

Then D,, = A, hence m is not cancelled iff m > n, so b(n) = n for every
n > 2.

The following theorem concerns the case k > 2.

THEOREM 4. For a fized k > 2 let g(n) = kn, where n € N. Assume
that n > k. Then:
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(i) All integers in the interval [1,n — 1] are cancelled.
(ii) The set of non-cancelled numbers in the interval [n,2n) equals

Sy ={teN:n<t<2n,(t,k) =1}

(iii) The least non-cancelled number b(n) is the least number in Sy, i.e.
the least integer > n which is relatively prime to k.

(iv) {b(n) :n € N, n >k} is the set of all integers > k relatively prime
to k.

Proof. We cancel all divisors of all numbers g(s)—g(r) = k(s—r), where
1 <r < s <mn, so all divisors of the form djda, where d; |k and dy | s — 7.
Thus dy takes every value in [1,n — 1] and no others. Hence taking d; = 1
we get all integers in the interval [1,n — 1]. This proves (i).

Observe that the set .S, is not empty, because from k < n it follows that
the numbers n,n+1,...,n+ k — 1 belong to [n,2n). They give all residues
modulo k, in particular those relatively prime to k.

Assume that ¢ € 5, is cancelled. Then t = dyds, where di,ds are as
above. From (t,k) = 1 and d; | k it follows that d; = 1. Hence t = dy > n,
which is impossible. Therefore no number in S, is cancelled.

It remains to prove that all numbers ¢t € [n,2n) such that d := (¢,k) > 1
are cancelled. We have t = dt/, where d| k and ¢’ = t/d < 2n/d. Since d > 2,
we get t' < n — 1. Therefore t is cancelled. This proves (ii).

Now (iii) follows from (i), (ii) and the definition of b(n), and (iv) follows
from (iii). =

4. The case of g(n) = n%. Above we have discussed all linear poly-
nomials; now we shall consider quadratic ones, starting with the simplest
quadratic polynomial g(n) = n?.

This case was investigated in [ABM]|, where parts (i) and (iii) of the
theorem below are proved.

Let us recall that now for a given n > 2 we cancel all divisors of all

numbers g(s) — g(r) = s — r2, where 1 <r < s <n.

THEOREM 5.

(i) For n > 2, all integers in the interval [1,2n) are cancelled.
(ii) For n > 2 all numbers in the set

T,:={teN:2n <t <d4dn,t=p or2p, wherep is a prime}

are non-cancelled. For n > 15 all numbers in [2n,4n]\ T,, are can-
celled.

(iii) For n > 4 the least non-cancelled number b(n) is the least number
m T,
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(iv) b(2) =2, b(4) =9, and the set of other values of the function b(n)
equals

{b(n) :neN,n#24} ={2p:pis an odd prime}
U{p:p=2q+1 is a prime and q is composite}.

Thus b(n) is never equal to a Sophie Germain prime, i.e. to a prime
p=2q+ 1 with q prime.

Proof. For the proof of (i) and (iii) see [ABM]. The proof of (ii) goes
along the same lines as the proof of Lemma 4 in [ABM]. We proceed as
follows.

Let n > 2. Assume that a prime p belongs to T, and is cancelled. Then
p|s? —1r? for some 1 <r < s <n. Hence p|s+7r < 2s < 2n. Thus p < 2n,
which is impossible for p € T,.

Assume that 2p € Tj,, where p is a prime, is cancelled. Then 2p | s?> —r? for
some 1 < r < s < n. It follows that s, r are of the same parity. Consequently,
n > 3 and p is odd. Hence 2p|s £ r < 2s < 2n. This is impossible since
2p e T),.

Thus we have proved that all numbers in T}, are non-cancelled. It remains
to prove that for n > 15 all other numbers ¢ in the interval [2n,4n) are
cancelled.

For n = 15,16, 17 this can be verified directly. We assume in the following
that n > 18.

Since t ¢ T, t is not equal to p or 2p, where p is a prime. Therefore
there are four possibilities for ¢, shown in Table 1 below. In each case we
give r, s such that 1 <r < s <n and ¢| s2 — 2. This will prove that such a
t is cancelled.

Table 1
No. t r s 5?2 —r? Conditions
1. a? a 2a 3a®
2. 2a° a 3a 8a?
3. ab a=b ath ab 2la—b,a>b>1
4. 2ab a—b a+0b 4ab abodd,a>b>1

From this table it is clear that in each case we have 1 < r < s and
t|s? — r2. It remains to prove that s < m in each case. We proceed as
follows.

By assumption, 2n <t < 4n.
1. We have s = 2a = 2v/t < 2v/4n < n for n > 16.
2. We have s = 3a = 31/t/2 < 3v/2n < n for n > 18.
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3. If a,b are odd, then a > b > 3. Hence
(a—3)(b—3) >0, which gives ab+9 > 3(a+b).

Therefore
a+b<ab+9_t+9 dn+9

2 7 6 6<6

<n

for n > 5.
If a,b are even, then a > b > 2. Hence

(a—2)(b—2) >0, which gives ab+4>2(a+b).

Therefore
a+b ab+4 t
— < = —
s 5 <3 4+1<n+1,
so s < n.
4. Since a, b are odd, we get, as above, ab+ 9 > 3(a + b). Hence
b+9 t 4
s:a+b§a+ =*+3<fn+3§n
6 6
for n > 9.

Thus we have proved that s < n for n > 18, which gives (ii).

(iv) From (iii) it follows that b(n+1) > b(n) for n > 15. The same holds
for 2 <n < 14 (see [ABM]).

For a prime p, by the definition of T},, it follows that the least number in
Ty is 2p. Then (iii) implies that b(p) = 2p for every odd prime p, including
p = 3, since b(3) = 6.

If p = 2¢ + 1 where ¢ is composite, then the least number in T is
2q+1=p.

If p=2q+1 where ¢ > 5 is a prime, i.e. if p is a Sophie Germain prime,
then b(q) = 2q and b(q + 1) > 2(q+ 1) > p. Since b(n) is a non-decreasing
function, it follows that b(n) # p for every n > 2 and each Sophie Germain
prime p. =»

5. The case of g(n) = 2n(n—1). For a fixed n > 2 we cancel all divisors
of all numbers g(s) — g(r) = 2(s —r)(s +r — 1), where 1 < r < s < n.
Equivalently, substituting &k = s —r and m = r we get g(s) — g(r) =
2k(k+2m—1) =: f(m, k). Thus we cancel all divisors of all numbers f(m, k)
where k,m e N, k+m < n.

This case was investigated by Zhi-Wei Sun, who proved the following

THEOREM 6 ([Sunll Theorem 1.1(i)]). Forn > 2 the least non-cancelled
number b(n) is the least prime p > 2n— 1. Therefore the set of numbers b(n)
is the set of all odd prime numbers.
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THEOREM 7. For n > 9 let p be the least prime > 2n — 1.

(i) All prime numbers in the interval [p,2p) are non-cancelled.

(i1) All composite numbers in the interval [p,2p) are cancelled with at
most one exception: If 2571 < n < 2%, then 2512 is not cancelled.
25%2 ¢ (p, 2p) iff there is no prime in [2n — 1,251 —1]; equivalently,
iff p > 25T — 1.

Proof. For 9 < n < 19 the theorem can be verified directly. In what
follows we assume that n > 20.

(i) If a prime ¢ € (p,2p) is cancelled, then ¢ |2k(k + 2m — 1) for some
kkmeN, k+m < n.

If g | k, then ¢ < k < n < p, contradicting ¢ € (p, 2p).

If g| k+2m—1, then, from k+2m—1<2(k+m)—1<2n—1<p, we
get the same contradiction.

Therefore ¢ is not cancelled, so (i) follows.

(ii) The proof will be divided in several steps.

Let 257! < n < 2%. By Chebyshev’s theorem we get 2° < 2n—1 < p <
2(2n — 1) < 4n < 2572, Thus 2p < 2°F3. It follows that if a power of 2 is in
the interval (p,2p) then it must be 25! or 2572,

(1) We claim that 25%! is cancelled, and 2572 is not. Indeed, we have
f2571 1) =2(1+2% - 1) = 25" and 257 +1 < n, so 25T is cancelled. If
25+2 were cancelled, then 2°%2 | 2k(k+42m—1) for some k,m € N, k+m < n.

If k is even, then 2°T! |k < n < 2°, contradiction.

If k is odd, then 2°*! |k 4+ 2m — 1 < 2n — 1 < 25! — 1, contradiction.
Thus the claim is proved.

(2) Now we shall consider the exceptional case. It remains to investigate
when 2512 < 2p, or equivalently, when 2571 — 1 < p, because p is odd. Since
p is the least prime > 2n — 1, the inequality 2°t! — 1 < p holds iff there is
no prime in the interval [2n — 1,251 — 1].

This proves the exceptional case.

(3) It remains to prove that every composite number ¢ € (p,2p) which
is not a power of 2, is cancelled. Therefore it is sufficient to prove that
t| f(m,k) for some m,k € N such that m + k < n.

We shall use the following strong effective version of Chebyshev’s theo-
rem.

LEMMA 8 ([Sunll proof of Lemma 3.1]). For n > 2 there is a prime
number p € [2n — 1,2.4n].

From this lemma it follows that the least prime p > 2n — 1 satisfies
p < 2.4n. Consequently, t < 2p < 4.8n. We shall use this inequality several
times.
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Since t is not a power of 2, it has an odd prime factor. Let ¢ be the least
odd prime factor of t. Then ¢t = qu, where v > 1, since t is not a prime.

CASE 1: ¢ < 7, that is, ¢ = 3,5 or 7.

1.1: v is even, v = 2v;. We look for m € N such that ¢| f(m,q) and
m + g < n. We have f(m q) = 2¢(q+2m — 1) = 4g(m + q;21) There is

m € [1,v1] such that m + = = 0 (mod v1). Then t| f(m, q) and
t 4.8
m+q<v1+q—;+q<7n+q
For ¢ = 3,5,7 and n > 15 the last expression is < n.

1.2: v is odd.
1.2.1: v < 2¢ — 1. We have as before f(m,q) = 4q(m + %) There is
m € [1,v] such that v|m + qg—l. Then t = qu | f(m,q), and

m+qg<v+q<3¢g—1<20<n
for ¢ <7 and n > 20.
1.2.2: v > 2¢ — 1. Now consider f(m,2q) = 4q(2q + 2m — 1). Take

m:= ”+1 — ¢q. By assumption, m > 1, and f(m,2q) = 4qu = 4t. Moreover,
v+1 2.4
m+2q:7+q<—+q+1§—n+q+l.
2 2q q

The last expression is < n for ¢ = 3,5,7 and n > 20.
CASE 2. ¢ > 11.
2.1: v =2 or 4. From t = qu we get ¢ = t/v < t/2 < p, where p is the
least prime > 2n — 1. Hence g < 2n — 3. We have
-1
f<(12,2) — 42+ (q—1)— 1) =4g =0 (mod ?)

and L= +2<( —2)+2=n.

2.2: v = 8. As above we have f(m,q) = 4q(m + qg—l) We choose m €
{1,2} such that m + % =0 (mod 2). Then t = 8¢ | f(m,q) and

t 4.8
m+q§2+§§2+§n§n for n > 5.

2.3: v ¢ {2,4,8}. Then v > 11, since v does not have an odd prime
factor < 7. We have f(m,q) = 4¢(m + %) Take m € [1,v] such that
m+ % =0 (mod v). Then t = qu| f(m, q) and

1 1 2 2
m+qg<v+q<t g—l—f _ﬁtgﬁ 48n<n formn>1=u
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6. The second generalization. Above we have considered functions
f : Nx N — N defined by means of injective mappings ¢ : N — N via
f(m,k) =g(m+ k) — g(m) for k,m € N.

More generally, we can consider an arbitrary function f : N x N — N
and use it in the same cancellation algorithm.

We give the details for the function
(1) f(m, k) =m? + k2
It is easy to verify that it does not correspond to any injective mapping
g:N—=N.

For a given n > 2, D,, is the set of all divisors of all numbers f(m, k) =
m? + k2, where m,k € N, m + k < n. The numbers in D,, are cancelled, so
the numbers in D), = N\ D,, remain non-cancelled.

Denote by () the set of all squarefree positive integers which are products
of prime numbers = 3 (mod 4). Let (¢5)52, be the increasing sequence of
all elements of Q. In particular, go = 1, which corresponds to the empty
product. Thus

Q=1{1,3,7,11,19,21, 23,31, 33,43,47,57,59,67,69,71, 77,79, 83,103, .. .}.
The following lemma gives estimates on the growth rate of the sequence (gs).

LEMMA 9. We have

7 11 19
g 2_ L _933 B_"_q5 H_7_q179
q0 a3 @ 7 qgs 11
and
ds <15 forall s>5.
ds—1
It follows that
(2) qs <2qs—1+1 fors>1.

Proof. The sequence (r,,) of all prime numbers = 3 (mod 4) is a subse-
quence of (gs), and 71 = ¢1 = 3. Therefore for every s > 2 there is n € N
such that

Tn—1 < (s < Tn.

Then r,—1 < gs_1, since (1) is a subsequence of (gs). Hence

(3) 1< b o

ds—1 Tn—l‘
It is known that r, < 2r,_1 for n > 3 and r, < 1.57r,_1 for n > 118
(see [Mol| and [Mor]). Then from (3) the lemma follows, after the direct
verification of the claim for small values of s. =

LEMMA 10. Ifq € Q satisfies q| a?+b* for some a,b €N, thena=b=0
(mod q). Hence a + b > 2q.
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Proof. For ¢ =1 the lemma holds, since a+b > 2 for a,b € N. Let ¢ > 1.
Since —1 is not a quadratic residue modulo any prime p = 3 (mod 4), the
divisibility p|a? + b? implies that @ = b = 0 (mod p). The lemma follows,
since ¢ is the product of distinct primes = 3 (mod 4). =

For n > 2 define s € N by
(4) 2gs—1 <n <2q — 1.
THEOREM 11. Assuming the above notation we have:

(i) For n > 2 the least non-cancelled number b(n) is gs.
(ii) Form > 3 in the interval Is := (gs,2qs) the numbers
1) q; S Q N Isa
2) 4q;, where q; € Q satisfies 4q; > n,
are non-cancelled. All other numbers in this interval are cancelled.
(iii) The set {b(n):n > 2} is equal to @\ {1}.
Proof. (i) We have to prove that g5 is non-cancelled, and every t < g5 is
cancelled.
Let qs| k%> + m? for some k,m € N. By Lemma 10 and (4), we have
k +m > 2qs > n. Therefore ¢, is non-cancelled.

Let t < gs. Then t satisfies one of the following conditions, where g; is
an element of Q:

(a) t =g, where j < s —1,
(b) t = a*qj, where a > 2,
(c) t = (a® + bz)qj, where a,b € N.
We shall prove that in each case t is cancelled.
(a) Put k = m = g;. Then t = ¢; |k* + m? = 2qj2-, and k +m = 2¢; <
2¢s—1 < n, by (4).
(b) Put k = m = agj. Then t = a?q; |k* + m? = 2a2qj2-, and kK +m =
2aq; < a’qj =t <qs—1<2gs_1 <n, by (2) and (4).
(c) Put k = agj, m = bg;. Then t = (a® + b%)q; | k* + m? = (a® + b2)q32-,
and k+m = (a+b)g; < (a®+b%)q; =t < gs—1 < 2g5_1 < n, by (2) and (4).
In each case we have proved that £k +m < n, so t is cancelled.

(ii) We have the following possibilities for numbers ¢ in the interval
(¢s,2qs), where g; is an element of Q:

2) 4qj, 5) 5qj,
3) a*qj, a > 3, 6) (a® +b%)gj, a,b €N, a* +b* > 5.
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We shall prove that the numbers ¢; and 4¢q;, where 4q; > n, are not
cancelled, and all other numbers in the interval (¢, 2¢s) are cancelled.

1) From the assumption we have gs < q; < 2¢s. If ¢j | k* + m? for some
k,m € N, then, by Lemma 10 and (4), k +m > 2¢q; > 2¢q, > n. Hence ¢; is
non-cancelled.

2) Assume that 4q; | k> + m? for some k,m € N. Let 4¢; > n. Then k
and m are even, and, by Lemma 10, £ = m = 0 (mod ¢;). Hence 2¢; |k,
2¢; | m, which implies that k£ +m > 4¢; > n, by assumption. Consequently,
4q; is not cancelled.

If 4¢; < n, take k = m = 2g;. Then t = 4q;|k* + m? = 4qj2» and
k +m = 4¢g; < n, by assumption. Therefore the number 4¢; is cancelled.

3) Let t = a%q; belong to (gs,2qs), where a > 3. First we assume that
s < 4.In (q1,2¢1) = (3,6) there is no number of the form a?g;, since a > 3.
The cases s = 2, 3,4 are described in the table below.

Table 2
s (gs,2qs) t=d’¢; k=m n>2g
2 (7,14) 9=3%-1 3 6
3 (11,22) 16=4%-1 4 14
4 (19,38) 25=5%-1 5 22
4 (19,38) 27=3%.3 5 22
4 (19,38) 36=06%-1 5 22

We see that in all cases k+m =2k <n, sot = a2qj is cancelled.
Assume that s > 5. For t = aij take k = m = agj. Then t =
a’qj | k* +m? = 2a2qj2. From a > 3 it follows that a < a?/3. Therefore
k—i—m=2aq<<2a2-:f7f<é <éé =2 <
y— 3 q;j 3" = 3QS =3 2‘]371 ds—1 =1,
by Lemma 9 and (4). Consequently, ¢ = a?q; is cancelled.

4) Let t = 2q;. From g5 < t < 2g, it follows that ¢; < g5, s0 j < s — 1.
Taking k = m = q; we get t = 2qj\k2+m2 = 2q]2- and k +m = 2q; <
2¢s—1 < n, by (4). It follows that ¢ = 2¢; is cancelled.

5) Let t = 5¢;. First we assume that s < 4. There are the following cases:

Table 3
s (¢s,2¢5) t=5q; k=q m=2q n>2q
1 (3,6) 5=5-1 1 2 3
2 (7,14) —
3 (11,22) 15=5-3 3 6 14
4 (19,38) 35=5.7 7T 14 22
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In the first line of the table we have n > 3, since in the theorem we have
assumed that n > 3, so the case n = 2 is out of consideration.

In all cases in Table 3 we have £ + m < n. Consequently, ¢ = 5g; is
cancelled.

Assume that s > 5. Take k = ¢; and m = 2¢;. Then t = 5¢; | k2 +m? =
5q]2 and from g5 < 5g; < 2q, we get

k+m:3Qj < gQS < g gq871 <2¢s-1 <n,
by Lemma 9 and (4). Consequently, ¢ = 5¢; is cancelled.
6) Let t = (a® + b?)q;, where a,b € N, a* + > > 5. From the last
inequality it follows easily that a® + b? > 2(a + b).
Take k = ag; and m = bg;. Then t = (a® +b%)g; | k* + m? = (a® + bg)q]?,
and

t
5 < gs < 2q871 + 1)
by (2). Consequently, k +m < 2¢gs_1 < n, by (4).

Therefore t = (a® + b?)g; is cancelled.

1
k4m=(a+b)g; < ;(a® +b%)g; =

(iii) The claim follows from (i). =

REMARK. Zhi-Wei Sun (see [Sunl] and [Sun2]) has given many other
cancellation algorithms such that the first non-cancelled number b(n) is a
prime (or conjecturally a prime). One may try to determine which numbers
in the interval (b(n),2b(n)) are non-cancelled by applying arguments similar
to those in this paper. It turns out that for some of these algorithms also

Table 4
n Non-cancelled numbers in [gs, 2¢s]
2 3,4,5,6
3 3,4,6
4—5 3,6

7—11  7,11,12, 14
1213 7,11, 14

14—21 11,19, 21, 22

2227 19, 21, 23, 28, 31, 33, 38

28—37 19, 21, 23, 31, 33, 38

3841 21, 23, 31, 33, 42

4243 23, 31, 33, 44, 46

44—45 23,31, 33, 46

46—61 31, 33, 43, 47, 57, 59, 62

62—65 33, 43, 47, 57, 59, 66

66—75 43,47, 57, 59, 67, 69, 71, 76, 77, 79, 83, 84, 86




138 J. BROWKIN AND H. Q. CAO

some composite numbers in this interval are not cancelled. It would be
interesting to describe them.

Table 4 illustrates Theorem 11. It lists the non-cancelled numbers in the
interval [gs,2¢s| corresponding to n € [2,75] and the function f(m, k) =
m? + k2. The numbers of the form 4¢; are printed in bold. They satisfy
4q; > n (see Theorem 11(ii) 2)).
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